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+is paper proposes an H2 state-feedback controller for Markovian jump systems with input saturation and incomplete
knowledge of transition probabilities. +e proposed controller is developed using second-order matrix polynomials of an in-
complete transition rate to derive less conservative stabilization conditions. +e proposed controller not only guarantees H2
performance but also rejects matched disturbances. +e effectiveness of the proposed method is demonstrated using three
numerical examples.

1. Introduction

Over the last few decades, Markovian jump systems (MJSs)
have been recognized as one of the most effective models for
the representation of dynamic systems subjected to random
and abrupt variations. +us, numerous studies have been
conducted to analyze and synthesize MJSs [1–7]. +e
findings of these studies have been applied in various
practical systems, such as networked control systems [8],
manufacturing systems [8], economic systems [9], power
systems [10], and actuator saturation [11]. In particular,
studies have focused on the analysis and synthesis of ideal
MJSs having exact values of transition probabilities [12].

However, such MJSs with exactly known transition
probabilities have limited scope for application in practical
systems because it is difficult to obtain complete knowledge
of transition probabilities. +us, recent studies on controller
synthesis have focused on MJSs with incomplete knowledge
of transition probabilities. Such studies have employed the
free-connection weighting method and linear matrix in-
equalities (LMIs) [13–16].

However, several practical systems suffer from input
saturation because of the physical limitations of the control
system [17–19]. It is well known that input saturation

generally degrades control system performance and system
stability [20].

+us, the control synthesis problem should be consid-
ered with input saturation in practical systems. In particular,
the stochastic stabilization problem for MJSs subjected to
actuator saturation was studied based on exactly known
transition probabilities [21, 22]. Furthermore, the stabili-
zation of saturated MJSs with incomplete knowledge of
transition probabilities was studied using the free-connec-
tion weighting matrix approach [11]. In addition, the sta-
bilization condition for MJSs in the presence of both
partially unknown transition rates and input saturation was
proposed [23].

To the best of the author’s knowledge, intensive studies
on the H2 control of MJSs with input saturation and in-
complete knowledge of transition probabilities have not
been conducted thus far. A previous study stabilized non-
homogeneous MJSs with input saturation [24]; however, the
findings are not applicable to practical systems because
disturbances were not considered.

+us, an H2 stabilization condition for MJSs with input
saturation and incomplete knowledge of transition proba-
bilities is proposed herein. +e main contributions of this
study are as follows:
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+is is the first proposal to propose a stabilization
condition to accomplish stochastic stability and guar-
antee H2 performance for MJSs with input saturation
and incomplete knowledge of transition probabilities.
+e proposed controller consists of two parts: a linear
control part to guarantee H2 performance and a non-
linear control part to reject the matched disturbances.
Based on the proposed relaxation method using the sec-
ond-ordermatrix polynomials of the incomplete transition
rate, this paper presents less conservative stabilization
conditions for estimating the domain of attraction.

+e effectiveness of the proposed controller is demon-
strated using two numerical examples and a practical
example.

+e remainder of this paper is organized as follows.
Section 2 provides a description of the system and some
preliminary results. Section 3 introduces the proposed H2
controller for MJSs with input saturation and incomplete
knowledge of transition probabilities. Section 4 presents the
simulations of three examples for verifying the proposed
controller. Section 5 concludes the paper.

Notation. +e notations X≥Y and X>Y indicate that X − Y

is positive semidefinite and positive definite, respectively. In
symmetric block matrices, (∗ ) is used as an ellipsis for
terms that are induced by symmetry. Furthermore,He(X) �

X + XT stands for any matrix X, and E[·] denotes the
mathematical expectation. For any matrices Si and Sij,

Si i∈ 1,2,...,N{ } � S11, S12, . . . , S1N ,

Sij 
i,j∈ 1,2,...,N{ }

�

S11 S12 · · · S1N

S21 S22 ⋱ ⋮

⋮ ⋱ ⋱ ⋮

SN1 · · · · · · SNN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
(1)

We also use ‖x‖p to indicate the p-norm of x, i.e.,
‖x‖p ≜ (|x1|

p + · · · + |xn|p)(1/p), p≥ 1. λmin(X) and λmax(X)

denote a minimum eigenvalue and a maximum eigenvalue
of X, respectively. +e notation ek indicates a unit vector
with a single nonzero entry at the kth position, i.e.,
ek ≜ [0 . . . 1

kth

. . . 0]T.

