
Research Article
Existence of Solutions for Fractional Evolution Equations with
Infinite Delay and Almost Sectorial Operator

Shanshan Li 1 and Shuqin Zhang2

1School of Mathematics and Information Sciences, Yantai University, Yantai, China
2School of Science, China University of Mining and Technology of Beijing, Beijing, China

Correspondence should be addressed to Shanshan Li; shanhuyuli@163.com

Received 8 September 2020; Revised 27 September 2020; Accepted 8 October 2020; Published 31 October 2020

Academic Editor: Yong Hong Wu

Copyright © 2020 Shanshan Li and Shuqin Zhang. ,is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

,is paper discusses a class of semilinear fractional evolution equations with infinite delay and almost sectorial operator on infinite
interval in Banach space. By using the properties of analytic semigroups and Schauder’s fixed-point theorem, this paper obtains
the existence of mild solutions of the fractional evolution equation. Moreover, this paper also discusses the existence of mild
solution when the analytic semigroup lacks compactness by Kuratowski measures of noncompactness and Darbo–Sadovskii fixed-
point theorem.

1. Introduction

Fractional differential models play a very important role in
describing many complex phenomena such as chaotic sys-
tem [1], fluid flow [2, 3], anomalous diffusion [4–7], and so
on. Compared with the classical partial differential models
such as [8–19], the biggest advantage of models with frac-
tional derivatives is their global property and history
memory. Delay is short for time delay, which exists widely in
the objective world. In the differential equation model with
delay, the function depends not only on the current state but
also on the past time state, so it is more suitable to describe
the process with time memory. ,is property of delay is very
similar to that of fractional derivatives. So many researchers
introduced fractional derivatives into differential equations
with delay [20–24]. Evolution equation, which is a general
appellation for some partial differential equations with time
variable, is mainly used to describe the time-dependent state

and process. Common evolution equations include the wave
equation, the heat equation, Schrodinger equation, KdV
equation, Navier–Stokes equation, and so on. By using the
operator semigroup theory, some partial differential evo-
lution equations can be represented to some abstract or-
dinary differential equations (ODEs) in some special
functional spaces. At present, the research on integer-order
evolution equations has been relatively perfect [25, 26], but
the research on fractional-order evolution equations is still
in the preliminary stage. ,e existence of solutions for
fractional evolution equations is also the basis of the fol-
lowing study. ,e mild solution of integer-order evolution
equations is defined by the constant variationmethod, which
cannot be directly extended to fractional-order evolution
equations.

Li [20] studied the following fractional evolution
equations with almost sectorial operator on finite interval:

cD
q
t x(t) � Ax(t) + f t, x, xt( 􏼁, 0< q< 1, t ∈ (0, T], x0 � ϕ(t) ∈ B, t ∈ (− ∞, 0],􏼈 (1)

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 8868200, 10 pages
https://doi.org/10.1155/2020/8868200

mailto:shanhuyuli@163.com
https://orcid.org/0000-0002-5337-1425
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8868200


where cD
q
t is the Caputo fractional derivative operator, the

evolution operator A is an almost sectorial operator, and B is
a phase space. xt is the element of B defined by
xt(θ) � x(t + θ), θ ∈ (− ∞, 0]. Here, xt(·) represents the
history of state up to the present time.

Baliki et al. [22] discussed a second-order evolution
equation with infinite delay and obtained the existence and
attractivity of mild solutions by Schauder’s fixed point as
follows:

x″(t) − A(t)x(t) � f t, xt( 􏼁, 0< q< 1, t ∈ (0,∞),

x0 � ϕ(t) ∈ B, x′(0) � 􏽥x,

⎧⎨

⎩

(2)

where A(t){ }0≤t<∞ is a family of linear closed operators,
xt(θ) � x(t + θ), θ ∈ (− ∞, 0], and B is a phase space. ,e
existence of mild solutions for fractional evolution equations
and evolution equations with infinite delay has been dis-
cussed in several papers (see [20, 21]). However, we find that
most of the previous papers discuss the fractional evolution
equations in the conventional spaces of continuous function
on finite or infinite interval and in Banach space on finite
interval. To our knowledge, no paper is devoted to the
existence of mild solutions with infinite delay and almost
sectorial operator on infinite interval on Banach space.

In this paper, we consider the following fractional
evolution problem with infinite time delay:

cD
q
0+ x(t) + Ax(t) � f t, xt( 􏼁, t ∈ (0, +∞), 0< q< 1, x(t) � ϕ(t) ∈ B, t ∈ (− ∞, 0],􏼈 (3)

where cD
q
0+ is the Caputo fractional derivative operator, the

evolution operator A is an almost sectorial operator, f is a
given function which will be introduced later, and B is a
phase space. For any continuous function x and any t≥ 0, xt

is the same as in equation (1) which represents the history of
state up to the present time.

