Hindawi

Mathematical Problems in Engineering
Volume 2020, Article ID 8891713, 21 pages
https://doi.org/10.1155/2020/8891713

Hindawi

Research Article

Value- and Ambiguity-Based Approach for Solving Intuitionistic
Fuzzy Transportation Problem with Total Quantity Discounts and
Incremental Quantity Discounts

C. Veeramani®,' M. Joseph Robinson,” and S. Vasanthi®

'Department of Applied Science (Mathematics), PSG College of Technology, Tamil Nadu 641004, Coimbatore, India
Department of Mathematics, Gojan School of Business and Technology, Chennai, Tamil Nadu 600052, India
Department of Mathematics, Rajalakshmi Engineering College, Chennai, Tamil Nadu 600025, India

Correspondence should be addressed to C. Veeramani; cvm.amcs@psgtech.ac.in
Received 17 September 2020; Revised 28 October 2020; Accepted 2 November 2020; Published 30 December 2020
Academic Editor: S. A. Edalatpanah

Copyright © 2020 C. Veeramani et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The cost of goods per unit transported from the source to the destination is considered to be fixed regardless of the number of units
transported. But, in reality, the cost is often not fixed. Quantity discount is often allowed for large shipments. Furthermore, the
transportation cost and the price break quantities are not deterministic. In this study, we introduce the concept of Value- and
Ambiguity-based approach for solving the intuitionistic fuzzy transportation problem with total quantity discounts and in-
cremental quantity discounts. Here, the cost and quantity price breakpoints are represented by trapezoidal intuitionistic fuzzy
numbers. The Values and Ambiguities are defined as the degree of acceptance and rejection for trapezoidal intuitionistic fuzzy
numbers. The trapezoidal intuitionistic fuzzy transportation problem is converted to a parametric transportation problem based
on their Value indices and Ambiguity indices. Then, for different Values of the parameter, the transformed problem is reduced to
the linear programming problem. Then, the linear programming problem is solved by using the classical methods. The proposed
method is demonstrated with a numerical example. In conclusion, the intuitionistic fuzzy transportation problem with total

quantity discounts is compared with the intuitionistic fuzzy transportation problem with incremental quantity discounts.

1. Introduction

In conventional transportation problems, it is assumed that
the decision-maker is certain about the exact values of the
cost of transportation, availability, and demand for the
product. In real-world applications, all these parameters of
the transportation problem may not be known accurately
due to uncontrollable factors. For example, suppose
a product is transported to a destination for the first time,
and no one knows the cost of transportation. So, there is
uncertainty about the cost of transportation. When a new
product is launched in the market, for the first time there is
always uncertainty about the demand for that particular
product. In everyday life, suppose a buyer asks whether the
particular product is available or not, and the supplier replies
yes, but when the supplier searches for that product, it may
not be available at that time. Sometimes, the supplier himself

does not know the availability of the product. To deal with
such situations, the fuzzy set theory is used in the literature
to solve traffic problems. The transportation problem is
a delivery-type problem. The main goal of this study is to
find how to transfer goods from different dispatch locations
(also called origins) to different receiving points (also called
targets) with minimal costs or largest profit. A quantity
discount is an incentive offered to a buyer; i.e., a reduction in
the cost of a unit of goods while purchasing large quantities
of goods. A quantity discount is often offered by sellers to
buyers to buy large quantities so that the seller can move
more goods or items and the buyer can receive a favourable
price for the goods. At the consumer level, a one-size dis-
count may appear as buy one and get a discount or other
perks such as buying two and getting one free.

Chandran and Perry [2] found that the cost per unit of
transportation for a given sink from a particular supply source
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depends on the quantity shipped; hence, there is limited
capacity for the number of price breakpoints delivered to
customers. In 1990, Das [3] examined that it is often helpful to
consider limitations, intervals, and the integration of decision
variables for responding to many practical needs. Lee et al. [4]
discussed the result and said that due to today’s increasing
competitive market and the ever-changing marketplace and
inventory, problem-solving is becoming more complicated. The
incorporation of heuristic methods had become a new trend in
the past decade to address complexity. Acharya et al. [5]
inspected the generalized transportation problem and found
that the traffic cost for a unit product is assumed to be in-
dependent of the number of goods transported from the origin
to the target. Mubarack Ahmed and Emmanuel [6] stated that it
is assumed that the cost of goods for a unit shipped from
a particular source to a particular destination is determined by
the sum of the goods. George et al. [7] discussed the use of the
transportation algorithm in calculating the cost of delivery using
the Nigerian Bottling Company Plc Owerri Plant. Das et al. [19]
discovered an effective method to solve a completely purged
linear programming problem. Jana [9] discussed the generalized
intuitionistic fuzzy operations and developed the application of
intuitionistic fuzzy transportation problem.