2. System Description and Preliminaries

Consider the following continuous-time MJS with input
saturation and a matched disturbance:

_x(t) � A rt( x(t) + B rt(  sat(u(t)) + d(t){ }, (2)

z(t) � C rt( x(t), (3)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input,
d(t) ∈ Rm is the matched disturbance, and z(t) ∈ Rq is the
controlled output. +e matched disturbance d(t) is assumed
to be |eT

k d(t)|< ε. Here, rt, t≥ 0  is a continuous-time
Markov jumping process in a finite set D � 1, 2, 3, . . . , N{ }

with mode transition probabilities:

P rt+δt � j | rt � i(  �
πijδt + o(δt), if i≠ j,

1 + πijδt + o(δt), if i � j,

⎧⎨

⎩ (4)

where δt> 0, limδt⟶0(o(δt)/δt) � 0, and πij is the transition
rate from mode i to j at time t + δt. For rt � i ∈ D, to
simplify the notation, A(rt) � Ai, B(rt) � Bi, D(rt) � Di,
andC(rt) � Ci. Further, sat(·) denotes a saturation operator,
which is defined as

[sat(u)]i ≜

[u]i, [u]i


< μ,

μ, [u]i


≥ μ,

−μ, [u]i


≤ μ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

where μ(> ε) is the saturation level. Furthermore, the
transition rate matrix Π belongs to

SΠ ≜ πij 
i,j∈D|0≤ πij, for i≠ j, πii � − 

N

j�1,i≠ j

πij

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(6)

In view of the aforementioned relations, πij accords with
the following relationships, for all i, j ∈ D:

]ijπij ≥ 0, 
N

j�1
πij � 0, −]ijπij πij + πii ≥ 0, (7)

where

]ij �
1, i≠ j,

−1, i � j.
 (8)

For future convenience, two sets are defined with respect
to the measurability of the transition rate for i, j ∈ D:

D
+
i ≜ j|πij is known for i ,

D
−
i ≜ j|πij is unknown for i .

(9)

+e following lemma and definitions are introduced as
preliminaries required to prove the theorems presented in
the subsequent sections.

Lemma 1 (see [25]). Let u, v ∈ Rm,

u � u1 u2 . . . um 
T
,

v � v1 v2 . . . vm 
T
.

(10)

Assume that |eT
k v|≤ μ for all k ∈ [1, m], and then

sat(u) ∈ Co Esu + E
−
s v|, s ∈ 1, 2m

  , (11)

where Es denotes a diagonal matrix with all possible
combinations of 1 and 0 diagonal entries, E−

s ≜ I − Es, and
Co is the convex hull.

Definition 1 (see [21]). A set S ∈ Rn is called the domain of
attraction in the mean square sense of (2), if for any initial
mode r0 ∈ D and initial state x(0) ∈ S, the state x(t) of (2)
satisfies
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lim
T⟶∞


T

0
E ‖ x(τ)‖

2
 dτ|x(0), r0 < x

T
(0)Ψx(0), (12)

where Ψ> 0.

3. Main Results

+is section considers the design problem of the H2 state-
feedback controller.

A controller is proposed for system (2) as follows:

u(t) � K rt( x(t) + u rt, x(t)( , (13)

where K(rt) is the linear controller part to guarantee the H2
performance and u(rt, x(t)) is the nonlinear controller part to
reject the matched disturbance B(rt)d(t). +us, the proposed
controller is designed to stochastically stabilize and minimize
the upper bound of the following linear quadratic cost:

J(t) � E 
∞

t
x

T
(τ)Q rt( x(τ)dτ , (14)

where Q(rt) � Qi ≥ 0. Here, for rt � i ∈ D, K(rt) � Ki and
u(rt, x(t)) � ui(x(t)). Using system (2) and the proposed
controller (13), the resultant closed-loop system is expressed
as follows:

_x(t) � Aix(t) + Bi sat Kix(t) + ui(x(t))(  + d(t) . (15)

Theorem 1. Consider system (15) with input saturation and
incomplete knowledge of the transition rate. For i, j ∈ D,
s ∈ [1, 2m], and k ∈ [1, m], suppose that there exist sym-
metric matrices Pi and Rij, matrices Ki, Hi, Λij, Yij, Si0, and
Sij, and a scalar c such that

