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-e problem of stochastic adaptive air-fuel ratio control by the dynamic model of biogas-fuelled engines is investigated in this
paper. An adaptive law is employed to estimate the theoretical air-fuel ratio, which is undetermined due to the uncertainty of the
methane concentration in the biogas. A stochastic adaptive air-fuel ratio controller in consideration of the stochasticity of the
residual gas is designed based on the adaptive law, and the closed-loop system is proven to be mean-square stable. -e proposed
stochastic adaptive air-fuel ratio controller is validated through a numerical simulation when the theoretical air-fuel ratio is
unknown constants and jump signals.

1. Introduction

As a promising alternative energy, biogas has been applied to
the internal combustion engines to decrease emissions and
fuel consumption. -e methane concentration which in-
dicates the thermal value of the biogas varies in a certain
range [1]. -e uncertainty of the methane concentration
greatly affects the performance of the engines, and the
corresponding problems have received much attention.

-e effect of the chamber form of combustion, ad-
vance of ignition timing, and ratio of compression to the
biogas-fuelled engine, which is modified from the diesel
engine through simulation, was investigated in [2], and
the optimal advance of ignition timing was determined by
the methane concentration of the biogas and engine
revolution. -ree kinds of biogas with different methane
concentrations were used to experimentally study the
effect of the biogas composition on the performance,
emissions, and combustion of the compression ignition
biogas diesel engine with the characteristic of premixed
charge in [3]. -e influence from the components of the
biogas to the characteristics of emission and performance
of a dual fuelled compression ignition miniature engine
was deduced in [4] by using biogas with three different
levels of methane concentrations, and the analyzation of

exergy was provided to discover the inefficiencies of each
process. -e biogas with sixty percent methane was used
to investigate the effect from the biogas to the thermal
barrier-coated engine with a dual-fuel system by the
experimental method in [5] in order to achieve the de-
crease of smoke emissions. -e effect of the variation of
the methane concentration in biogas to the conversion
efficiency of the energy and emissions of the engine with
characteristics of dual fuel and common rail was discussed
in [6], and the effect from the pilot and postspray of diesel
was considered. -e methane energy was used to sup-
plement the diesel power in a certain percentage in [7] to
release the relationship between the increase in methane
and the emissions and performance of a dual-fuelled
engine. Biogas with two different methane concentrations
was applied to evaluate the emissions and performance of
a miniature biogas-fuelled Otto cycle engine with one
cylinder in [8] with consideration of the ratio of com-
pression and crown geometry of the piston.

However, research results on the effect of the uncertainty
of the methane concentration on the control accuracy of the
air-fuel ratio have rarely been reported.-e control accuracy
of the air-fuel ratio directly affects the emissions and fuel
consumption of the biogas-fuelled engines. Indeed, the
uncertainty of the methane concentration results in the
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undetermined theoretical air-fuel ratio, which together with
the stochasticity of the residual gas makes the air-fuel ratio
control inaccurate. An applicable method to overcome this
problem is to design a stochastic adaptive controller, by
which the theoretical air-fuel ratio can be estimated, and the
stochasticity of the residual gas can be attenuated. In fact, the
stochastic and/or adaptive control algorithm has been widely
studied and applied to many practical systems. -e fuzzy
adaptive tracking controller for the indeterminate switched
nonlinear system with pure feedback and nonlinear char-
acteristics in consideration of immeasurable states was
designed byMa et al. [9], and the stability was deduced in the
finite-time sense. -e output feedback fuzzy adaptive
tracking control problem for stochastic switched systems
with pure feedback and nonlinear characteristics in con-
sideration of nonlinear uncertain functions and immea-
surable states was investigated in [10]. By considering the
indeterminate switched system, dynamics of unmodeled
parts, saturation of input, output with unknown dead zone,
disturbances of dynamic, and immeasurable states, the fuzzy
adaptive tracking controller for the unsure switched system
with nonlinear characteristics was provided in [11]. -e
output feedback fuzzy H∞ controller for systems with
discrete-time and nonlinear characteristics considering the
uncertain protocol of communication and quantization was
designed in [12]. Based on an adaptive reference algorithm
of the state of charge, a model predictive controller, which is
based on the Markov chain, was designed for the minimum
consumption of energy and high efficiency of the algorithm
of the electric plug-in hybrid passenger car in [13], andmany
key factors that significantly affect the efficiency of com-
putation were studied. A unique stochastic adaptive model
predictive controller, which contains the probability cal-
culated framework of cut in, was designed in [14] to improve
the reaction precision to the danger from the detected cut-in
maneuver, which is crucial for the performance enhance-
ment of the system of adaptive cooperative cruise control.
An adaptive stochastic control algorithm, which contains the
superiorities of the certain control algorithm, was investi-
gated in [15] to improve the control performance of the
stochastic control algorithm to limit the engine knock, and
the proposed control algorithm was validated by numerical
simulation and experiment. A stochastic adaptive model
predictive controller for the electric hybrid plug-in bus was
proposed in [16] based on a stochastic model of driving with
Markov characteristic, and a function of piecewise was used
to regulate the parameters to achieve the tradeoff between
the economy of fuel and vehicle following in the given cost
function.-e resilient state feedback control algorithm of an
intelligent automobile to regulate the lateral movement
considering the stochastic-produced uncertainties was
designed in [17].

