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)is paper addresses the complex nonlinear dynamics involved in controlling chaos in power systems using bifurcation diagrams,
time responses, phase portraits, Poincaré maps, and frequency spectra. Our results revealed that nonlinearities in power systems
produce period-doubling bifurcations, which can lead to chaotic motion. Analysis based on the Lyapunov exponent and
Lyapunov dimension was used to identify the onset of chaotic behavior. We also developed a continuous feedback control method
based on synchronization characteristics for suppressing of chaotic oscillations. )e results of our simulation support the
feasibility of using the proposed method. )e robustness of parametric perturbations on a power system with synchronization
control was analyzed using bifurcation diagrams and Lyapunov stability theory.

1. Introduction

)e characteristics of power systems are inherently non-
linear; this is due to the nonlinearity of synchronous gen-
erators. Power systems are usually described using a
nonlinear dynamical system of equations and system pa-
rameters, where any change in one of the parameters can
destabilize the entire system, resulting in chaotic motion and
eventual voltage collapse as well as catastrophic blackout.
Various researchers have studied voltage collapse in electric
power systems [1–5].

Chaotic behavior must be accepted in some situations;
however, it is normally undesirable, as it degrades perfor-
mance and restricts the operating range of electric and
mechanical devices. Beginning with Ott et al. [6], re-
searchers [7, 8] have sought to develop control methods for
converting chaotic motions into periodic orbits or steady
states. Researchers [9, 10] have made particular progress in
single-machine infinite bus systems (SMIB) by applying the
classical generator model. In this work, we sought to convert
chaotic behavior into periodic motion in dynamic power
systems based onmultiple machines.)e synchronization of
chaos has received considerable attention [11–16]. Usually, a

periodic system is referred to as the master (drive) system
and a chaotic system as the slave (response) system. )e
principle underlying synchronization is the control of a slave
system using the output of a master system, such that the
output of the slave system follows the output of the master
system asymptotically. Continuous feedback control
methods based on the properties of synchronization, such as
the scheme developed by Pyragas [17] and Kapitaniak [18],
can be used to convert chaotic motion into stable motion by
using feedback in conjunction with a periodic external force.
)is approach has been used in numerous chaotic systems
[19, 20]. Chang and Hu [19] used synchronization to lessen
chaotic behavior in an automotive suspension system.
Chang and Lue [20] used synchronization to achieve stable
equilibrium in a magnetic levitation system.

Modern nonlinear theories of bifurcation and chaos
have been developed to study nonlinear systems, and
numerous studies on nonlinear dynamics in power systems
have been published [21–27]. In this work, we employed
bifurcation diagrams, phase portraits, Poincaré maps, and
frequency spectra to examine the rich nonlinear dynamics
of power systems. We also adopted advanced algorithms to
compute Lyapunov exponents of smooth dynamical
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systems [28] to identify instances of chaos. )en, we de-
veloped a continuous feedback control method based on
synchronization characteristics to suppress chaotic oscil-
lations in power systems. We then performed simulations
to assess the feasibility and efficiency of the scheme. Finally,
the design of the feedback controller was validated through
the application of optimal control and Lyapunov stability
theories, guaranteeing the global stability of nonlinear
error systems [29–31].

)is paper is organized as follows. Section 2 describes a
power system model involving three synchronous genera-
tors with a resistive load configuration. Section 3 describes
the complex dynamic behavior of a power system, which was
elucidated using numerical analysis methods, such as bi-
furcation diagrams, phase portraits, Poincaré maps, and
frequency spectra. Section 4 presents the Lyapunov expo-
nent used to determine whether the system exhibits chaotic
motion. A synchronization control technique for controlling
chaos in power systems is described in Section 5. Section 6
reveals the effects of parameter errors on the performance of
the proposed synchronization control system. Conclusions
are outlined in Section 7.

2. Mathematical Modeling of Swing
Equations for Three Machines

Synchronous generators are the most critical energy sources
in power systems; however, they are also the source of most
dynamic fluctuations. A power systemmodel involving three
synchronous generators with a resistive load configuration is
considered, as illustrated in Figure 1. Following [32, 33], the
dynamics of this nonlinear power system can be expressed as
follows:

_δ1 � ω1, (1a)

M1 _ω1 � −D1ω1 + P1 − F12 sin δ1 − δ2( 􏼁 − F13 sin δ1 − δ3( 􏼁, (1b)

_δ2 � ω2, (1c)

M2 _ω2 � −D2ω2 + P2 − F21 sin δ2 − δ1( 􏼁 − F23 sin δ2 − δ3( 􏼁, (1d)

_δ3 � ω3, (1e)

M3 _ω3 � −D3ω3 + P3 − F31 sin δ3 − δ1( 􏼁 − F32 sin δ3 − δ2( 􏼁.