Pi > 0, (16)

Λij + ΛT
ij > 0, Yij + Y

T
ij > 0, (17)

Rij Pi

(∗ ) Pj

⎡⎢⎣ ⎤⎥⎦> 0, i≠ j, (18)

Γis Γij 
j∈D−

i

(∗ ) Γijl 
j,l∈D−

i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦< 0, (19)

c x
T

(0)

x(0) P0
 > 0, (20)

Pi H
T

i ek

e
T
k Hi (μ − ε)2

⎡⎢⎣ ⎤⎥⎦> 0, (21)

1 x
T
(0)

x(0) Pi

 > 0, (22)

where

i ∈ D+
i

Γis � Ωi

s + Π+
i E

THe Si0( E + 
j∈D+

i

]ijπijE
THe Λij E

− 
j∈D+

i

]ijπij πij + πii E
THe Yij E,

Γij �
1
2
E

T
Gij + E

T
Si0 + Π+

i Sij  + ]ijE
TΛij − ]ijπiiE

T
Yij,

Γijj � He Sij  − ]ijHe Yij ,

Γijl � Sil + Sij,

(23)

i ∈ D−
i

Γis � Ωi

s + Π+
i E

THe Si0( E + 
j∈D+

i

]ijπijE
THe Λij E

− 
j∈D+

i

]ijπ
2
ijE

THe Yij E,

Γij �
1
2
E

T
Gij + E

T
Si0 + Π+

i E
T
Sij + ]ijE

TΛij

− 
j∈D+

i

cij]ijπijE
T
Yij,

Γijj � He Sij  − 2]ijHe Yij ,

Γijl �

Sil + Sij, i≠ l,

Sil + Sij − ]ijYij, i � l,

⎧⎪⎨

⎪⎩

Π+
i � 

j∈D+

πij,

Ωi

s ≜

He AiPi + BiEsKi + BiE
−
s Hi(  + 

j∈D+
i

πijGij Pi

Pi −Q
−1
i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Gij ≜ κijRij + 1 − κij Pi,

κij �

1, i≠ j,

0, i � j,

⎧⎪⎨

⎪⎩

E � I 0  ∈ Rn×2n
.

(24)

+en, the set ∩N
i�1Ω(Pi) is contained in the domain of

attraction, and the proposed system (15) is stochastically
stable with the H2 cost in (14) guaranteed by c. Further-
more, the proposed controller is constructed as u(t) �

Kix(t) + ui(x(t)) for mode i, where Ki � KiP
−1
i and each

component of ui(x(t)) is defined as

ui(x(t)) k � −εsgn e
T
k B

T
i Pix(t) . (25)
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Proof. Consider the following mode-dependent control
input u(t) and the auxiliary input v(t):

u(t) � K rt( x(t) + ui(x(t)),

v(t) � H rt( x(t) + ui(x(t)),
(26)

where v(t) is used to handle the input saturation in Lemma
1. For the representation method (10) in Lemma 1, the
following condition should be satisfied:

e
T
k H rt( x(t) + e

T
k ui(x(t))



≤ μ. (27)

From the definition of ui(x(t)) in (25), the left side of
(27) can be derived as follows:

e
T
k H rt( x(t) + e

T
k ui(x(t))





≤ e
T
k H rt( x(t)



 + e
T
k ui(x(t))





� e
T
k H rt( x(t)



 + ε.

(28)

+en, the sufficient condition for (27) is given as follows:

e
T
k H rt( x(t)



≤ μ − ε. (29)

+erefore, the representation method in Lemma 1 can be
used if x(t) ∈ L(H(rt)) for k ∈ [1, m], where

L H rt( (  � x(t) ∈ Rn
| e

T
k H rt( x(t)



≤ μ − ε . (30)

To establish a set invariance condition [25], the ellipsoid
Ω(P(rt))≜ x(t) ∈ Rn|xt(t)TnPq(rt)hx(t)x≤ 71  is in the
linear region L(H(rt)), that is, for k ∈ [1, m],

x
T
(t)Pix(t)> x

T
(t)H

T
i ek

1
(μ − ε)2

e
T
k Hix(t), (31)

or equivalently,

Pi H
T
i ek

e
T
k Hi (μ − ε)2

⎡⎢⎣ ⎤⎥⎦> 0. (32)

+en, multiplying both sides of the above equation by
diag P−1

i , I  yields (20), where Pi � P−1
i and Hi � HiPi.