,e rest of this paper is organized as follows. In Section
2, we recall some definitions, propositions, notations, and
lemmas. In Section 3, the main results of this paper are
obtained. We consider two cases: the semigroup Q(t)

generated by operator A with compactness and without
compactness. For the case that Q(t) is compact, we construct
a special Banach space B′ and obtain the existence of global
mild solution by using Schauder’s fixed-point theorem. For
the case that Q(t) is not compact, we expand the result of
,eorem 1.2.4 in Guo et al. [27] from any compact interval
to infinite interval (see Lemma 10) and obtain the existence
of global mild solution by applying Kuratowski measures of
noncompactness theory and Darbo–Sadovskii fixed-point
theorem.

2. Preliminaries

In this section, we introduce some notations, definitions,
lemmas, and preliminary facts that will be used in the rest of
this paper. Let (E, | · |) be a Banach space. Denote B(E) as
the space of all bounded linear operators from E to itself with
norm ‖·‖B(E).

Definition 1 (see [28, 29]). Let − 1< c< 0 and 0<ω< (π/2).
Denote by Θc

ω(E) all the linear closed operators
A: D(A) ⊂ E⟶ E which satisfy

(1) σ(A) ⊂ Sω � z ∈ C∖ 0{ }, arg|z|≤ω􏼈 􏼉∪ 0{ }.

(2) For every ω< μ< π, there exists a constant Cμ such
that

|R(z, A)|≤Cμ|z|
c for all z ∈ C\Sμ. (4)

A linear operator A will be called an almost sectorial
operator on E if A ∈ Θc

ω(E).
Define the power of A as

A
β

�
1
2πi

􏽚
Γθ

z
β
R(z, A)dz, β> 1 + c, (5)

where Γθ � R+eiθ ∪R+e− iθ􏼈 􏼉 is an appropriate path oriented
counterclockwise and ω< θ< μ. ,en, the linear power space
Xβ ≔ D(Aβ) can be defined and Xβ is a Banach space with
the graph norm ‖x‖β � |Aβx|, x ∈ D(Aβ).

Next, let us introduce the semigroup associated withA. If
A is an almost sectorial operator, then A generates an an-
alytic semigroup Q(t) of growth order 1 + c as follows:

Q(t) �
1
2πi

􏽚
Γθ

e
− tz

R(z, A)dz, t ∈ S
0
(π/2)− ω, (6)

where Γθ � R+eiθ ∪R+e− iθ􏼈 􏼉 is oriented counterclockwise
and ω< θ< μ< (π/2) − arg|t|. S0(π/2)− ω is the open sector
z ∈ C∖ 0{ }, |argz|< (π/2) − ω􏼈 􏼉. Furthermore, Q(t) satisfies
the following properties.

Proposition 1 (see [28, 29]). Let A ∈ Θc
ω(E) with − 1< c< 0

and 0<ω< (π/2). ,en, the following properties remain true:

(1) Q(t) is analytic in S0(π/2)− ω and
(dn/dtn)Q(t) � (− A)nQ(t), t ∈ S0(π/2)− ω.

(2) -e functional equation holds: Q(s + t) � Q(s)Q(t)

for all s, t ∈ S0(π/2)− ω.
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(3) -ere is a constant C0 � C0(c)> 0 such that
|Q(t)| ≤C0t

− c− 1, t> 0.
(4) -e range R(Q(t)) of Q(t) (t ∈ S0(π/2)− ω) is contained

in D(A∞). Particularly, R(Q(t)) ⊂ D(Aβ) for all
β ∈ C with Re β> 0:

A
β
Q(t)x �

1
2πi

􏽚
Γθ

z
β
e

− tz
R(z, A)xdz, t ∈ S

0
(π/2)− ω, x ∈ E,

(7)

and there exists a constant C′ � C′(c, β)> 0 such that
for all t> 0,

A
β
Q(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤C′t− c+Reβ− 1
. (8)

(5) If β> 1 + c, then
D(Aβ) ⊂ 􏽐Q � x ∈ E, lim

t⟶0
Q(t)x � x􏼚 􏼛.

By Theorem 3.13 in Periago [28], if A is an almost
sectorial operator, then for every λ ∈ C with Re λ> 0,

R(λ, − A) � 􏽚
+∞

0
e

− λt
Q(t)dt. (9)

Let X be the following set:

X ≔ x: R⟶ Xβ, x[0,+∞) ∈ C [0, +∞), Xβ􏼐 􏼑, lim
t⟶+∞

e
− kt

x(t) � 0, x0 ∈ B􏼚 􏼛, (10)

where x[0,+∞) is the restriction of x on [0, +∞) and k is a
constant.

In this paper, we use an axiomatic definition of the phase
space B. (B, ‖·‖B) is a seminormed linear space of functions
mapping (− ∞, 0] into E and satisfies the following axioms
which are introduced by Hale and Kato in [30].

(A) If x: (− ∞, b]⟶ E, b> 0 is continuous on [0, b]

and x0 ∈ B, then for any t ∈ [0, b], the following
conditions hold:

(i) xt ∈ B.
(ii) ,ere exists a positive constant H such that

|x|≤H‖xt‖B.
(iii) ,ere exist positive continuous functions

K(·), M(·) independent of x(·) such that

xt

����
����B
≤K(t) sup

0≤s≤t
‖x(s)‖β + M(t) x0

����
����B

. (11)

(B) For the functions in (A), xt is a B-value continuous
function on [0, b].