(1f)

Now, a special case is considered in which swing
equations are applied for dynamics analysis of the three
machines. We assume that Machine 1 has large inertia,
where M1 � (M1/ε), ε≪ 1. )e transmission line joining
Machines 2 and 3 is shorter than the other lines. Similarly,
the external power P1 is proportionally larger: P1 � P1/ε.
Under these assumptions, the conservative swing equations
for three machines can be written as follows:

_δ1 � ω1, (2a)

M1 _ω1 � −εD1ω1 + P1 − εF12 sin δ1 − δ2( 􏼁 − εF13 sin δ1 − δ3( 􏼁,

(2b)

_δ2 � ω2, (2c)

M2 _ω2 � −D2ω2 + P2 − F21 sin δ2 − δ1( 􏼁 − F23 sin δ2 − δ3( 􏼁, (2d)

_δ3 � ω3, (2e)

M3 _ω3 � −D3ω3 + P3 − F31 sin δ3 − δ1( 􏼁 − F32 sin δ3 − δ2( 􏼁.

(2f)

In accordance with [32, 33], δ1 can be expressed as
follows:

δ1 � −εμ2δ2 − εμ3δ3, (3)

where μ2 � (M2/M1) and μ3 � (M3/M1).
Substituting equation (3) into equations (2a)–(2f), we

can construct an autonomous differential equation for δ2, δ3,
ω2, and ω3, thereby eliminating δ1 and ω1 as follows:

_δ2 � ω2, (4a)

_ω2 � −D2ω2 + α2 − β21sin δ2 1 + εμ2( 􏼁 + εμ3δ3􏼂 􏼃

− β23sin δ2 − δ3( 􏼁,
(4b)

_δ3 � ω3, (4c)

_ω3 � −D3ω3 + α3 − β31 sin δ2 1 + εμ2( 􏼁 + εμ3δ3􏼂 􏼃

− β32 sin δ3 − δ2( 􏼁,
(4d)

where α2 � (P2/M2), β21 � (F21/M2), β23 � (F23/M2),
α3 � (P3/M3), β31 � (F31/M3), and β32 � (F32/M3).

For the sake of convenience, we let ε� 0 and simplify
equations (4a)–(4d) as follows:

Generator Inductor

Resistive load

Figure 1: Schematic diagram of the power system.
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_δ2 � ω, (5a)

_ω2 � −D2ω2 + α2 − β21sin δ2( 􏼁 − β23sin δ2 − δ3( 􏼁, (5b)

_δ3 � ω3, (5c)

_ω3 � −D3ω3 + α3 − β31 sin δ3( 􏼁 − β32 sin δ3 − δ2( 􏼁. (5d)

In accordance with [32, 33], αk can be expressed as
follows:

αk � Pk − Kfωk, k � 2, 3, (6)

where Pk indicates the constant real power, Kf � Lk/Mk, and
Lk is a load-frequency coefficient. Substituting equation (6)
into equations (5a)–(5d), we obtain

_δ2 � ω2, (7a)

_ω2 � −D2ω2 + P2 − Kfω2 − β21 sin δ2( 􏼁 − β23 sin δ2 − δ3( 􏼁,

(7b)

_δ3 � ω3, (7c)

_ω3 � −D3ω3 + P3 − Kfω3 − β31sin δ3( 􏼁 − β32sin δ3 − δ2( 􏼁.

(7d)

Assuming y1 � δ2, y2 � ω2, y3 � δ3, and y4 � ω3 are the
state variables, such that the state-space model of the swing
equation can be written as follows:

_y1 � y2, (8a)

_y2 � P2 − D2 + Kf􏼐 􏼑y2 − β21sin y1( 􏼁 − β23sin y1 − y3( 􏼁,

(8b)

_y3 � y4, (8c)

_y4 � P3 − D3 + Kf􏼐 􏼑y4 − β31 sin y3( 􏼁 − β32 sin y3 − y1( 􏼁.

(8d)

)e numerical values of all parameters in equations
(8a)–(8d) are listed in Table 1 [33].