Let us choose V(x(t)) � xT(t)P(rt)x(t) as a Lyapunov
function, where P(rt) is a positive definite matrix. +en,
from the weak infinitesimal operator ∇ of the Markov
process, ∇V(x(t)) is given by

∇V � lim
δt⟶0

1
δt

E V x(t + δt), rt+δt � j( |x(t), rt � i (

− V x(t), rt � i( 

�
dV(x(t), i)

dt
+ 

N

j�1
πijV(x(t), j)

� 2x
T
(t)Pi _x(t) + x

T
(t)

N

j�1
πijPjx(t).

(33)

According to the convex property and condition (21),
there exist variables ηs such that

sat(u(t)) � 
2m

s�1
ηs Esu(t) + E

−
s v(t) 

� 
2m

s�1
ηs EsK rt( x(t) + E

−
s H rt( x(t) + ui(x(t)) 

� 
2m

s�1
ηs EsK rt( x(t) + E

−
s H rt( x(t)  + ui(x(t)),

(34)

where 
2m

s�1 ηs � 1.
+en, ∇V(x(t)) can be rewritten as

∇V(x(t)) � 2x
T
(t) PiAi + 

2m

s�1
ηsPiBi EsKi + E

−
s Hi( 

⎧⎨

⎩

⎫⎬

⎭x(t)

+ 2x
T
(t)PiBi 

2m

s�1
ηsui(x(t)) + d(t)⎛⎝ ⎞⎠ + x

T
(t)

N

j�1
πijPjx(t)

� 
2m

s�1
ηs 2x

T
(t) PiAi + PiBi EsKi + E

−
s Hi(   + 2x

T
(t)PiBi ui(x(t)) + d(t)(  + x

T
(t) 

N

j�1
πijPjx(t)⎡⎢⎢⎣ ⎤⎥⎥⎦.

(35)

Furthermore, from (25) and |eT
k d(t)|< ε, we have

2x
T
(t)PiBi ui(x(t)) + d(t)( ≤ 0. (36)

+us, if the following condition holds, for i ∈ D and
s ∈ [1, 2m],

He PiAi + PiBiEsKi + PiBiE
−
s Hi(  + Qi + 

N

j�1
πijPj < 0,

(37)

then, from (36) and (35), ∇V(x(t)) can be expressed as the
following relation:
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∇V(x(t))≤ 2
2m

s�1
ηsx

T
(t) PiAi + PiBi EsKi + E

−
s Hi(  

+ x
T
(t)

N

j�1
πijPjx(t)< − x

T
(t)Qix(t).

(38)

Using the generalized Dynkin’s formula [26], the above
relation allows

E[V(t)] − V(0)

� E 
t

0
∇V(τ)dτ|x(0), r0 

< − E 
t

0
x

T
(τ)Q rτ( x(τ)dτ|x(0), r0 

≤ − min
i∈D

λmin Qi( ( E 
t

0
‖x(τ)‖

2dτ|x(0), r0 ,

(39)

which leads to

min
i∈D

λmin Qi( ( E 
t

0
‖x(τ)‖

2dτ|x(0), r0 

<V(0) − E[V(t)]

≤V(0),

(40)

because the following equation is valid:

E 
t

0
‖x(τ)‖

2dτ|x(0), r0 <
V(0)

mini∈D λmin Qi( ( 
. (41)

From (41), it is allowed that

lim
T⟶∞

E 
t

0
‖x(τ)‖

2dτ|x(0), r0 ≤ x
T
(0)Ψx(0), (42)

where

Ψ �
maxr0∈D λmax Pr0

  

mini∈D λmin Qi( ( 
> 0. (43)

Furthermore, from (39), we have

J(0)<V(0) � x
T
(0)P r0( x(0), (44)

which guarantees the H2 cost through (20), indicating that
xT(0)P(r0)x(0)< c using the Schur complement.

Subsequently, by pre- and postmultiplying (37) with P−1
i ,

we have

He A
i
s  + PiQiPi + 

N

j�1
πijPiPjPi < 0, (45)

where Ai
s � AiPi + BiEsKi + BiE

−
s Hi, Pi � P−1

i , and
Ki � KiPi.

