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In order to improve the complexity of the chaotic system and the accuracy of the weak signal detection, this paper propose a new
hidden attractor coupled chaotic system and a corresponding weak signal detection system, which can be used to obtain the phase
diagram of the proposed system using the fourth order of the Runge-Kutta method.&e dynamic behavior of the chaotic system is
analyzed through the bifurcation diagram, Lyapunov exponent, and power spectrum.&e Lyapunov exponent is used to depict the
basins of attraction for the system. After research, it is discovered that symmetry exists in the system. Comparative analysis has
demonstrated that the system has higher detection accuracy and excellent antinoise performance. Finally, the circuit simulation
and FPGA realization of the system indicated that the numerical simulation results are consistent with the FPGA implementation
results, proving the theoretical analysis to be correct and the accuracy of the detection results.

1. Introduction

After Lorenz introduced the Lorenz system [1] in 1963,
the chaos theory has become a hot spot of nonlinear field
research. With the deepening of theoretical research,
researchers have conducted a lot of analysis into the
attractor and basins of attraction of the chaotic system. In
[2], after an investigation into the basins of attraction of
coexistence attractors in the coupled Duffing system, the
riddled basins of attraction of the Chen system are
studied, and the riddled basins of attraction have a pos-
itive repulsive set of Lebesgue measures via mathematical
proofs. It is found in [3] that the number of coexisting
attractors is different when the initial values are different.
A numerical method for estimating the shortening cal-
culation time of the relative area of the basins of attraction
is proposed in [4], and its application scope is verified. In
[5], the mixed basins of attraction formed when multiple
attractors coexist in a chaotic system are analyzed, and the
research shows that the basins of attraction have a fractal

regular structure. In addition, the hidden attractors [6]
and hidden bifurcations in the system have also attracted
extensive attention of researchers. For example, the
phenomenon of hidden attractor and hidden bifurcation
in multiscroll Chua chaotic system is studied in [7]. &e
dynamic characteristics of multistable chaotic systems
with hidden attractors are studied in [8]. A four-wing
hidden attractor chaos is studied in [9]. In [10], a three-
dimensional hidden attractor chaotic system with Lya-
punov dimension of 2.9075 is studied, and a Bluetooth
device for autonomous wireless mobile robot based on
chaotic motion controller is proposed. At the same time,
as a special state of chaotic system, multistability has been
widely studied. &e chaotic system with multiple attrac-
tors coexisting and multistability are analyzed in [11, 12].
Reference [13] analyzed the multistability of a chaotic
system with two circles of equilibrium points and
implemented the system using FPGA technology. With
the research of electronic components, the realization of
memristors provides a new method for the construction of
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chaotic systems. Nowadays, chaotic systems based on
memristors [14–16] and chaotic neural networks [17–19]
have received great attention from researchers.

With the in-depth theoretical research of chaotic sys-
tems, their engineering application has become more ma-
ture. In recent years, the application of chaotic systems has
spread throughout many fields including electronic circuit
[20–24], image processing [25–30], secure communication
[31–34], complex networks [35–38], and random signal
generation [39–41]. Traditional stochastic resonance [42],
wavelet transform [43], and empirical mode decomposition
[44] are widely used in early fault signal detection. &e
stochastic resonance method enhances the signal utilizing
noise, destroying the original information of the signal.
Immune to certain noises and sensitive to specific signals,
the chaotic system is featured by simple detection methods
and retention of the original signal information. In 1992,
Birx and Pipenberg first proposed detecting weak signals by
using chaotic oscillators [45], and, since then, the chaotic
systems have been represented by the Duffing system and the
van der Pol system [46, 47] began to be widely applied in
weak signal detection. &is research, based on the time
domain and frequency domain detection methods for weak
signals [48, 49] and the antinoise of chaotic system [50],
enables chaotic system detection methods to be more ma-
ture. &e criteria for judging the state of chaotic systems will
directly affect the accuracy of detection; thus, scholars have
also conducted in-depth studies on the calculation of the
threshold of chaotic systems. In [51], Melnikov method is
used to identify chaotic features. In [52], the threshold of the
system is determined by solving the Lyapunov exponent. At
present, most of the researches on weak signals based on
chaos theory use a single chaotic system for detection. &e
system proposed in [53] can only detect signals with a size of
0.01 and the SNR can only reach −45.85 dB. &e system in
[54] can detect signals with a size of 1 × 10− 9, but a noise
signal that can be immune to it can only reach the order of
1 × 10− 9. &e system in [55] can detect a signal with a wider
frequency range, but the detection range of the initial phase
angle of the signal is too large and thus is unfavorable for
determining the signal parameters. At present, most of the
researches on weak signals based on chaos theory use a single
chaotic system for detection. Compared with the single
chaotic system, the coupled system has excellent stability,
high antinoise performance, and low detection threshold.
&erefore, the coupled chaotic system has high theoretical
research value and practical application value.