3. Power System Characteristics

Numerical simulations based on equations (8a)–(8d) were
used to elucidate the characteristics of the power system.)e
commercial package DIVPRK of IMSL was used to write a
series of FORTRAN subroutines to solve the ordinary dif-
ferential equation (ODE) [34]. )e resulting bifurcation
diagram displayed in Figure 2 shows that the first period-
doubling bifurcation occurred at approximately Kf � 0.078,
with chaotic motion appearing at approximately Kf � 0.0109.
More details on the various responses exhibited by the
system are shown in Figures 3–6. Each response type is
characterized using a phase portrait, Poincaré map, and
frequency spectrum. When the parameter Kf> 0.078, the

equilibrium point of equations (8a)–(8d) is stable, revealing
the absence of chatter vibration. Figures 3(a)–3(c) present
period-one motion. Figures 4(a)–4(c) illustrate that a cas-
cade of period-doubling bifurcations caused a series of
subharmonic components, which resulted in bifurcations
with new frequency components at Ω/2, 3Ω/2, 5Ω/2, . . .,
(2n− 1)Ω/2. Decreasing Kf to Kf � 0.0275 caused the first
period-4 bifurcation, as displayed in Figures 5(a)–5(c).
Further decreasing Kf resulted in a cascade of period-dou-
bling bifurcations, leading to chaos. )e resulting chatter
vibration was sufficient to cause a voltage collapse. We used
Poincaré maps and frequency spectra to characterize the
chaotic behavior. Poincaré maps present chaotic motion as
an infinite set of points (a strange attractor). Strange
attractors and continuous Fourier spectra are strong indi-
cators of chaos. Figures 6(a)–6(c) illustrate the chaotic be-
havior in detail.

4. Analysis of Chaotic Phenomena in
Power Systems

In this section, Lyapunov exponents are used to overcome
the limitations of the schemes used in Section 3 to identify
the occurrence of chaotic motion. Every dynamic system
involves a spectrum of Lyapunov exponents (λ) [28], which
indicate changes in the length, area, and volume of a phase
space. Determining whether a system exhibits characteristics

Table 1: Physical parameters of a power system.

Parameter Value
β21 −2
β23 −1
β31 −1
β32 −1
D2 0.2
D3 0.5
P2 0.3
P3 0.5

Kf = 0.078Kf = 0.0275
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Figure 2: Bifurcation diagram of the power system.
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of chaos only requires calculation of the largest Lyapunov
exponent to determine whether, on average, the nearby
trajectories diverge (λ> 0) or converge (λ< 0). Chaotic
motion exhibits at least one positive Lyapunov exponent
within a bounded system, whereas periodic motion exhibits
no positive Lyapunov exponents.

In the current study, we adopted the algorithm proposed
by Wolf et al. [28] for the calculation of Lyapunov exponents.
Figure 7 illustrates the evolution of the largest Lyapunov

exponent, in which the onset of chaotic motion occurs at
approximately Kf � 0.0109. At point P3, the gradual reduction
in Kf causes the sign of the largest Lyapunov exponent to
change from negative to positive. At points P1 and P2, the
largest Lyapunov exponent approached zero, beyond which
the system is susceptible to bifurcation. However, the Lya-
punov exponent at these points provides no information
pertaining to the class of bifurcation. We must therefore
consult the bifurcation diagram presented in Figure 2. A
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Figure 3: Period-1 motion at Kf � 0.085: (a) phase portrait; (b) Poincaré map; (c) power spectrum.
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Figure 4: Period-2 motion at Kf � 0.04: (a) phase portrait; (b) Poincaré map; (c) power spectrum.
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comparison of Figures 7 and 2 revealed that period-2 and
period-4 bifurcations occur at P1 and P2, respectively. When
Kf � 0.09, the Lyapunov exponents obtained using equations
(8a)–(8d) are λ1 � −0.000084, λ2� −0.0157341,
λ3 � −0.5120906, and λ4� −0.5977934. )e negative value

λ1+ λ2+ λ3+ λ4 � −1.1257021 indicates that the power system
exhibits stable periodic motion in its current state. Denoting
λ1 ≥ · · · ≥ λn as the Lyapunov exponents of a dynamical
system, Kaplan and Yorke [35] provided a means by which to
estimate the Lyapunov dimension dL:
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Figure 5: Period-4 motion at Kf � 0.015: (a) phase portrait; (b) Poincaré map; (c) power spectrum.
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Figure 6: Chaotic orbit at Kf � 0.008: (a) phase portrait; (b) Poincaré map; (c) power spectrum.
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dL � j +
1

λj+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽘

j

i�1
λi, (9)

where

􏽘

j

i�1
λi > 0,

􏽘

j+1

i�1
λi < 0.