Dinagar and Thiripurasundari [10] proposed a new
method to find a fuzzy optimal solution for the fuzzy
transportation problem. In this work, intuitionistic trape-
zoidal fuzzy numbers are used to represent transportation
costs. The fuzzy optimal solution obtained in this study is the
same as the fuzzy MODI method or the fuzzy Vogel ap-
proximation method. In 2017, Ebrahimnejad and Verdegay
[8] used the accuracy function in order to convert the
formulated IFTP to a deterministic LP problem. Further-
more, Edalatpanah and Shahabi [18] provided a new two-
phase solution method for solving fuzzy linear programming
without using artificial variables. Kokila et al. [11] developed
an efficient method for seeking an optimal solution to type-2
trapezoidal intuitionistic fuzzy fractional transportation
problems. Anju [12] discussed the hexagonal intuitionistic
fuzzy fractional transportation problems using ranking and
Russell methods. The field of intuitionistic traffic problems is
very important, especially in everyday life, and its solutions
are also important. Lakshmi and Vinotha [13] expressed that
the most important goal of the article is to present a decision
process without limitations on the cost of emissions by the
weight of transport and the transport of multipurpose
problems. Mishra et al. [14] described that the intellectual
problem of fuzzy transportation with interval Values is
solved by Bharti and Singh’s method. It represents the
optimal interval Value of the intuitionistic fuzzy (IVIF)
transportation cost to obtain multiple IVTIFNs. Edalatpa-
nah et al. [17] proposed an expanded DEA model in the
triangular intuitionistic fuzzy number environment with
DIF inputs and TIEN outputs based on new rank function.
Darehmiraki [15] discovered that it was developed based on
the concept of « section, 3 section, and left section of IFN .
The proposed evaluation method is used to solve the
problem of choosing a partner. Evaluation of partners by
attributes is indicated using a triangular IFN. The proposed
method can accurately evaluate the number of symmetric
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tuzzy sets that share the same core and different supports.
Anushya et al. [16] transformed the fuzzy transmission
problem into a definite problem by using the ranking
method, used the VAM method to find the feasible solution,
and used the MODI method to obtain the optimal solution
for the initial solution. In this study, we introduce the
concept of Value- and Ambiguity-based approach for
solving the intuitionistic fuzzy transportation problem with
total quantity discounts and with incremental quantity
discounts. Pratihar et al. [20] discussed the interval type 2
fuzzy transmission problem. For this, the transportation
costs, supply, and demand are represented by interval type 2
fuzzy numbers. Recently, Kumar et al. [21] discovered
a simplified representation of a novel computational method
for solving the Pythagorean purge transportation problem.
Recently, Edalatpanah [23] developed a new model of data
envelopment analysis based on new ranking functions of
triangular neutrosophic numbers. Edalatpanah [24] in-
troduced a new method called a neutrosophic structured
element. Based on this approach, they proposed a multi-
attribute decision-making problem under NSE information.
Pratihar et al. [20] solved a fuzzy transportation problem
based on modified classical Vogel’s approximation method,
where the transportation cost, demand, and supply are
represented by type 2 fuzzy sets.

Bagheri et al. [25] made the first attempt to solve the
multiobjective fuzzy transportation problem using the fuzzy
data analysis method. Ebrahimnejada et al. [26] discovered an
effective solution to find the optimal weight of the fuzzy path by
interval values. Ebrahimnejad [27] provided a new way to solve
the fuzzy transfer problem (FTP). In this method, trans-
portation cost, supply, and demand are represented by
a nonnegative flat fuzzy number LR. Ebrahimnejad and
Verdegay [28] have proposed an efficient computational so-
lution approach for solving intuitionistic fuzzy transportation
problems in which costs are triangular intuitionistic fuzzy
numbers (TIFN) and availabilities and demands are taken as
exact numerical values. To the best of our knowledge, there are
no studies carried out on intuitionistic fuzzy transportation
problem with total quantity discounts and incremental
quantity discounts. The main objective of this study is to solve
the new transportation problem with total quantity discounts
and incremental quantity discounts in the intuitionistic fuzzy
environment without using the ranking function.

The contributions of this paper are as follows:

(1) We introduce the intuitionistic fuzzy transportation
problem with total quantity discounts and in-
cremental quantity discounts.

(2) We developed a new approach called Value index
and Ambiguity index to solve the above problem.

(3) Without using the ranking function, the intuition-
istic fuzzy transportation problem is converted to
two sub-problems.

(4) The proposed approach is illustrated with a numer-
ical example.