To improve the chaotic system complexity and the ac-
curacy of signal detection, this paper proposes a new hidden
attractor coupled chaotic system. &rough an analysis of the
system’s phase diagram, the Lyapunov index, and so forth,
the complex dynamic behavior of the system is explained in
detail. Moreover, the basins of attraction for the system are
drawn using the Lyapunov index to study the characteristics
of the system’s attractor. &eoretical analysis indicates that
the system is sensitive to initial values and immune to noise,
and the coupled chaotic system is applied to weak signal
detection. Finally, through OrCAD circuit simulation and
FPGA implementation, the correctness of the theoretical

analysis and the accuracy of signal detection are verified.
&rough data analysis and experimental data, the system
proposed in this paper can detect signals sized 1 × 10− 6, and
the signal-to-noise ratio reaches −73.892 dB. Moreover, the
immune signal reached the order of 3.5 × 10− 3, and the error
range of the initial phase angle is± 0.09. &erefore, the
detection performance of the coupled system proposed in
this paper is better than the single chaotic system proposed
in [45, 46, 53–55].

2. Coupled Chaotic System Model and
Dynamic Analysis

2.1. Coupled Chaotic System Model. &rough [45–47], a
single chaotic system with different nonlinear terms is an-
alyzed, and the limitations of signal detection performance
detection are studied at the same time. For example, [53] can
detect low signal amplitude, and [54] can be immune. &e
noise is small, and [55] detects that the initial phase angle
error of the signal is too large. Based on the above reasons,
this paper proposes a new system:

€x + c1 _x − x + c2x
5

+ k(x − y) � f cos(ωt + θ),

€y + c3 1 − y
3

  _y + y + y
3

+ k(y − x) � f cos(ωt + θ),

⎧⎨

⎩

(1)

where k is the linear coupling coefficient of system (1).
&e larger the coefficient, the higher the degree of cou-
pling; c1, c2, and c3, respectively, represent the coeffi-
cients of the nonlinear terms. f cos(ωt + θ) is the driving
force of the system, and f, ω, and θ represent the am-
plitude, frequency, and initial phase angle of the driving
force, respectively.

2.2. Analysis of the Equilibrium Point and Lyapunov
Exponent of a Coupled Chaotic System. We obtained system
(2) by coupling system (1) and taking the coefficients
c1� 0.5, c2� 0.2, c3� 0.8, and k� 0.4, with the state space
model expression of system (2) shown in the following
equation:

_x � z,

_y � q,

_z � −c1z + x − c2x
5

− k(x − y) + f cos(ωt + θ),

_q � −c3 1 − y
2

 q − y − y
3

− k(y − x) + f cos(ωt + θ).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

To simulate the coupled chaotic system (2), take the
frequency ω � 1 and the initial phase angle θ � 0. &e
system’s initial value is (−1, −1, 0, 0). When the magnitude f
of the driving force takes 0.3, 0.46, 0.8, and 1.2, the
homoclinic orbit, the period-doubling bifurcation, chaotic
state, and periodic state will appear in system (2). &e
driving signal of system (2) is defined as H, and the signal as
a whole system (2) is analyzed. Let the left side of the
equation be equal to 0; then,
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z � 0,

q � 0,

−0.5z + x − 0.2x
5

− 0.4(x − y) + H � 0,

−0.8 1 − y
2

 q − y − y
3

− 0.4(y − x) + H � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

When H� 1, equation (3) has a real number solution
x1� 1.6299, y1� 0.8060, z1� q1� 0, and fourteen complex
number solutions. With the changes of H, equation (3) will
have an infinite number of equilibrium points, so system (2)
is a hidden attractor coupled chaotic system. &e Jacobian
matrix of system (2) at the equilibrium point
M(x1, y1, z1, q1) is