(C) ,e space B is complete.

Definition 2 (see [31, 32]). Let f ∈ L1((0, +∞), E) and q> 0;
then,

I
q
0+f(t) �

1
Γ(q)

􏽚
t

0
(t − s)

q− 1
f(s)ds (12)

is called the Riemann–Liouville fractional integral of order q.

Definition 3 (see [31, 32]). ,e Caputo fractional deriv-
ative of order q> 0 of the function f: (0, +∞)⟶ E is
given by

c
D

q
0+f(t) �

1
Γ(n − q)

􏽚
t

0
(t − s)

n− q− 1
f

(n)
(s)ds, (13)

where n is the smallest integer greater than or equal to q,
provided that the right side is well defined on (0, +∞).

Lemma 1 (see [31, 32]). For all f, g ∈ Lq((0,

+∞), E), 1≤ q<∞,

I
q
0+(f∗g) � I

q
0+f( 􏼁∗g. (14)

Next, we will introduce the mild solution of equation (3).
Shu et al. [33] define the mild solution of equation (3) as

x(t) � Sq(t)ϕ(0) + 􏽚
t

0
(t − s)

q− 1
Pq(t − s)f s, xs( 􏼁ds,

(15)

where Sq(t) and Pq(t) have the following expressions and Γ
is an appropriate path in ρ(− A).

Sq(t) �
1
2πi

􏽚
Γ
e
λtλq− 1

R λq
, − A( 􏼁dλ,

Pq(t) �
t
1− q

2πi
􏽚
Γ
e
λt

R λq
, − A( 􏼁dλ.

(16)

Using the properties of the Mittag-Leffler function (for
more details, we refer the readers to [32]),

Eα,β(z) � 􏽘
+∞

k�0

z
k

Γ(αk + β)
�

1
2πi

􏽚
Γ

λα− β
e
α

λα − z
dλ, (17)

where Γ is the same path as in (4) (see [32]), the above
operators Sq(t) and Pq(t) can be represented as the gen-
eralized Mittag-Leffler-type functions:

Sq(t) � Eq,1 − t
q
A( 􏼁 � Eq − t

q
A( 􏼁,

Pq(t) � Eq,q − t
q
A( 􏼁.

(18)

Moreover, Wang et al. [29] and Zhou et al. [34–36]
introduced the function of Wright-type Mq(z):
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Mq(z) � 􏽘
+∞

n�1

(− z)
n− 1

(n − 1)!Γ(1 − nq)
, 0< q< 1, z ∈ C, (19)

and obtained another expression of Sq(t), Pq(t):

Sq(t) � 􏽚
+∞

0
Mq(s)Q t

q
s( 􏼁ds,

Pq(t) � 􏽚
+∞

0
qsMq(s)Q t

q
s( 􏼁ds.

(20)

In fact, these three expressions ((16)–(20)) are equivalent
in the case that t> 0 and A ∈ Θc

ω(E). -erefore, in this paper,
we use the same expression of Sq(t), Pq(t) as Wang et al. in
[29] and Zhou et al. in [34–36]. -en, the global mild solution
of problem (3) is given in the following definition.

Definition 4. A function x: R⟶ X is called a global mild
solution to the problem (3), if x(t) ∈ C(R, X) and

x(t) �
Sq(t)ϕ(0) + 􏽚

t

0
(t − s)

q− 1
Pq(t − s)f s, xs( 􏼁ds, t ∈ (0, +∞),

ϕ(t), t ∈ (− ∞, 0].

⎧⎪⎨

⎪⎩
(21)

Lemma 2 (see [29]). For any fixed t> 0, Sq(t) and Pq(t) are
linear and bounded operators and there exist constants Cs

and Cp such that for all x ∈ E,

Sq(t)x
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤Cst
− q(1+c)

|x|,

Pq(t)x
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤Cpt
− q(1+c)

|x|.
(22)

Lemma 3 (see [29]). For t> 0, operators Sq(t)􏽮 􏽯 and
Pq(t)􏽮 􏽯 are continuous in the uniform operator topology.
Moreover, for every r> 0, the continuity is uniform on
[r, +∞).

Lemma 4 (see [29]). Let 0< β< 1 − c; then,

(1) For t> 0, the range R(Pq(t)) of Pq(t) is contained in
D(Aβ).

(2) For all x ∈ D(A) and t> 0,
|ASq(t)x|≤Ct− q(1+c)|Ax|, where C is a constant
depending on c, q.

Remark 1. Moreover, for all x ∈ D(Aβ)(0< β< 1 − c) and
t> 0,

A
β
Sq(t)x

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤Cst
− q(1+c)

A
β
x

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

A
β
Pq(t)x

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤Cpt
− q(1+c)

A
β
x

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,
(23)

that is,
Sq(t)x

�����

�����β
≤Cst

− q(1+c)
‖x‖β,

Pq(t)x
�����

�����β
≤Cpt

− q(1+c)
‖x‖β.