(10)

Periodic orbit is indicated by an integer-valued Lya-
punov dimension, whereas the noninteger value of the
Lyapunov dimension indicates chaotic motion. When
Kf � 0.09, using the technique in equations (8a)–(8d),
returned a Lyapunov dimension of dL � 1, which indicates a
system undergoing periodic motion. When Kf decreased
beyond the bifurcation point P3 to Kf � 0.009, the Lyapunov
exponents were λ1 � 0.0340716, λ2 � −0.0000068,
λ3 � −0.3985904, and λ4 � −0.5270599, and the Lyapunov
dimension was dL � 2.0854. In this situation, the largest
Lyapunov exponent was positive and the Lyapunov di-
mension was a noninteger, indicating that the power system
was undergoing chaotic motion.

5. Controlling Chaos through Synchronization

Although there are some benefits to identifying chaotic
systems, the ultimate objective is to assume control over
such systems. Avoiding chaos in dynamic systems requires
transformation of chaotic motion into periodic motion.
Pyragas [17] and Kapitaniak [18] proposed a simple yet
effective time-continuous control method for the conversion
of chaotic motion into periodic motion using time-con-
tinuous perturbation with a feedback mechanism. Figure 8
plots the control system proposed in this study, which
comprises a feedback-controlled loop with external periodic
perturbation. )is method is explained briefly in the fol-
lowing paragraph.

Consider the following n-dimensional dynamic system:

_x � P(x) + F(t), (11)

_y � Q(y), (12)

where x(t), y(t) ∈ Rn is the state vector and F(t) is the input
signal. Equation (11) without an input signal (F(t)� 0) is
assumed to have a strange attractor, whereas periodic
motion is observed in equation (12). )rough the strategy
presented in Figure 8, the periodic system (i.e., drive system)
is synchronized with the chaotic system (i.e., response
system). )e difference between signals y(t) and x(t) yields
the following control signal:

F(t) � K[x(t) − y(t)], (13)

where K indicates the feedback gain.
When Kf � 0.09 is selected as the drive system, equations

(14a)–(14d) reveal period-1 motion.

_y1 � y2, (14a)

_y2 � P2 − D2 + Kf􏼐 􏼑y2 − β21 sin y1( 􏼁 − β23 sin y1 − y3( 􏼁,

(14b)

_y3 � y4, (14c)

_y4 � P3 − D3 + Kf􏼐 􏼑y4 − β31 sin y3( 􏼁 − β32 sin y3 − y1( 􏼁.

(14d)

When Kf � 0.008 is selected in the response system,
equations (15a)–(15d) reveal chaotic motion.

_x1 � x2, (15a)

_x2 � P2 − D2 + Kf􏼐 􏼑x2 − β21 sin x1( 􏼁 − β23 sin x1 − x3( 􏼁,

(15b)

_x3 � x4, (15c)

_x4 � P3 − D3 + Kf􏼐 􏼑x4 − β31 sin x3( 􏼁 − β32 sin x3 − x1( 􏼁.

(15d)
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Synchronizing equations (14a)–(14d) and (15a)–(15d)
involves introducing the control signal in equation (13) into
equations (15a)–(15d) as feedback control, which yields the
following coupled system:

_x1 � x2, (16a)

_x2 � P2 − D2 + Kf􏼐 􏼑x2 − β21 sin x1( 􏼁 − β23 sin x1 − x3( 􏼁

+ K x2 − y2( 􏼁,

(16b)

_x3 � x4, (16c)

_x4 � P3 − D3 + Kf􏼐 􏼑x4 − β31 sin x3( 􏼁 − β32 sin x3 − x1( 􏼁

+ K x3 − y3( 􏼁.

(16d)

Equations (16a)–(16d) describe chaotic motion when
K � 0 and Kf � 0.008. )e feedback gain K is adjusted be-
tween 0.0 and −1.0 to convert the dynamics of the system
from chaotic motion into periodic motion. Figure 9
presents the resulting bifurcation diagram, which com-
prehensively explains the dynamic behavior of the system
over a range of feedback gains. Stable periodic motion
appears when K decreases below 0.005. Period-doubling
bifurcations appear when K decreases to between ap-
proximately −0.135 and −0.375. A further decrease in K
beyond −0.375 results in period-1 motion. )e efficacy of
the proposed system in controlling chaos was demon-
strated by the application of a synchronization control
signal (K� −0.8) after a period of 100 s, as displayed in
Figure 10.