J �

0 0 1 0

0 0 0 1

1 − x
4
1 − 0.4 0.4 −0.5 0

0.4 −1.4 − 3y
2
1 0 −0.8 1 − y

2
1 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

Let |J − λI| � 0; its characteristic values λ1 � −0.2486
+2.5373i, λ1 � −0.2486 − 2.5373i, λ3 � −0.1415 + 1.6983i,
and λ4 � −0.1415 − 1.6983i can be obtained. According to
the Routh-Hurwitz criterion, the real parts of the eigenvalues
are all less than 0, so system (2) is stable at the equilibrium
point (x1, y1, z1, q1). When H� 1, the waveform diagram of
each state variable phase changing over time and phase
diagram within system (2) are shown in Figure 1.

Derivation of equation (2) can achieve

∇V �
z _x

zx
+

z _y

zy
+

z _z

zz
+

z _q

zq

� −1.3 + 0.8y
2
.

(5)

When y ∈ [−1.2748, 1.2748], ∇V< 0, and system (2) is a
dissipative system.

Let β�ωt and take ω� 1 and θ � 0. Convert system (2)
into the form shown in the following equation:

_x � z,

_y � q,

_z � −0.5z + x − 0.2x
5

− 0.4(x − y) + f cos β,

_q � −0.8 1 − y
2

 q − y − y
3

− 0.4(y − x) + f cos β,

_β � 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

and the previous equation can be expressed by vector
method as

_X(t) � w(X(t); η). (7)

&e state space variable X(t) � [x(t), y(t), z(t),

q(t), β(t)]T, w � [w1, w2, w3, w4, w5]
T, η represents the

parameter set, and [· · ·]T represents the transposed matrix.
&e deviation δX equation from orbit X (t) can be expressed
as δ _X(t) � Lij(X(t); η)δX, i, j� 1, 2, ..., 5. Lij � (zwi/zxj)

and the Jacobian matrix form is

J �

0 0 1 0 0

0 0 0 1 0

1 − x
4

− 0.4 0.4 −0.5 0 −f sin β

0.4 1.6qy − 3y
2

− 1.4 0 −0.8 1 − y
2

  −f sin β

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

When f� 0.8, the Lyapunov exponents are
LE1 � 0.184134, LE2 � 0, LE3 � −0.305903, LE4 � −0.312796,
and LE5 � −0.697360, respectively.&e value of LE1 is greater
than 0, and system (2) is in a chaotic state. &e sum of
Lyapunov exponents is less than 0, and system (2) is in a
dissipative system, which is consistent with the previous
results. In a chaotic state, the phase diagram of system (2)
and the cross section diagram of Poincare are shown in
Figure 2.

3. Bifurcation of the Driving Force Parameters
and Lyapunov Exponent Spectrum Analysis

As the various parameters of the driving force have a very
significant impact on the dynamics of the system, focus on
the analysis of the parameters f, ω, and θ was implemented,
and the initial values of system (2) take (−1, −1, 0, 0) on a
uniform basis. When ω � 1, θ � 0. When the amplitude f

changes within the interval [0, 2], the bifurcation diagram
and Lyapunov exponent spectrum of system (2) are shown
in the following diagrams 3(a) and 3(b). As shown in
Figure 3(a), system (2) enters chaos from the period-dou-
bling bifurcation, the chaotic state interval is approximately
[0.41, 0.88], and the system is in a periodic state in the
subsequent interval. According to the comparison between
Figures 3(a) and 3(b), the intervals of the chaotic and pe-
riodic states of the system are consistent.