(24)

Lemma 5 (see [29]). Let β> 1 + c; then, limt⟶0+Sq(t)x � x

for all x ∈ D(Aβ).

3. Main Results

In this section, our main purpose is to establish sufficient
conditions for the existence of global mild solutions to
problem (3) in X. Assume that:

(H) f: [0, +∞) × B⟶ Xβ, (1 + c< β< 1 − c) is con-
tinuous and satisfies

‖f(t, x)‖β ≤p(t)e
− kt

‖x‖B, (25)

where p(t) is a nonnegative and continuous function on
[0, +∞) and here exists a big enough k> 0 such that

(i) For any t≥ 0,

Cpe
− kt

􏽚
t

0
(t − s)

− qc− 1
p(s)K(s)ds ≤

1
2
, (26)

(ii) limt⟶+∞e− kt 􏽒
t

0 (t − s)− qc− 1p(s)K(s)ds � 0,

limt⟶+∞ e− kt 􏽒
t

0 (t − s)− qc− 1p(s)M(s)ds � 0.

In order to obtain the existence of global mild solution of
problem (3), we transform it into a fixed-point problem. For
any ϕ(0) ∈ Xβ, define the operator 􏽢T: X⟶ X as

􏽢Tx(t) �
Sq(t)ϕ(0) + 􏽚

t

0
(t − s)

q− 1
Pq(t − s)f s, xs( 􏼁ds, t ∈ (0, +∞),

ϕ(t), t ∈ (− ∞, 0].

⎧⎪⎨

⎪⎩
(27)
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Let z(t): R⟶ X be the function

z(t) �
Sq(t)ϕ(0), t ∈ (0, +∞),

ϕ(t), t ∈ (− ∞, 0],
􏼨 (28)

and x(t) � y(t) + z(t), t ∈ R. It is easy to know that x(t)

satisfies (21) if and only if

y(t) �
􏽚

t

0
(t − s)

q− 1
Pq(t − s)f s, ys + zs( 􏼁ds, t ∈ (0, +∞),

y0 � 0, t ∈ (− ∞, 0].

⎧⎪⎨

⎪⎩

(29)

Define the set B′ ≔ y ∈ X: y0 � 0 ∈ B􏼈 􏼉 endowed with
seminorm ‖·‖b:

‖y‖b � y0
����

����B
+ sup

t≥0
e

− kt
‖y(t)‖β􏽮 􏽯 � sup

t≥0
e

− kt
‖y(t)‖β􏽮 􏽯.

(30)

,us, (B′, ‖·‖b) is a Banach space. Define the operator
T: B′ ⟶ B′ as

Ty(t) �
􏽚

t

0
(t − s)

q− 1
Pq(t − s)f s, ys + zs( 􏼁ds, t ∈ (0, +∞),

y0 � 0, t ∈ (− ∞, 0].

⎧⎪⎨

⎪⎩

(31)

Consequently, the operator 􏽢T: X⟶ X having a fixed
point in X is equivalent to the operator T: B′ ⟶ B′ having
a fixed point in B′.

Lemma 6. Assume that condition (H) is valid; then, there
exists a constant r> 0 such that

Cpe
− kt

􏽚
t

0
(t − s)

− qc− 1
e

− ks
p(s) K(s)M + M(s)‖ϕ‖B􏼂 􏼃ds≤

r

2
,

(32)

where M satisfies supt>0‖Sq(t)ϕ(0)‖β≤M. Consider Br ≔
y ∈ B′, ‖y‖b ≤ r􏼈 􏼉; then, for any ϕ(0) ∈ Xβ, the operator

T: Br⟶ Br is continuous.

Proof. By ϕ(0) ∈ Xβ and Lemma 5 (1), there exists
0< δ1 <T, and for any t ∈ (0, δ1], such that
‖Sq(t)ϕ(0) − ϕ(0)‖β< ε. for any t≥ δ1, ‖Sq(t)ϕ(0)‖β

≤Cs‖ϕ(0)‖βδ
− q(1+c)
1 . ,erefore, there exists a constant M> 0

such that supt>0‖Sq(t)ϕ(0)‖β≤M.
For any y(t) ∈ Br, 0< s< t, note that

ys + zs

����
����B
≤ ys

����
����B

+ zs

����
����B

,

≤K(s)e
ks

‖y‖b + K(s) sup
0<τ≤s

Sq(τ)ϕ(0)
�����

�����β

+ M(s)‖ϕ‖B,

≤K(s)e
ks

‖y‖b + K(s)M + M(s)‖ϕ‖B,

≔ η(s).

(33)

,en, by condition (H) and Remark 1, we have

e
− kt

‖Ty(t)‖β ≤ e
− kt

􏽚
t

0
(t − s)

q− 1
Pq(t − s)f s, ys + zs( 􏼁

�����

�����β
ds,

≤Cpe
− kt

􏽚
t

0
(t − s)

− qc− 1
e

− ks
p(s)η(s)ds,

≤ Cpe
− kt

􏽚
t

0
(t − s)

− qc− 1
e

− ks
p(s)K(s)ds􏼠 􏼡‖y‖b,

+ Cpe
− kt

􏽚
t

0
(t − s)

− qc− 1
e

− ks
p(s) K(s)M + M(s)‖ϕ‖B􏼂 􏼃ds,

≤
r

2
+

r

2
� r,

(34)

which implies that ‖Ty‖b ≤ r and T: Br⟶ Br.