6. Effects of Parametric Perturbations onPower
Systems Using Synchronization Control

We sought to understand the effects of parameter errors
on the performance of the proposed synchronization
control system by adding a sinusoidal perturbation di-
rectly to parameters β21, β23, β31, β32, D2, D3, P2, andP3 in
the periodic excitation (drive system). Assume that
equations (14a)–(14d) are representative of the drive
system; then, the corresponding controlled response
system is given by

_z1 � z2 + u1, (17a)

_z2 � P2(1 + ε sin(ωt)) − D2(1 + ε sin(ωt)) + Kf􏼐 􏼑z2

− β21(1 + ε sin(ωt))sin z1( 􏼁

− β23(1 + ε sin(ωt))sin z1 − z3( 􏼁 + u2,

(17b)

_z3 � z4 + u3, (17c)

_z4 � P3(1 + ε sin(ωt)) − D3(1 + ε sin(ωt)) + Kf􏼐 􏼑z4

− β31(1 + ε sin(ωt))sin z3( 􏼁

− β32(1 + ε sin(ωt))sin z3 − z1( 􏼁 + u4,

(17d)

where ε is the amplitude of the perturbation and ω is the
angular frequency.

Subtracting equations (14a)–(14d) from equations
(17a)–(17d), we obtain the following error equation:

_e1 � e2 + u1, (18a)

_e2 � P2ε sin(ωt) − D2ε sin(ωt) + Kf􏼐 􏼑e2

− β21ε sin(ωt)sin e1( 􏼁

− β23ε sin(ωt)sin e1 − e3( 􏼁 + u2,

(18b)

_e3 � e4 + u3, (18c)

_e4 � P3ε sin(ωt) − D3ε sin(ωt) + Kf􏼐 􏼑e4

− β31ε sin(ωt) sin e3( 􏼁

− β32ε sin(ωt)sin e3 − e1( 􏼁 + u4,

(18d)

where e1 � z1 − y1, e2 � z2 − y2, e3 � z3 − y3, and
e4 � z4 − y4.

Considering a Lyapunov function for equations
(18a)–(18d),

V(e) �
1
2
e

T
e. (19)

We obtain the first derivative of V(e) as follows:
_V(e) � e1 _e1 + e2 _e2 + e3 _e3 + e4 _e4. (20)
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Figure 11: Dynamics of synchronization errors for the drive and response systems: (a) e1 � z1 − x1, (b) e2 � z2 − x2, (c) e3 � z3 − x3, and (d)
e4 � z4 − x4.
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)erefore, if we select

u1 � −e1 − e2, (21a)

u2 � −e2 − P2ε sin(ωt) + D2ε sin(ωt) + Kf􏼐 􏼑e2

+ β21ε sin(ωt)sin e1( 􏼁 + β23ε sin(ωt)sin e1 − e3( 􏼁,

(21b)

u3 � −e3 − e4, (21c)

u4 � −e4 − P3ε sin(ωt) + D3ε sin(ωt) + Kf􏼐 􏼑e4

+ β31ε sin(ωt)sin e3( 􏼁 + β32ε sin(ωt)sin e3 − e1( 􏼁,

(21d)

then

_V(e) � −e
2
1 − e

2
2 − e

2
3 − e

2
4, (22)

_V(e)< 0 is satisfied. Since _V(e) is a negatively defined
function, the error states are limt⟶∞e(t) � 0. )us, the
states of the controlled response system and drive system are
synchronized globally and asymptotically [36].

)e correctness of these theoretical results was evaluated
using simulations with the following perturbation parameters:
ε� 0.05 and ω �125.6 rad/s. )e results are, respectively,
presented in Figures 11(a)–11(d), as follows: e1� z1− y1,
e2� z2− y2, e3� z3− y3, and e4� z4− y4. )e synchronization
error eventually converges to zero, resulting in stabilization of
the error system. )is is a clear demonstration that despite
parametric perturbations, the controller is able to synchronize
the states of the drive and response systems. In other words, the
proposed control method is robust to parameter mismatch in
the power system. )e bifurcation diagram in Figure 12 was
also used to illustrate the effects of parametric perturbation.
Again, the proposed control method was shown to suppress

chaotic behavior under the perturbed parameters (e.g.,
β21, β23, β31, β32, D2, D3, P2, andP3) in the periodic excitation
using equations (14a)–(14d).

7. Conclusions

Phase portraits, Poincaré maps, and frequency spectra were
used to explore the rich nonlinear dynamics in power
systems as well as methods used to control chaos. Bifur-
cation diagrams revealed several nonlinear behaviors asso-
ciated with the emergence of chaotic motion at lower values
of Kf. We also observed a cascade of period-doubling bi-
furcations prior to the onset of chaos. )e most powerful
approach to predicting chaotic motion involves computing
the Lyapunov exponent and Lyapunov dimension. We
developed a continuous feedback-control method based on
synchronization for suppressing chaotic motion in power
systems. )e robustness of parametric perturbation on a
power system with synchronization control was analyzed
using bifurcation diagrams and Lyapunov stability theory.
We believe that efforts to control chaos based on nonlinear
dynamics could help to prevent voltage collapse in power
systems.
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