Note that for i � j, PiPjPi � Pi, and for i≠ j, (18) leads to
PiPjPi ≤Rij. Equation (45) holds because of the following
condition:

He A
i
s  + PiQiPi + 

N

j�1
πijGij < 0, (46)

where Gij ≜ κijRij + (1 − κij)Pi.
Applying the Schur complement to (46) yields

He A
i
s  + 

N

j�1
πijGij Pi

Pi −Q
−1
i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0. (47)

To derive the LMI conditions, (47) can be written as
follows:

Ωi
s ≜Ω

i

s + 
j∈D−

i

πijE
T
GijE< 0. (48)

In addition, according to condition (7), the following
equations can be derived from (19):

C
1
i ≜He Π+

i + 
j∈D−

i

πij
⎛⎝ ⎞⎠E

T
Si0 + 

j∈D−
i

πijSij
⎛⎝ ⎞⎠E⎛⎝ ⎞⎠ � 0,

(49)

C
2
i ≜ 

N

j�1
]ijπijE

THe Λij E≥ 0, (50)

C
3
i ≜ − 

N

j�1
]ijπij πij + πii E

THe Yij E≥ 0. (51)

+en, the positive semidefinite matrix Li is constructed
using (49)–(51) in the following form:

L
i ≜C

1
i + C

2
i + C

3
i

� L
i
+ 

j∈D−
i

πijHe L
i
jE 

+ 
j∈D−

i



l∈D−
i

l> j

πijπilE
THe L

i
jl E

+ 

l∈D−
i

l�j

π2ijE
THe L

i
jj E≥ 0,

(52)

where

i ∈ D+
i

Mathematical Problems in Engineering 5



L
i

� Π+
i E

THe Si0( E + 
j∈D+

i

πijE
THe ]ijΛij E

− 
j∈D+

i

π2
ijE

THe ]ijYij E

− 
j∈D+

i

πijπiiE
THe ]ijYij E,

L
i
j � E

T
Si0 + Π+

i Sij  + E
T]ijΛij − E

T]ijπiiYij,

L
i
jl � Sil + Sij,

L
i
jj � Sil − ]ijYij,

(53)

i ∈ D−
i

L
i

� Π+
i E

THe Si0( E + 
j∈D+

i

πijE
THe ]ijΛij E

− 
j∈D+

i

π2ijE
THe ]ijYij E,

L
i
j � E

T
Si0 + Π+

i Sij  + E
T ]ijΛij  − 

j∈D+
i

cijπijE
T ]ijYij ,

L
i
jl �

Sil + Sij, i≠ l,

Sil + Sij − ]ijYij, i � l,

⎧⎨

⎩

L
i
jj � Sij − 2]ijYij,

(54)

where

cij �
1, i � j,

0, i≠ j.
 (55)

Based on the S-procedure, if Ωi
s < 0 whenever Li ≥ 0, the

following sufficient condition is formulated:

L
i
+Ωi

s < 0, (56)

which can be converted to the following LMI condition:

I

πijE 
j ∈ D−

i

⎡⎢⎢⎣ ⎤⎥⎥⎦

T Γis Γ
i
j 

j∈D−
i

(∗ ) Γjl 
j,l∈D−

i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

I

πijE 
j∈D−

i

⎡⎢⎢⎣ ⎤⎥⎥⎦< 0,

(57)

where

Γis � Ωi

s + L
i
,

Γij �
1
2
E

T
Gij + L

i
j,

Γijl � L
i
jl.

(58)

+en, (57) holds because of the LMI conditions
(16)–(19). □

4. Numerical Examples

In this section, the H2 performance is investigated through
numerical examples to verify the effectiveness of the pro-
posed method.