When f� 0.8, θ � 0, and when the frequency ω changes
in the interval [0, 3], the bifurcation diagram and Lyapunov
exponent spectrum of system (2) are shown in Figures 4(a)
and 4(b). As shown in Figure 4(a), the system enters a
chaotic state from a period-doubling bifurcation. As seen
from Figures 4(a) and 4(b), the change of frequency ω has a
more significant impact on the system than the amplitude f.
&e bifurcation diagram of ω in the interval in [0, 0.8] and
[1, 2] is shown in Figures 4(c) and 4(d). As seen from the
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Figure 2: (a) X-y phase diagram of system (2). (b) Poincare section view of the x-z plane.
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Figure 3: (a) &e bifurcation diagram of (f ) for system (2). (b) &e lyapunov exponent diagram of (f ).
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Figure 1: (a) When H� 1, system (2) state variables are x, (y) z, q, and the waveform diagram. (b) When (H)� 1, system (2) x− y and z− q
phase diagram.
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local bifurcation diagram, a chaotic state occurs in system (2)
within a small range of about ω� 0.5, and a periodic state
appears within a small range of about ω� 1.3.

When ω� 1, f becomes 0.8 and 1, respectively. According
to the above analysis, when ω� 1 and f� 0.8, system (2) is in
a chaotic state. When ω� 1 and f� 1, system (2) is in a
periodic state. In the two different kinetic states of system
(2), the initial phase angle θ is made to change at an interval
[0, 2π], and the bifurcation diagram and Lyapunov exponent
diagram are shown in Figure 5. As seen from the analysis in
Figure 5, when system (2) is in a chaotic state, with a change
to the initial phase angle θ, the dynamic state of system (2)
does not change. &is is also the case when system (2) is in a
periodic state.&erefore, the change of the initial phase angle
θ of the driving force will not cause a change in the dynamic
state of system (2).

4. Basins of Attraction

According to the set limit of system dynamics, the phase space
formed by all possible initial points is divided into several
disjoint subsets of the same dimension, and these subsets are
called the basins of attraction. When a system with complex
dynamics has multiple attractors, the boundary of the basins
of attraction may have fractal characteristics. Within a certain
time range, we compare the transverse maximum Lyapunov
index of system (2) to the Lyapunov index of a particular track
and further obtain the image of the basins of attraction for x
(0)− y (0) and x (0)− z) (0) for system (2). &e initial values
are set to [x (0), y (0), 0, 0], x(0) ∈ [−5, 5], y(0) ∈ [−5, 5] and
[x (0), −1, z (0), 0], x(0) ∈ [−5, 5], z(0) ∈ [−5, 5], respec-
tively. As shown in Figure 6, the basins of attraction formed
by the attractor in system (2) have a complex basins structure,
including both riddled basins of attraction and mixed basins
of attraction. In Figure 7, the basins of attraction are featured
by an overall symmetry and global mixing. In Figures 6 and 7,
the red area represents the basins of attraction of the attractor
at infinity, that is, the point set where the trajectory of the
system diverges. &e yellow area represents the basins of
attraction of the chaotic attractor; that is, the overall system is
stable andmultiple attractors coexist.&e blue area represents
the transition state.

As far as current research is concerned [56, 57], the
conditions for the existence of basins of attraction in an
attractor are as follows:

(i) &ere is a smooth and invariant subspace con-
taining chaotic attractors

(ii) &ere is another asymptotic final state outside the
invariant subspace (not necessarily chaotic)

(iii) &e horizontal Lyapunov exponent of the invariant
subspace is negative

(iv) &e positive finite time change is associated with the
lateral stability of the unstable periodic orbit of the
attractor