Next, we will prove the continuity of T. Let
yn(t)􏼈 􏼉

∞
n�1 ∈ Br and ‖yn − y‖b⟶ 0 as n⟶∞ for any

t≥ 0. ,en, for any t> 0, by the continuity of f,

e
− kt

Ty
n
(t) − Ty(t)

����
����β ≤Cpe

− kt
􏽚

t

0
(t − s)

− qc− 1

f s, y
n
s( 􏼁 − f s, ys( 􏼁

����
����βds⟶ 0 (n⟶∞),

(35)

which implies that ‖Tyn(t) − Ty(t)‖b⟶ 0 as n⟶∞.
,erefore, the continuity of T is proved. □

Lemma 7. Assume that condition (H) is satisfied; then, for
any ϕ(0) ∈ Xβ,

(1) e− ktTy(t), y ∈ B′􏼈 􏼉 is equicontinuous on any com-
pact interval of [0, +∞).

(2) For any given ε> 0, there exists a constant T> 0 such
that e− kt‖Ty(t)‖β < ε for any t≥T and y ∈ B′.
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Proof. (1) Without loss of generality, we take
[0, T) ⊂ [0, +∞) as the compact interval and 0≤ t1 < t2 ≤T.

Firstly, for t1 � 0, t1 < t2 ≤T and any y ∈ B′, according to
the continuity of p(s) and η(s), we have

e
− kt1Ty t1( 􏼁 − e

− kt2Ty t2( 􏼁
�����

�����β
≤Cpe

− kt2

􏽚
t2

0
t2 − s( 􏼁

− qc− 1
e

− ks
p(s)η(s)ds⟶ 0 t2⟶ 0( 􏼁.

(36)

Next, for 0< t1 < t2 ≤T, by Lemma 2 and Remark 1, we
have

e
− kt1Ty t1( 􏼁 − e

− kt2Ty t2( 􏼁
�����

�����β
,

≤ e
− kt2 􏽚

t2

t1

t2 − s( 􏼁
q− 1

Pq t2 − s( 􏼁f s, ys + zs( 􏼁
�����

�����β
ds,

+ e
− kt1 − e

− kt2􏼐 􏼑 􏽚
t1

0
t2 − s( 􏼁

q− 1
Pq t2 − s( 􏼁f s, ys + zs( 􏼁

�����

�����β
ds,

+ e
− kt1 􏽚

t1

0
t1 − s( 􏼁

q− 1
− t2 − s( 􏼁

q− 1
􏽨 􏽩 Pq t2 − s( 􏼁f s, ys + zs( 􏼁

�����

�����β
ds,

+ e
− kt1 􏽚

t1

0
t1 − s( 􏼁

q− 1
Pq t2 − s( 􏼁 − Pq t1 − s( 􏼁􏼐 􏼑f s, ys + zs( 􏼁

�����

�����β
ds,

≤Cpe
− kt2 􏽚

t2

t1

t2 − s( 􏼁
− qc− 1

e
− ks

p(s)η(s)ds,

+ Cp e
− kt1 − e

− kt2􏼐 􏼑 􏽚
t1

0
t2 − s( 􏼁

− qc− 1
e

− ks
p(s)η(s)ds,

+ Cpe
− kt1 􏽚

t1

0
t1 − s( 􏼁

q− 1
− t2 − s( 􏼁

− qc− 1
􏽨 􏽩e

− ks
p(s)η(s)ds,

+ sup
s∈ 0,t1− δ[ ]

Pq t2 − s( 􏼁 − Pq t1 − s( 􏼁
�����

�����B(E)
e

− kt1 􏽚
t1− δ

0
t1 − s( 􏼁

− qc− 1
e

− ks
p(s)η(s)ds,

+ e
− kt1 􏽚

t1

t1− δ
t1 − s( 􏼁

q− 1
Pq t2 − s( 􏼁 − Pq t1 − s( 􏼁􏼐 􏼑f s, ys + zs( 􏼁

�����

�����β
ds,

≔ I11(t) + I12(t) + I13(t) + I14(t) + I15(t).

(37)

For I11(t), I12(t), and I14(t) by the continuity of p(s),
η(s), e− ks, and Pq(s), we have I11(t), I12(t)I14(t)⟶ 0 as
t2⟶ t1, δ⟶ 0. For I13(t) and I15(t), note that

I1i(t)≤ 2Cpe
− kt1 􏽚

t1

0
t1 − s( 􏼁

− qc− 1
e

− ks
p(s)η(s)ds, i � 3, 5.