-e stochastic adaptive control algorithm is applied to
the air-fuel ratio control problem of the biogas-fuelled
engines in this paper to decrease emissions and fuel con-
sumption, and the closed-loop system is proven to be mean-
square stable. -e effectiveness of the proposed stochastic
adaptive controller is verified by the numerical simulation

from which we can observe that the proposed stochastic
adaptive controller has preferred control performance.

2. Controller Design

-e design process of the stochastic adaptive air-fuel
ratio controller is provided in this section. -e discrete-
time dynamic model in [18] is used to describe the
dynamics of the air path and fuel path of the direct
injection biogas-fuelled engines:

Ma(k + 1) � Ma(k) − λdμMf(k) r(k) + Man(k)

+ ΔMan(k),

Mf(k + 1) � Mf(k)(1 − μ)r(k) + Mfn(k),

(1)

where Ma(k) and Mf(k) mean the masses of total air and
total fuel at the beginning of the combustion stroke, λd

means the theoretical air-fuel ratio, μ ∈ (0, 1) means the
combustion efficiency, r(k) means the residual gas fraction,
Man(k) means the mass of fresh air, Mfn(k) means the mass
of fresh fuel, and ΔMan(k) means the fluctuation of the mass
of fresh air and can be considered a Gaussian white noise.
We define the regulation error of the air-fuel ratio y(k) as

y(k) � Ma(k) − λdMf(k). (2)

Substituting (1) into (2), we get

y(k + 1) � r(k)y(k) + Man(k) − λdMfn(k) + ΔMan(k).

(3)

-e deterministic part of system (3) is used to design the
stochastic adaptive air-fuel ratio controller:

y(k + 1) � r(k)y(k) + Man(k) − λdMfn(k). (4)

In the design process of the stochastic adaptive air-fuel
ratio controller, the theoretical air-fuel ratio λd is considered
as an unknown constant, and residual gas fraction r(k) is
modeled as a finite-state, irreducible, aperiodic Markov
chain with value set S � s1, s2, . . . , sN  and one-step tran-
sition probability psisj

. -e theoretical air-fuel ratio λd is
estimated by an adaptive law, which is deduced by [19]

λd(k + 1) � λd(k) + c(y(k + 1) − y(k + 1)), (5)

where λd(k) means the estimation of λd at the k-th cycle, c is
a design parameter, and y(k) means the estimation of y(k),
which is obtained by λd(k) as follows:

y(k + 1) � r(k)y(k) + Man(k) − λdMfn(k). (6)

With (4)–(6), we have
λd(k + 1) � λd(k) − cMfn(k)λd(k), (7)

where
λd(k) � λd − λd(k). (8)

For system (4), we select a Lyapunov function as
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V k, r(k) � si(  � ε si( y
2
(k) + λ

2
d(k), (9) where ε(si)> 0 is a design parameter. Based on (4), (7), and

(8), the difference of (9) can be calculated as

ΔV k, r(k) � si(  � E V(k + 1, r(k + 1))|r(k) � si  − V k, r(k) � si( 

� E ε(r(k + 1))|r(k) � si y
2
(k + 1) + λ

2
d(k + 1) − ε si( y

2
(k) − λ

2
d(k)

� 
N

j�1
psisj

ε sj  r(k)y(k) + Man(k) − λdMfn(k)( 
2

+ λd(k) + cMfn(k)λd(k) 
2

− ε si( y
2
(k) − λ

2
d(k).

(10)

By setting the mass of the fresh fuel Mfn(k) to be

Mfn(k) �
r(k)y(k) + Man(k)

λd(k)
, (11)

when design parameters c and ε(si) satisfy

c � −
1

sup Mfn(k) 
,

ε si(  �
1

sup Mfn(k) ( 
2,

(12)

we obtain

ΔV(k) � V(k + 1) − V(k)

� 
N

j�1
psisj

ε sj M
2
fn(k)λ

2
d(k) + 1 − cMfn(k)( 

2λ
2
d(k) − ε si( y

2
(k) − λ

2
d(k)

� −ε si( y
2
(k).