The remaining paper is organized as follows: in Section 2,
the basic preliminaries related to IFS and optimization are
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summarized briefly. In Section 3, the Value and Ambiguity
of IFS and its properties are discussed. The mathematical
formulation of the proposed model is presented in Section 4.
Section 5 provides a numerical illustration of the proposed
problem. The conclusion is drawn in the last section.

2. Preliminaries

This section describes some fundamental ideas relating to
the intuitionistic fuzzy numbers and arithmetic operation of
intuitionistic fuzzy numbers.

Definition 1 (see [1]). Letx be the universe of discourse, then
an intuitionistic fuzzy set A
f G (o), 9 (e x € X1
where pes (x), SZIFS (x): x —> [0, 1] as functions such that
OSwas (x) + SZws (x)<1 Vx € X. For each x, the mem-

in X is given by the set of

ordered triples A" =

bership ps (x) and the nonmembership Schs (x) represent

the degree of membership and degree of nonmembership of
the element x € X and A c X, respectively.

DePﬁmtzon 2 (intuitionistic fuzzy number (IFN) [1]). AnIFN
IFN
A" is an intuitionistic fuzzy subset of the real line:

(i) Normal; i.e., there is
‘l,l;{u-'N (.XO) =1, 19;{11-'1\1 (XO) =0.

any xp€R such that

(ii) Convex for the membership function pe (x); ie.,

!/IZIFN (x) (Axl + (1 - )L)Xz) > Mln{ ‘[/IZIFN (xl), ‘HZIFN (xz)},

(1)

for every x;, x, € R, A €0, 1].

(iii) Concave for the nonmembership function 9~IFN (x);
ie.,

SXIFN (Axl + (1 - )L)xz) < Max{ SZIFN (Xl), SZ[FNI (xz)},
(2)

for every x;, x, € R, A €0, 1].

Definition 3 (trapezoidal intuitionistic fuzzy number

(TrIFN) [1]). A trapezoidal intuitionistic fuzzy number

~IEN
A =< (ay, as-a,-as) wy, (a, as-a,-adg), ws, where

a, <a,<as<a, <as<ag is a special intuitionistic fuzzy set
on the real number set R, whose membership and non-
membership functions are defined as follows:

3
0, ifx<a,,
(x - ay)w~
— % ifa,<x<a
ay—a, 2 3>
‘M—‘A:IFN (.x):4 w7, ifa3 <x<ay,
(a5 — x)w~
— 4% ifa,<x<a
as—a; 4 5
0, if x> as,
1, ifx<ay,
x—a)u-(a; —x
w, ifalgx£a3’
az —a;
SXIFN (x) =4 ug, ifa;<x<a,,
l-u)(x—ay)+u-(a;,—a .
(1) (e a) s wglag—a) e
deg — as
1, if x > aq.
(3)

The Values wy and u; represent the maximum degree of
membership and the minimum degree of nonmembership,
respectively, so that 0< poe (x)<1,0< SZIFN (x)<1;
0< pe (x) + SZWN (x)<1 Vx € X; if the conditions are
satisfied, Parameters w7 and u reflect TrIEN level of trust
and level of uncertainty, respectively.

In addition, 75 (x) =1~ poe (x) 9XIFN (x) is called the

degree of 1ndeterm1nacy of x to A™ or called the degree of

hesitancy of x to A
If a, >0, then the TrIFN A=< (ay, a3, a4, a5) w3, (a,,
~IFN

as, ay, ag), W=> is positive and is 1nd1cated by A~ >0.
L1kew1se, ifa, <0, then the TrIFN AN =< (ay, a3, a4, as)
w>, (ay, a3, ay, ag), u7; negative and is indicated by A FN< 0.
If w; = 1 and 1 = 0, then TrIFN is reduced to Al
(a,, a3,a4,a5) 1, (al, as,dy, ag), 0>, which is called the
trapezoidal intuitionistic fuzzy number.
Since the TrIFN concept is generalization of trapezoidal
fuzzy numbers, the arithmetic operation of TrIFNs can be
defined as follows.

2.1. Arithmetic Operations ofIFN LetA =< (a,,as,a4,a5)
w7, (a), as, a4, ag), uz> and B =< (by, b3, by, bs) wy, (b,

bs, by, b), uy> be two TrIENs and ) be a real number. The

arithmetical operations are defined as follows[22]:



(i) AN +B™ =< (a, +by, ay+by, a,+ by as+bs),
w, (a, +by, as+b;, a,+b,, as+bg), u>, where
w= mm {ws, w~} and u =max {u, u;}

) A B by <(ay-bs ay—bya,— by as—b,)
w, (a1 be, a5 —b,, a,—b;, ag—bs) u>, where
w=min {w, ar~} and u=max {u, u-}

7N, N b

(iii) A =< (ayb,, asbs, asby, asbs) w, (aby,
asbs, a4b4, agbs) u>, where w=min {w;, w; and
u=max {ug, u-}