(38)

,en, by using Lebesgue’s dominated convergence
theorem, we have I13(t), I15(t)⟶ 0 as t2⟶ t1, δ⟶ 0.
,erefore, for any 0≤ t1 < t2 ≤T and y ∈ B′,
‖Ty(t1) − Ty(t2)‖b⟶ 0 as t2⟶ t1, δ⟶ 0.

(2) By condition (H), for big enough T> 0,

e
− kt

􏽚
t

0
(t − s)

− qc− 1
e

− ks
p(s)η(s)ds<

1
Cp

ε. (39)

,en, for any t≥T, y ∈ B′, we have

e
− kt

‖Ty(t)‖β ≤Cpe
− kt

􏽚
t

0
(t − s)

− qc− 1
e

− ks
p(s)η(s)ds< ε. (40)

□

3.1. -e Case -at Q(t) Is Compact. In this section, we as-
sume that Q(t) is compact for t> 0, i.e., Q(t) is a compact
operator for every t> 0.

Lemma 8. Let Z⊆B′ be a bounded set; then, Z is relatively
compact in B′ if the following conditions hold:

(1) -e set y(t), y ∈ Z􏼈 􏼉 is equicontinuous on any
compact interval of [0, +∞) and for any t≥ 0,
y(t), y ∈ Z􏼈 􏼉 is relatively compact in X.

(2) For any given ε> 0, there exists a constant
T � T(ε)> 0 such that e− kt‖y(t)‖β < ε for any t≥T

and y(t) ∈ Z.
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Proof. It is sufficient to prove that Z is totally bounded. We
consider the compact interval [0, T] of [0, +∞). Define

Z[0,T] ≔ y(t): y(t) ∈ Z, t ∈ [0, T]􏼈 􏼉, (41)

with norm ‖y‖b1
≔ sup0≤t≤T e− kt‖y(t)‖β􏽮 􏽯; then, condition

(1) combined with Arzelà–Ascoli theorem in Banach space
indicates that Z[0,T] is relatively compact. ,erefore, for any
ε> 0, there exist finitely many balls Bε(yi) such that
Z[0,T] ⊂ ∪ n

i�1Bε(yi), where yi ∈ B′.

Bε y
i

􏼐 􏼑 � y(t) ∈ Z[0,T], y − y
i

����
����b1

� sup
0≤t≤T

e
− kt

y(t) − y
i
(t)

����
����β􏼚 􏼛≤ ε􏼨 􏼩.

(42)

Hence, for any y(t) ∈ Z, there exists an i ∈ 1, 2, . . . , n{ }

such that y[0,T] ∈ Bε(yi), i.e., for t ∈ [0, T],

e
− kt

y(t) − y
i
(t)

����
����β ≤ ε. (43)

Moreover, for t ∈ [T, +∞], with conditions (3) and (43),

e
− kt

y(t) − y
i
(t)

����
����β,

≤ e
− kt

y(t) − e
− kT

y(T)
�����

�����β
+ e

− kT
y(T) − e

− kT
y

i
(T)

�����

�����β

+ e
− kT

y
i
(T) − e

− kt
y

i
(t)

�����

�����β
,

≤ 5ε.
(44)

,erefore, by (43) and (44), we have ‖y(t) − yi(t)‖b ≤ 5ε
for any t≥ 0. ,en, Z can be covered by balls
B5ε(yi) � y(t) ∈ Z, |y − yi|b ≤ 5ε􏼈 􏼉. Consequently, Z is to-
tally bounded and the process is complete. □

Theorem 1. Assume that condition (H) holds; then, for
ϕ(0) ∈ Xβ, problem (3) has at least one global mild solution in
Br.

Proof. We aim to prove this theorem by using Schauder’s
fixed-point theorem. In view of Lemma 6, T: Br⟶ Br and
T is continuous, so we just need to prove that for any
bounded subset V ⊂ Br, TV is relatively compact in X. ,en,
it is easy to prove that TV satisfies all conditions in Lemma 8.

Consider Lemma 6; we have proved that
‖Ty‖b � sup

t≥0
e− kt‖Ty(t)‖β􏽮 􏽯≤ r for any y ∈ Br which implies

Ty, y ∈ Br􏼈 􏼉 is uniformly bounded. By Lemma 7,
Ty, y ∈ B′􏼈 􏼉 is equicontinuous on any compact interval

[0, T] of [0, +∞) and e− kt‖Ty(t)‖β < ε for any t≥T and
y ∈ B′. ,en, it remains to show that
V(t) � (Ty)(t), y(t) ∈ V􏼈 􏼉 is relatively compact in X for
any t ∈ [0, T].