(13)

3. Stability Analysis

-e stability analysis process of closed-loop system (3), (7),
and (11) is proposed in this section. First, according to Costa
and Fragoso [20], the definition ofmean-square stable and the
corresponding theorem of decision are shown. -e system is

x(k + 1) � A(η(k))x(k) + B(η(k))ω(k), (14)

where x(k) means the state of the system, η(k) means a
finite-state, aperiodic, irreducible Markov chain with the
value set S � s1, s2, . . . , sN , ω(k) means a Gaussian white
noise, and A(·) and B(·) mean known positive bounded
matrices of appropriate dimensions.

Definition 1. System (14) achieves mean-square stability if
for every initial value of state x(0) and initial distribution
η(0), constants q and Q which are independent of x(0) exist
and satisfy


N

i�1
E x(k)Iη(k)�si

  − q

���������

���������
⟶ 0, as k⟶∞,



N

i�1
E x(k)x

T
(k)Iη(k)�si

  − Q

���������

���������
⟶ 0, as k⟶∞.

(15)

Lemma 1. For every given set of symmetric matrices
W(si)> 0, i � 1, . . . , N , if a set of symmetric matrices
χ(si)> 0, i � 1, . . . , N  exists and satisfies



N

j�1
psisj

A
T

si( χ sj A si(  − χ si(  � − W si( , (16)

then, system (14) is mean-square stable.

Theorem 1. For every initial value (y(0), λd(0))T, initial
distribution σ(0) of the residual gas fraction, and fluctuation
of the mass of fresh air ΔMan(k), closed-loop system (3), (7),
and (11) are mean-square stable.

Proof. By (7) and (8), the dynamic of λd(k) can be described
as follows:

λd(k + 1) � λd(k) + cMfn(k)λd(k). (17)

By rearranging (3), (11), and (17), we have

y(k + 1)

λd(k + 1)
  �

0 −Mfn(k)

0 1 + cMfn(k)
 

y(k)

λd(k)
 

+
ΔMan(k)

0
 .

(18)
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Define

A(η(k)) �
0 −Mfn(k)

0 1 + cMfn(k)
 , (19)

and select

χ(η(k)) �

1
sup Mfn(k) ( 

2 0

0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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. (20)

For each siεS, we get

A
T

si( χ sj A si(  − χ si(  � −W si( , (21)

where

W si(  �

1
sup Mfn(k) ( 

2 0

0
2Mfn(k) sup Mfn(k)  − Mfn(k)( 

sup Mfn(k) ( 
2
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. (22)

It should be noted that

det
1

sup Mfn(k) ( 
2

⎛⎝ ⎞⎠> 0,

det W si( ( > 0,

(23)

i.e., W(si) is a matrix with positive definite and symmetric
characteristics. From Lemma 1, closed-loop system (3), (7),
and (11) are mean-square stable. □

Remark 1. -e main results of this work include the design
of the adaptive law (5), by which the theoretical air-fuel ratio
of biogas-fuelled engines can be estimated online.-e design
of the stochastic adaptive air-fuel ratio controller (11) for the
precision control of the air-fuel ratio considers the uncer-
tainty of the methane concentration in the biogas.

4. Numerical Simulation

-e proposed stochastic adaptive air-fuel ratio control al-
gorithm (11) is validated by employing the numerical
simulation which is similar to [13]:

y(k) � Ma(k) − Mf(k)λd,

Ma(k + 1) � Ma(k) − λdμMf(k) r(k) + Man(k),

Mf(k + 1) � Mf(k)(1 − μ)r(k) + Mfn(k),

_Man �
ρaVdηv

4πPa

ωePm,

Te �
HuVdηiηvPm

4πRTmλ
,

J _ωe � Te − Tl,

_Pm �
RTm

Vm

_Mi − _Man ,

_Mi � s0(1 − cosϕ)
Pa����
RTa

 ψ
Pa

Pm

 ,

(24)
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where _Man means the flow rate of air mass leaving the
manifold, ρa means the atmospheric density, Vd means the
cylinder displacement, ηv means the volumetric efficiency,
ωe means the engine revolution, Pm means the manifold
pressure, Pa means the atmospheric pressure, Te means the
mean indicated torque, Hu means the fuel low heating value,
ηi means the indicated efficiency, R means the constant of
gas, Tm means the manifold temperature, J means the ro-
tational inertia, Tl means the external load, _Mi means the
mass flow rate of the air pass throttle, s0 means the area of the
throttle, ϕ means the opening of the throttle, and

ψ(s) �

s
(2/k) 2k

k − 1
(1 − s) 

(k− 1/k)

, if s≥
2

k + 1
 

(k/k− 1)

,

k
2

k + 1
 

(k+1/k− 1)