According to research in [58], the area of the basins of
attraction will change with the initial value. &e research in
[5] shows that when a sieve shape appears in the basins of

attraction for the Chen system, the existence of a repulsive
set of positive Lebesgue measures is obtained through
mathematical justification. As seen in Figure 6, the change of
the basins of attraction is affected by the initial value, and the
area of |y|> 2 will show riddled basins of attraction, indi-
cating that the attractor contains the repulsive set of the
positive Lebesgue measures in the neighborhood of this area.
&e overall symmetry of the basins of attraction also
manifests the synchronization of the system. Further re-
search shows that it is impossible to predict the asymptotic
attractor of the complex basins of attraction. &e basins of
attraction are shown in Figure 6; when y is in the intervals
[−1.5, 5] and [2, 5], the initial value of the attractor will be
unpredictable.&ere are six attractors in a coupled system in
[6], wherein the basins of attraction of two attractors are not
connected, and basins of attraction of the remaining two
synchronous attractors and two asynchronous attractors
constitute a basin of attraction with a symmetrical mixing
distribution. When 3.5> |y|> 2, there will be a yellow area
not connected to the left and right, and there is also a very
narrow blue area. In this paper, whether the basins of at-
traction of different connected states represent the basins of
attraction of different attractors, the relationship between
the characteristics of the sieve shape of the connected area
and the state changes of coexisting attractors should be
further studied. &e above analysis proves that there are
mathematical conditions for the existence of hidden
attractors and riddled basins of attraction in system (2). We
also show that the horizontal Lyapunov exponents of hidden
attractors are locally unstable.

As seen from Figure 7, the basins of attraction are a
symmetrical figure and based on fractal theory are self-
similar. According to Milnor’s generalization of the classic
definition of attractors, assuming that D is a smooth
compact manifold and bounded, η represents the Lebesgue
measure. &e compact invariant set A on D satisfies the
following conditions:

(1) Basins of attraction σ(A) � x: x ∈ d,ω(x) ⊂ A{ },
with a positive measure ((A))> 0

(2) &ere is no set A′, making A′A, η(σ(A′)) − η(σ
(A)) � 0

A is called an attractor. &at is, when A has an attraction
set of positive Lebesgue measures, the attractor will have an
attractive neighborhood. Based on studies of attractors, if all
xσ(A) and δ > 0, it was discovered that when attractor A has
riddled basins of attraction Φ (A), it satisfies

η σδ(x)∩ σ(A)( η σδ(x)∩ σ(A)
c

( > 0, (9)

where σδ(x) is the δ neighborhood of x. As seen from this,
when the basin of attraction formed by the attractor has a
sieve-shaped characteristic, any neighborhood of the
attractor contains the attraction set of the positive Lebesgue
measures and the repulsive set of positive Lebesgue
measures. In the riddled basins of attraction, there are points
that are attracted by the attractor as well as points that
diverge.
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Our research from [6] shows that when the system
coexistence attractor exhibits synchronous changes, the
attraction basins’ structure is symmetrical. &e research
from [59] on the basins of attraction of coexistence attractors
shows that when the system has multiple attractors, the
basins of attraction formed by attractors will develop a
mixing condition.&e basins of attraction shown in Figure 7
also manifest with the characteristics of mixing and sym-
metry simultaneously. &e study of the two subsystems in
this system in this paper shows that the attractors of the two
subsystems maintain synchronization between chaos pe-
riods. Based on the above references and the research in this
paper, the structure of the basins of attraction in the coupled
system can reflect a synchronization of the system to a
certain extent. Furthermore, the structure of the attractor

and the structure of the basins of attraction can also be
mapped to each other under certain circumstances; that is,
the symmetry of the basins of attraction can reflect the
changing features of the system, and vice versa.

5. Application of Coupled System in Weak
Signal Detection

According to the analysis in Figure 3, when the driving force
frequency ω is a constant value, the state of system (2) will
change from a chaotic state to a periodic state as the am-
plitude f changes. Weak signals can be detected by using the
change to system (2) state. &erefore, this paper proposes a
detection system corresponding to system (2), as shown in
the following equation:

_x � z,

_y � q,

_z � −0.5z + x − 0.2x
5

− 0.4(x − y) + f0 cos ω0t + θ0(  +[b cos(ωt + θ) + S(t)],

_q � −0.8 1 − y
2

 q − y − y
3

− 0.4(y − x) + f0 cos ω0t + θ0(  +[b cos(ωt + θ) + S(t)].