It is easy to know that V(0) � 0{ } is compact in X. Let
t ∈ [0, T) be fixed and for any ε ∈ (0, t), δ > 0, we define an
operator Tδ

ε on V by the formula

T
δ
εy􏼐 􏼑(t) � 􏽚

t− ε

0
􏽚

+∞

δ
qθ(t − s)

q− 1
Mq(θ) Q (t − s)

qθ( 􏼁f s, ys + zs( 􏼁dθds,

� Q εqδ( 􏼁 􏽚
t− ε

0
􏽚

+∞

δ
qθ(t − s)

q− 1
Mq(θ) Q (t − s)

qθ − εqδ( 􏼁f s, ys + zs( 􏼁dθds,

(45)

where y ∈ V. Under the compactness of Q(εqδ)(εqδ > 0) and
the boundedness of

􏽚
t− ε

0
􏽚

+∞

δ
qθ(t − s)

q− 1
Mq(θ)Q (t − s)

qθ − εqδ( 􏼁

f s, ys + zs( 􏼁dθds,

(46)

we obtain that the set Vδ
ε(t) � (Tδ

εy)(t), y ∈ V􏼈 􏼉 is relatively
compact in X for any ε ∈ (0, t) and δ > 0. Moreover, for any
y ∈ V, t> 0, we have

e
− kt

(Ty)(t) − T
δ
εy􏼐 􏼑(t)

�����

�����β
,

≤ qe
− kt

􏽚
t

0
􏽚
δ

0
θ(t − s)

q− 1
Mq(θ) (t − s)

qθ( 􏼁f s, ys + zs( 􏼁dθds

��������

��������β
,

+ e
− kt

􏽚
t

t− ε
􏽚

+∞

δ
qθ(t − s)

q− 1
Mq(θ) Q (t − s)

qθ( 􏼁f s, ys + zs( 􏼁dθds

�������

�������β
,

≤ qCpe
− kt

􏽚
t

0
(t − s)

− qc− 1
e

− ks
p(s)η(s)ds 􏽚

δ

0
θ− c

Mq(θ)dθ,

+ Cpe
− kt

􏽚
t

t− ε
(t − s)

− qc− 1
e

− ks
p(s)η(s)ds.

(47)
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According to 􏽒
+∞
0 θrMq(θ)dθ � (Γ(1 + r)/Γ(1 + qr))

and condition (H), we have

􏽚
δ

0
θ− c

Mq(θ)dθ⟶ 0,

􏽚
t

t− ε
(t − s)

− qc− 1
p(s)η(s)ds⟶ 0, as ε⟶ 0, δ⟶ 0,

(48)

which implies ‖(Ty)(t) − (Tδ
εy)(t)‖b⟶ 0 as

ε⟶ 0, δ⟶ 0.
,erefore, the relatively compact set Vδ

ε(t) is arbitrarily
close to the set V(t). Hence, for any t ∈ [0, T], the set V(t),
t ∈ [0, T] is also relatively compact in X.

Hence, T: Br⟶ Br is a completely continuous oper-
ator. So, by Schauder’s fixed-point theorem, T has at least
one fixed point in Br which implies that problem (3) has at
least one global mild solution in Br. □

3.2. -e Case -at Q(t) Is Not Compact. In this section, we
assume that Q(t) is not compact. In the following, α and αB′
denote the Kuratowski measures of noncompactness of
bounded sets in Xβ and in B′. For more details about
Kuratowski measures of noncompactness, we refer the
readers to [27]. Assume that:

(H∗) ,ere exists m(t) ∈ L([0, +∞), [0, +∞)) such that
I

q
0+m exists and for any bounded set V ⊂ B,

α(f(t, V))≤m(t) e
− ktsup− ∞<τ≤0α(V(τ)), (49)

and for any t≥ 0,

Cpe
− kt

􏽚
t

0
(t − s)

− qc− 1
m(s)ds< 1. (50)

Lemma 9 (see [27]). If V ⊂ C(J, E) is bounded and equi-
continuous, then α(V(t)) is continuous and

α 􏽚
J
y(t)dt, y ∈ V􏼨 􏼩􏼠 􏼡≤􏽚

J
α(V(t))dt, (51)

where J is any compact interval of [0, +∞).

Lemma 10. Let V be a bounded set in B′. Suppose that V(t)

is equicontinuous on any compact interval [0, T] of [0, +∞)

and for any t≥T, ε> 0, and y ∈ V,

e
− kt

‖y(t)‖β < ε. (52)

-en, for each V(t) � y(t), y ∈ V􏼈 􏼉,

αB′(V) � sup
t≥0

e
− ktα(V(t))􏽮 􏽯. (53)

Proof. First, we prove that αB′(V)≥ supt≥0 e− ktα(V(t))􏼈 􏼉.
For the above given ε> 0, t≥ 0, there exists a partition V �

∪ n
j�1Vj such that

diam Vj􏼐 􏼑< αB′(V) + ε, for any j � 1, 2, . . . , n. (54)

,en, V(t) � ∪ n
j�1Vj(t). For any u, v ∈ Vj, t≥ 0,

e
− kt

‖u(t) − v(t)‖β ≤ diam Vj􏼐 􏼑< αB′(V) + ε. (55)