, if otherwise.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(25)

From (2), y(k) is unmeasured because theoretical air-
fuel ratio λd is undetermined. -erefore, the relationship
between y(k) and excess air coefficient α(k) is deduced since
α(k) can be measured by the universal exhaust gas oxygen
sensor. By the definition of α(k), we have

α(k) �
Ma(k)

λdMf(k)
. (26)

Using the approximate linearization technology, we
obtain

α(k) ≈
Man(k)

λd Man(k)/λd( 
+

1
λd Man(k)/λd( 

Ma(k) − Man(k)(  −
Man(k)

λd M
2
an(k)/λ2d 

Mf(k) −
Man(k)

λd

 

� 1 +
Ma(k)

Man(k)
− 1 −

λdMf(k)

Man(k)
+ 1 � 1 +

y(k)

Man(k)
.

(27)

By rearranging (27), we obtain

y(k) � (α(k) − 1)Man(k), (28)

where Man(k) can be measured by the air mass flow rate
sensor.

-e diagram of the control structure is shown in Fig-
ure 1, where Mpsac(k) means the proposed stochastic
adaptive air-fuel ratio controller and Mopen(k) means the
open-loop controller which is provided as follows:

Mopen(k) �
Man(k)

λd,m

, (29)

where λd,m denotes the theoretical air-fuel ratio which is
measured by the methane concentration sensor.

Numerical simulation is run in case 1 and case 2, and
each case has two working conditions. Under working
condition W11 of case 1, the theoretical air-fuel ratio is an
unknown constant, the engine revolution is 1200 rpm, and
the external load is 60Nm. Under working conditionW12 of
case 1, the theoretical air-fuel ratio is also an unknown
constant, the engine revolution is 1600 rpm, and the external
load is 90Nm. -e signals of the excess air coefficient of
Mpsac(k) and Mopen(k) under W11 and W12 are shown in
Figure 2. In Figure 2, the excess air coefficient can be reg-
ulated into a neighbourhood of 1. Figure 3 exhibits the

adaptive law and the measured theoretical air-fuel ratio
under W11 and W12. In Figure 3, the adaptive law of each
working condition is adjusted to a steady value, while the
measured theoretical air-fuel ratio fluctuates due to the
application of the methane concentration sensor.

-e control performance indices of Mpsac(k) and
Mopen(k) over 20,000 sampling points under W11 and W12
of case 1 are provided in Table 1, where

J(N) � 
N

k�1
(α(k) − 1)

2
. (30)

Table 1 shows that the dispersion of the excess air
coefficient of Mpsac(k) is narrower than that of Mopen(k),
which indicates that Mpsac(k) has better control perfor-
mance under every working condition.

In case 2, the theoretical air-fuel ratio is the jump
signal of each working condition. In working condition
W21 of case 2, the engine revolution is 1200 rpm, and the
external load is 60 Nm. In working condition W22, the
engine revolution is 1600 rpm, and the external load is
90 Nm. Figure 4 shows the excess air coefficient of
Mpsac(k) and Mopen(k) under W21 and W22, where both
controllers are effective when the theoretical air-fuel ratio
is the jump signal. -e adaptive law and measured the-
oretical air-fuel ratio under W21 and W22 of case 2 are
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Figure 1: Diagram of the control structure.
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provided in Figure 5. Figure 5 shows that the theoretical
air-fuel ratio can be estimated by the adaptive law when it
is a jumped signal, and the measured value of the

theoretical air-fuel ratio of each working condition
fluctuates because of the application of the methane
concentration sensor.
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Figure 3: Adaptive law and measured theoretical air-fuel ratio of case 1. (a) W11. (b) W12.

Table 1: Control performance indices under W11 and W12 of case 1.

W11 W12
JMpsac(k)(20000) 0.5019 0.6286
JMopen(k)(20000) 0.5552 0.6981
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Figure 4: Excess air coefficient of case 2. (a) W21. (b) W22.
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5. Conclusions

In this paper, the stochastic adaptive air-fuel ratio controller has
been designed for the engines fuelled by biogas since the un-
certainty of themethane concentration in biogas greatly affects the
control accuracy of the air-fuel ratio. -e closed-loop system,
which consists of the dynamicmodel of the regulation error of the
air-fuel ratio, proposed stochastic adaptive air-fuel ratio controller,
and adaptive law, has been proven to be mean-square stable. -e
control performance of the proposed stochastic adaptive air-fuel
ratio controller has been compared to that of the open-loop
controller in two cases through a numerical simulation. -e
simulation results show that the proposed stochastic adaptive air-
fuel ratio controller achieves better control performance. In future
work, the control performance of other alternative fuels such as
methanol will be researched.
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