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(10)

In system (10), bcos (ωt+θ) represents a weak signal, and
S (t) represents a noise signal. f0 cos(ω0t + θ0) represents

the driving force of the system. First, the driving force
amplitude f0 is adjusted so that the system is at a critical

Bifurcation diagram of the system (2)
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Figure 4: (a) &e ω bifurcation diagram of system (2). (b) &e Lyapunov exponent diagram of ω. (c) &e partially enlarged diagram of
bifurcation of ω in the interval [0, 0.8]. (d) &e partially enlarged diagram of bifurcation of ω in the interval [1, 2].
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Bifurcation diagram of the system (2)
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Figure 5: (a) &e bifurcation diagram of θ when f� 0.8 and ω� 1. (b) &e Lyapunov exponent diagram of θ when f� 0.8 and ω� 1. (c) &e
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point of state transition, and, at this time, f0 is called the
system threshold. When the driving force amplitude
f0 � 0.8747909, system (10) is in a critical state.

5.1. Research on the Influence of Weak Signal Parameters on
the System. When the frequency ω0 � 1 of system (10) is
taken, the initial phase angle θ0 � 0. When amplitude
f0� 0.8747909, Lyapunov exponent values LE1 � 0.026845,
LE2 � 0, LE3 � −0.256585, LE4 � −0.256435, and
LE5 � −0.508001. At this time, the phase diagram and the
power spectrum of system (10) are shown in Figure 8.
Research shows that the power spectrum of the periodic
signals is a discrete spectrum. &e power spectrum of
nonperiodic signals is a continuous spectrum. &e chaotic
signal is a nonperiodic signal, and the power spectrum is a
continuous spectrum.&erefore, the state of system (10) may
be determined based on the power spectrum. When the
amplitude f0 is adjusted to 0.8747909, the phase diagram and
power spectrum of system (10) are shown in Figure 8.
According to Figure 8, the x-z phase diagram of system (10)
is in a chaotic state and the power spectrum is continuous;
therefore, system (10) is in a chaotic state.

At this time, after a weak signal with a frequency ω� 1,
initial phase angle θ� 0, and amplitude b � 1 × 10− 6 is added to
system (10), Lyapunov index values of the system are
LE1 � −0.014575,LE2 � 0,LE3 � −0.251969,LE4 � −0.253323,
and LE5 � −0.490388. &e phase diagram and the power
spectrum for system (10) are shown in Figure 9. As seen from
Figure 9, when a weak signal with an amplitude 1 × 10− 6 is
added to system (10), the x-z phase diagramof system (10) is in a
periodic state and the power spectrum is a discrete spectrum,
and the state of system (10) becomes periodic.

Because system (10) can only detect weak signals in the
same or similar interval as the driving force frequency and
initial phase angle, the research system can detect the fre-
quency range of the weak signal and take the driving force
frequency ω0 � 1 and the initial phase angle θ0 � 0; the

initial phase angle of the weak signal θ� 0, and the amplitude
b� 1 × 10− 6. By calculating ω in [0.6, 1.3], we get system (10)
Lyapunov exponent data when the frequency ω changes in
Table 1. As seen in Table 1, when the frequency ω of the weak
signal is within [0.8, 1.1], the dynamic state of system (10)
will change.

&e studied system (10) can detect the range of the initial
phase angle θ of a weak signal, taking the system’s driving
force frequency ω0 � 1, the initial phase angle θ0 � 0, the
weak signal frequency ω� 1, and the amplitude b� 1 × 10− 6.
&e driving force f0 of the system and the weak signal b are
to be measured as a whole; when A is input into the system,

A(t) � f0 cos ω0t + θ0(  + b cos(ωt + θ)

� f0 cosω0t cos θ0 − f0 sinω0t sin θ0 + b cosωt cos θ

− b sinωt sin θ.

(11)

When ω0 � ω,

A(t) � f0 cos θ0 + b cos θ( cosωt

− f0 sin θ0 + b sin θ( sinωt

� F(t)cos(ωt + φ(t)).