,erefore, diam(Vj(t))≤ ekt(αB′(V) + ε) which implies

sup
t≥0

e
− ktα(V(t))􏽮 􏽯≤ αB′(V), (56)

by the arbitrariness of ε.
Next, we show that αB′(V)≤ supt≥0 e− ktα(V(t))􏼈 􏼉. By the

equicontinuity of V(t) on [0, T], there exists a partition 0 �

t0 < t1 < · · · < tm � T such that

e
− kti
′
y ti
′( 􏼁 − e

− kt″
i y ti
″( 􏼁

������

������β
< ε, (57)

for any ti
′, ti
″ ∈ [ti, ti+1], y ∈ V, i � 0, 1, . . . , m − 1. Let

Ii � [ti, ti+1], i � 0, 1, . . . , m − 1 and Im � [tm, +∞); then, by
(51) and (57),

e
− kti
′
y ti
′( 􏼁 − e

− kt″
i y ti
″( 􏼁

������

������β
< 2ε, for any y ∈ V, ti

′, ti
″ ∈ Ii, i � 0, 1, . . . , m. (58)

For each i ∈ 0, 1, . . . , m{ }, there exists a division V �

∪ n
j�1V

i
j such that V(ti

′) � ∪ n
j�1V

i
j(ti
′) and

diam V
i
j ti
′( 􏼁􏼐 􏼑< α V ti

′( 􏼁( 􏼁 + 2ε, j � 1, 2, . . . , n. (59)

Let Y be the finite set of all maps i⟶ c(i) of
0, 1, . . . , m{ } into 1, 2, . . . , n{ }. For c ∈ Y,

Zc ≔ y ∈ V, y ti
′( 􏼁 ∈ V

i
c(i) ti
′( 􏼁, i � 0, 1, . . . , m􏽮 􏽯, (60)
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so V � y(t), y ∈ Zc, c ∈ Y􏽮 􏽯. For any u, v ∈ Zc and t≥ 0,
there exists i ∈ 0, 1, . . . , m{ } such that t ∈ Ii; then,

e
− kt

‖u(t) − v(t)‖β,

≤ e
− kt

u(t) − e
− kti
′
u ti
′( 􏼁

�����

�����β
+ e

− kti
′
u ti
′( 􏼁 − e

− kti
′
v ti
′( 􏼁

�����

�����β
+ e

− kt
v(t) − e

− kti
′
v ti
′( 􏼁

�����

�����β
,

< α V ti
′( 􏼁( 􏼁 + 6ε.

(61)

,erefore, diam(Zc)≤ α(V(ti
′)) + 6ε. Since ε> 0 is ar-

bitrary, we have

αB′(V)≤ sup
t≥0

e
− ktα(V(t))􏽮 􏽯. (62)

□

Lemma 11 (see [27]). Let D be a bounded, closed, and
convex subset of Banach spaceE. If the operatorT: D⟶ D

is a strict set contraction, then T has a fixed point in D.

Remark 2. A bounded and continuous operator T: D⟶ E

is called a strict set contraction if there is a constant 0≤ λ< 1
such that α(TV)≤ λα(V) for any bounded set V ⊂ D.

Theorem 2. Assume that conditions (H), (H∗) are satisfied;
then, for ϕ(0) ∈ Xβ, problem (3) has a global mild solution in
Br.

Proof. Let V be an arbitrary bounded set in Br. According to
Lemmas 6 and 7, we know that T: Br⟶ Br is bounded and
continuous and Ty(·), y ∈ V􏼈 􏼉 is equicontinuous on [0, T]

and e− kt‖Ty(t)‖β < ε for any t≥T, y ∈ V, ε> 0. ,en, by
Lemma 3.6, it follows that

αB′(TV) � sup
t≥0

e
− ktα(TV(t))􏽮 􏽯. (63)

Consider Lemma 9 and condition (H∗); let any t≥ 0 be
fixed, and for the above ε> 0, we have

e
− ktα(TV(t)) � e

− ktα 􏽚
t

0
(t − s)

q− 1
Pq(t − s)f s, ys + zs( 􏼁ds, y ∈ V􏼨 􏼩􏼠 􏼡,

≤ e
− kt

􏽚
t

0
α (t − s)

q− 1
Pq(t − s)f s, ys + zs( 􏼁, y ∈ V􏽮 􏽯􏼐 􏼑ds,

≤Cpe
− kt

􏽚
t

0
(t − s)

− qc− 1α f s, ys + zs( 􏼁, y ∈ V􏼈 􏼉( 􏼁ds,

≤Cpe
− kt

􏽚
t

0
(t − s)

− qc− 1
m(s)e

− ks sup
0≤τ≤s

α(V(τ))ds,

≤ Cpe
− kt

􏽚
t

0
(t − s)

− qc− 1
m(s)ds􏼠 􏼡αB′(V),

(64)

which implies that αB′(TV)≤ λαB′(V) where
λ ≔ Cpe− kt 􏽒

t

0 (t − s)− qc− 1m(s)ds< 1. ,en, T is a strict set
contraction.

Consequently, by Lemma 11, T has a fixed point in Br

which implies that problem (3) has a global mild solution in
Br. ,e proof process is completed. □

4. Conclusions

In this paper, we investigated a class of fractional evolution
equations with infinite delay and almost sectorial operator
on unbounded domains in Banach space. We considered the
case of compact semigroups and noncompact semigroups
and obtained sufficient conditions of the existence of global
mild solutions.
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