4.1. Example 1. Consider an MJS with four modes (N � 4),
whose system matrices are

A1 �
0.35 −7.30

1.48 0.81
 ,

A2 �
0.89 −3.11

1.48 0.21
 ,

A3 �
−0.11 −0.85

2.31 −0.10
 ,

A4 �
−0.17 −1.48

1.59 −0.27
 ,

B1 �
0.57

1.23
 ,

B2 �
0.78

−0.49
 ,

B3 �
1.34

0.39
 ,

B4 �
−0.38

1.07
 ,

C1 � 0.0 −0.1 ,

C2 � 0.1 0.0 ,

C3 � 0.0 0.1 ,

C4 � 0.1 0.0 ,

Π �

−1.3 0.2 π13 π14

π21 π22 0.3 0.3

0.6 π32 −1.5 π34

0.4 π42 π43 π44

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q1 � Q2 � Q3 � Q4 �
10 0

0 10
 ,

ε � 0.1, μ � 1,

(59)

where π13, π14, π21, π22, π32, π34, π42, π43, and π44 are the
unknown transition rates.+e following sets can be obtained
using the transition rate matrix Π:

D
+
1 � 1, 2{ }, D

+
2 � 3, 4{ }, D

+
3 � 1, 3{ }, D

+
4 � 1{ },

D
−
1 � 3, 4{ }, D

−
2 � 1, 2{ }, D

−
3 � 2, 4{ }, D

−
4 � 2, 3, 4{ }.

(60)

Considering the initial condition x(0) � 0.2 −0.15 
T,

the state trajectories of the closed-loop system shown in
Figure 1 are stochastically stable with incomplete knowledge
of transition rates under the input saturation and matched
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disturbances. Here, we set r0 � 2 and
d(t) � 0.1 sin(2t2 − 0.7).

According to +eorem 1, the H2 performance
c � 0.2803, and the proposed controller gains are obtained
as follows:

K1 � 3.2384 × 105 −2.13426 ,

K2 � −1.5913 × 106 −7.8766 × 105 ,

K3 � −8.9047 × 105 −8.0083 × 105 ,

K4 � −9.0151 × 106 −1.5631 × 107 ,

P1 �

4.3829 −4.5290

−4.5290 1.8561
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

P2 �
47.968 60.404

60.404 88.256
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

P3 �

6.3342 1.1945

1.1945 16.543
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

P4 �

480.521 96.073

96.073 151.11
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(61)

Figure 2 presents the domain of attraction for the
proposed controller. As shown in the figure, the state
trajectory of the closed-loop system (15) converges to the
origin as time progresses, as long as the initial state is in
∩ 4i�1Ω(Pi).

4.2. Example 2. Consider the following multiinput system
with three different modes (N � 3) [24]:

A1 �

−2.5 0.3 0.8
1 −3 0.2
0 0.5 −2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

A2 �

−2.5 1.2 0.3
−0.5 5 −1
0.25 1.2 5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

A3 �

2 1.5 −0.4
2.2 3 0.7
1.1 0.9 −2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

B1 �

0.707 0 0
0 1 0
0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

B2 �

0.707 0 0
0 1 0
0 0 0.707

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

B3 �

0.707 0 0
0 1 0
0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Π �

−3 π12 π13

π21 π22 1
π31 0.3 π33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Q1 � Q2

ε � 0.01, μ

(62)

where π12, π13, π21, π22, π31, and π33 are the unknown
transition rates. +e following sets can be obtained using the
transition rate matrix Π:

D
+
1 � 1{ }, D

+
2 � 3{ }, D

+
3 � 2{ },

D
−
1 � 2, 3{ }, D

−
2 � 1, 2{ }, D

−
3 � 1, 3{ }.

(63)

According to +eorem 1, the H2 performance
c � 0.0803, and the proposed controller gains are obtained
as follows:
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Figure 1: State trajectories for Example 1.
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K1 �

−94.941 −12.248 −2.4019

−8.6349 −61.833 −6.8275

−1.7987 −6.8828 −76.698

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

K2 �

−24.110 −3.7947 −0.69917

−2.7040 −13.943 −2.0031

−0.69626 −2.8494 −26.380

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

K3 �

−93.208 −25.607 18.331

−18.085 −67.048 −14.084

12.952 −14.079 −76.181

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

P1 �

1.8198 × 10− 1 2.3490 × 10− 2 3.0898 × 10− 3

2.3490 × 10− 2 1.6739 × 10− 1 1.8759 × 10− 2

3.0898 × 10− 3 1.8759 × 10− 2 2.0758 × 10− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

P2 �

3.3589 × 10− 1 5.3394 × 10− 2 9.2638 × 10− 3

5.3394 × 10− 2 2.7157 × 10− 1 4.0095 × 10− 2

9.2638 × 10− 3 4.0095 × 10− 2 3.6452 × 10− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