(12)

In equation (10), F(t) �

����������������������

f2
0 + 2f0b cos(θ0 − θ) + b2



φ(t) � arctan((f0 sin θ0 + b sin θ)/(f0 cos θ0 + b cos θ)).
When F(t)≥ 0.8747919, the state of system (10) will

change from a chaotic state to a periodic state. When
b � 1 × 10− 6, the frequency of the driving force ω� 1, and
the initial phase angle θ0 � 1° to obtain 0.91° ≤ θ≤ � 1.09°.
As seen from the research conclusion of the initial phase
angle of the driving force of system (2), the threshold of
system f0 does not change when the initial phase angle
changes and the weak signals of different initial phase angles
can be detected by adjusting the initial phase angle of the
system’s driving force. According to the above analysis, the
system has a higher detection accuracy for the unknown
weak signal, and, at the moment, the relative error of the
initial phase angle measurement does not exceed ±0.09.

5.2. Research on the Antinoise Performance of System (10).
&e antinoise performance of system (10) was studied by
adding Gaussian white noise. When excessive noise was
added, the phase diagram of system (10) converging in the
periodic state will also become disorderly. &erefore, the
antinoise performance of system (10) can be studied by
drawing the phase diagram of system (10) under noise
conditions. &e regulation system is in a critical state. After
Gaussian white noise power ps(t) � 0.0035 was added to
system (10), the system dynamic state did not change, as
shown in Figure 10(a). &en a weak signal was added to
system (10), and the state of the system changes at this time,
as shown in Figure 10(b). As seen in Figure 10(b), the added
noise has no relevant impact on the stability of the system.
&erefore, the system signal-to-noise ratio SRN is
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Figure 7: &e x (0)−z (0) basins of attraction diagram for system
(2).
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SRN � 10lg
pb

pS(t)

 

� 10lg 0.5
1 × 10− 6

 
2

(0.0035)
2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ≈ − 73.892 dB

(13)

In [53], only a signal with a size of 0.01 can be detected
and the signal-to-noise ratio can only reach −45.85 dB. &e
system in [54] can detect signals with the size of 1 × 10− 9, but
the noise signal that the system can be immune to can only
reach a size of 1 × 10− 9. &e system in [55] can detect signals
of a larger frequency range, but the fluctuation range of the

initial phase angle from the measured signal is too large, and
the error range is ±60.6, which is not conducive to con-
firmation of signal parameters. &e system proposed in this
paper can detect signals sized 1 × 10− 6, and the signal-to-
noise ratio reaches -73.892 dB. Moreover, the immune signal
reached the order of 3.5 × 10− 3, and the error range of the
initial phase angle is ±0.09. In summary, the system in-
troduced in this paper has superior detection performance.

6. Circuit Design and Realization of System

6.1. Circuit Design of System. According to the circuit
principle and the characteristics of electronic components,
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Figure 8: (a) Phase diagram of system (10) when a weak signal is not added. (b) Power spectrum diagram of system (10) when a weak signal
is not added.
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Figure 9: (a) Phase diagram of system (10) after a weak signal was added. (b) Power spectrum of system (10) after a weak signal is added.

Table 1: Lyapunov exponent statistics table of frequency ω withing the interval [0.7, 1.3].

ω LE1 LE2 LE3 LE4 LE5 System state

0.6 0.054782 0 −0.253654 −0.264728 −0.542015 Chaotic state
0.7 0.001082 0 −0.253727 −0.259955 −0.506094 Chaotic state
0.8 0 −0.010830 −0.254174 −0.253927 −0.493878 Periodic state
0.9 0 −0.025991 −0.250020 −0.251349 −0.478236 Periodic state
1.1 0 −0.029113 −0.251380 −0.250912 −0.474047 Periodic state
1.2 0.069098 0 −0.272891 −0.274010 −0.577603 Chaotic state
1.3 0.015809 0 −0.259136 −0.261232 −0.521500 Chaotic state
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the circuit equation (14) as shown in system (2) can be
obtained as follows:

dVx

dt
� −

1
R1C1

Vz,

dVy

dt
� −

1
R2C2

Vq,

dVz

dt
� −

1
R13C3

−
R12

R7
Vz +

R12

R8
Vx −

R12

R9
Vx5 +

R12

R10
Vy +

R12

R11
Vcos t ,

dVq

dt
� −

1
R23C4

−
R22

R16
Vq +

R22

R17
Vqy2 −

R22

R18
Vy −

R22

R19
Vy3 +

R22

R20
Vx +

R22

R21
Vcos t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

&e circuit for equation (14) is shown in Figure 11.
System (2) is compared with equation (14) to make their
coefficients equal, and the selected device parameters
C1 � C2 � C3 � C4 � 47nF, R2 � R3 � R5 � R6 � R14 � R15

� R18 � R24 � R25 � 1kΩ, R1 � R4 � R13 � R23 � 10kΩ, R11
� R12 � 1.2kΩ, R21 � R22 � 1.4kΩ, R7 � 2.4kΩ, R8 � 2kΩ,
R9 � 6Ω, R10 � 3kΩ, R16 � 1.75KΩ, R17 � 17.5Ω,
R19 � 14Ω, and R20 � 3.5kΩ. &e operational amplifier
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Figure 12: (a) Oscillogram of system (2) variable x; (b) x-z phase diagram of system (2).
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Figure 13: (a) x-z phase diagram of (10) without a weak signal; (b) x-z phase diagram of system (10) with a weak signal.
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model selected by the circuit is TL082, and the multiplier
model is AD633.

6.2. System Circuit Simulation and FPGA Implementation.
In this paper, OrCAD was used to simulate the system
circuit, the amplitude was set as f� 8V, and the frequency
φ� 400Hz, with the waveform diagram of the state variable
x and the phase diagram of x-z shown in Figure 12.

Test the detection performance of system (10), take the
frequency φ� 400Hz, and adjust the amplitude
f� 13.5664362V, with system (10) in a chaotic state as shown in
Figure 13(a). When the driving force amplitude f� 13.5664372
is adjusted, the state of system (10) changes to a periodic state,
as shown in Figure 13(b).&erefore, system (10) can effectively
detect the sine signal with an amplitude of 1 × 10− 6 V.

Based on FPGA technology and fixed-point number
method, hardware experiment is carried out on system (10).
We use Xilinx zynq-7000 XC7Z020 FPGA chip and AD9767
dual-port parallel 14-bit A/D module with the highest
conversion rate of 125MHz. &e software used is Vivado
17.4 and system generator compiler is used to realize the
joint debugging of MATLAB and FPGA. In addition, we also
use SIGLENT 1202X digital oscilloscope to visualize analog
output. After compiling, the automatically generated RTL
view is shown in Figure 14.

&e regulation system was in a critical state, as shown in
Figure 15(a). After adding a weak signal, the phase diagram
of system (10) is shown in Figure 15(b), and the state of
system (10) changes. &erefore, system (10) can effectively
detect weak signals.

(a) (b)

Figure 15: (a) x-z phase diagram of system (10) before adding a weak signal; (b) x-z phase diagram of system (10) after adding a weak signal.
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7. Conclusion

&rough calculation, this paper concludes that system (2)
has an infinite number of equilibrium points, and there is a
Lyapunov exponent greater than 0.&erefore, system (2) is a
hidden attractor coupled chaotic system. &e analysis of the
basins of attraction shows that system (2) has the charac-
teristics of structural symmetry, and the state of the attractor
changes synchronously. Further research finds that the
Lyapunov exponent of the hidden attractor is locally un-
stable. &e research on the Lyapunov indexes of all pa-
rameters of system (10) driving force has proved that system
(10) can more accurately detect signals with a size of
1 × 10− 6, and the research on system (10) with noise shows
that system (10) has excellent antinoise performance. Finally,
circuit simulation and FPGA implementation have dem-
onstrated the theoretical analysis and the accuracy of weak
signal detection to be correct.

In future research, the focus will be on how to detect
different types of signals, how to improve the system’s
antinoise performance, and identifying the system’s state. As
there is no unified conclusion on the structure of the basins
of attraction, the research results should be further verified.
Moreover, no unified results have been achieved in the
theoretical research on the structure of the basins of at-
traction, and thus the research on the basins of attraction will
also be a hot spot in the future.
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