P3 �

2.5519 × 10− 1 7.0131 × 10− 2
−5.1063 × 10− 2

7.0131 × 10− 2 2.5930 × 10− 1 5.4768 × 10− 2

−5.1063 × 10− 2 5.4768 × 10− 2 2.9602 × 10− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(64)

Figure 3 shows the state trajectories and the mode
evolution obtained using the aforementioned controller
gains. Figure 4 shows the saturated control input, where
x(0) � 0.5 −0.3 −0.4 

T and r0 � 3. Here, we set
d(t) � 0.01 sin(t2 + 0.1). Figures 5 and 6 show the domains
of attraction on the x1(t) − x2(t) and x2(t) − x3(t) planes,
respectively. As shown in the figures, the state trajectory of
the closed-loop system (15) converges to the origin as time
progresses, as long as the initial state is in ∩ 3i�1Ω(Pi). +ese
figures show that the proposed controller stabilizes the MJS
with input saturation and incomplete knowledge of the
transition rates under the matched disturbance.

4.3. Example 3. Consider the following inverted pendulum
system controlled using a DC motor [27]:

_x1(t) � x2(t),

_x2(t) �
g

l
sinx1(t) +

NKm

ml
2 x3(t),

La _x3(t) � KbNx2(t) − R rt( x3(t) + sat(u(t)),

(65)

where x1(t) is the angle of the inverted pendulum, x2(t) is
the angular velocity, x3(t) is the input current, u(t) is the
control input voltage, g is the acceleration of gravity, m and l

are the mass and length of the inverted pendulum, re-
spectively, Kb is the back-EMF constant, Km is the motor
torque constant, and N is the gear ratio. Here, R(rt) is the
resistance in the DC motor, which is defined as

R rt(  �
Ra, if rt � 1,

Rb, if rt � 2.
 (66)
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Let La � 1, g � 9.8(m/s2), l � 1m, m � 1 kg, N � 10,
Km � 0.1(Nm/A), Kb � 0.1(Vs/rad), Ra � 1Ω, and
Rb � 0.5Ω.

Using the aforementioned parameters, system (65) can
be linearized as the following MJS with two modes:

_x(t) � A rt( x(t) + B rt(  sat(u(t)) + d(t){ },

z(t) � C rt( x(t),
(67)

where

x(t) � x1(t) x2(t) x3(t) 
T

,

A1 �

0 1 0

9.8 0 1

0 1 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A2 �

0 1 0

9.8 0 1

0 1 −0.5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B1 � B2 �

0

0

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C1 � 0.1 0 0 ,

C2 � 0.2 0 0 ,

Π �

−0.6127 0.6127

π21 π22

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

d(t) � 0.01e
− 0.5t sin 10t

2
,

ε � 0.01, μ � 12,

(68)

where π21 and π22 are the unknown transition rates. Here, it
is assumed that the matched disturbance d(t) exists. Based
on +eorem 1, the H2 performance c � 0.1399, and the
proposed controller gains are obtained as follows:

K1 � −2.6199 × 107 −8.6656 × 106 −1.9736 × 106 ,

K2 � −1.25 × 107 −4.1531 × 107 −1.0244 × 107 ,

P1 �

1.0289 × 102 3.2962 × 101 2.9323

3.2962 × 101 1.0739 × 101 9.6989 × 10− 1

2.9323 9.6989 × 10− 1 2.2090 × 10− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

P2 �

0.0698 × 104 2.1904 × 102 1.3991 × 101

2.1904 × 102 6.9178 × 101 4.6483

1.3991 × 101 4.6483 1.1465

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(69)

Based on the aforementioned control gains, Figure 7
shows the state trajectories for x(0) � −0.1 0.2 0 

T and
the mode evolution rt. As shown in the figure, the state
trajectories of the closed-loop systems with the proposed
controller converge to zero as time progresses.
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5. Conclusion

+is paper proposed anH2 mode-dependent state-feedback
controller for MJSs with input saturation and an incomplete
knowledge of transition probabilities. Specifically, an in-
valuable relaxation method was developed into the second-
order matrix polynomials of the unknown transition rate
using all possible slack variables for the incomplete tran-
sition rates to obtain less conservative stabilization condi-
tions. Consequently, the proposed controller guaranteedH2
performance and removed the matched disturbances. +e
effectiveness of the proposed controller was demonstrated
using three examples.
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