AN N b

(iv) A =<a, /b, as/by, a,/bs, as/b, ), w (a,/bs,
a3/b4, a4/, as/b,) u>, where w =min {3, w-} and
u=max {ug, b}

( ) KAIFN {(Ka,, Kas, Ka,, Kas)ws, (Ka,, Kas, Ka,, Kag), uz, if k>0
{(Kas,Kay, Kas, Ka,)ws, (Kag, Kas, Kay, Kay), u, if k<0

Definition 4 (see [1]). The a-cut of a membership function
. . . . ~IEN, .

is a crisp set, which consists of elements of A~ having at
[A](®), A; ()] and
={x: s (x) za,x € X,

least degree «. It is denoted by ALFN =
is defined mathematically as ;{SN

a€|0, 1] N
Let A =< (a, as,a,,as) ws, (a5, as,a,,ae), u=> be
a TrIFN, then
A = (4@, 43@) = [+ & (3= (o)
(4)
B-Cut is defined as follows:
Ay = {x: 9(x) sﬁ} = [AL(B). AL(B)]
= #[ﬁ(a —a;)+1u-a (5)
(ug-1) " T e

oL
(1)
a, B-Cut is defined as follows:

iF;—{x ‘u~m\(x)>a \9~11-N x)</3 a+[¥<1 XEX} (6)

[as (B-uz)+a,(1- ﬁ)]

A

3. Value and Ambiguity of IFN

This section describes the value and ambiguity of the
intuitionistic fuzzy number.

Definition 5 (see [22]). Let ;\LFN
p-cut of an TrIFN A
#7 (x) and the nonmembership 9~ (x) for A™

and ;\;;N be the a-cut and,
then the Value of the membership
is defined as
follows:

1
v, = JO[LZ((X) + R (o)) f (@)dar,
(7)
1
Vo= [ [120)+ R; (B]a (s

respectively.
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Definition 6 (see[22]). Let ;\SN and A;;FN be the a — cut and

B-cut of an TrIFN A, respectively, then the Ambiguity of
the membership poes (x) and nonmembership SZIFN (x) for

A™ is defined as follows:

1
A= [ [R5 (@~ 1 @] f (@)

A= [ (R0 - L2 @]9 (9,

respectively.
IFN
If A =< (ay as-a,-as) ws, (@), ay - a, - ag), uz> is

a trapezoidal intuitionistic fuzzy number, then

(i) Value of the memFl%\Iershlp by (x) and non-member-
ship 9~ (x) for a'

2
>
VH<;\IFN> = ?“ [a, + a5 + 2a5 + 2a,],

(9)

a, + ag +2a; + 2a,).

V9<AIFN) = L‘:; 1) [

(ii) Ambiguity of the membershlp s (x) and non-
membership 9~ (x) for ar
w>
A#(AIFN> = ?“ [as + 2a, — a, — 2a;],
(10)
1-u~

A9<AIFN> = u [ag —2a; —

g a, +2a,).

Deﬁnition 7. Value index and Ambiguity index of IFN [22]).
Let A =< (a,, as,a4,as) w-

a TrIFN, then Value index and Amb1gu1ty index of A" "
defined as follows:

VA<AIFN> _ V#<AIFN> e —A)VS( IFN>’
AA<AIFN> _ Ay( IFN) +(1 —/\)A9< IFN)’

respectively, where A € [0,1] is a weight representing the
decision-making preference information. Suppose

» (ay, as,aa4), 17 > be

(11)

(i) A € (0,0.5]= decision prefers uncertainty or neg-
ative feeling
(ii) A € (0.5, 1]= decision prefers certainty or positive
feeling
(iii) A € (0.5]= decision prefers between positive and
negative feeling

Theorem 1 (see [22]). If w> and u represent the maximum
degree of membership and minimum degree of membership
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function, respectively, then they satisfy the condition
0<wz;<1,0<su7<1, 0wz +uz< 1.

Theorem 2 (see [22]). Let AN - ¢ (ay, a3, ay,0as5) wy, (ay,
a5, 4, 05), uz> and B =< (by, by, by, bs) ws, (by, by, by, b),

u=> be two TrIFNs. If a,>bs, wy=wy, and ug;=u, then

~IFN  =IFN
A >B .

Theorem 3 (see [22]). Let Ao« (ay, a3, ay,as) wy, (aj,

a3, 4, a5), uz> and B =< (by, by, by, bs) ws, (by, b, b4, be),

~IFN
u>, and C =< (cz, c3,c4,c5) 5 (cp c3,c4, Cg)s uz> be

IFN ~ BN | BN
three ITrFNs. IfA N then + S B ™
where w; = w> and u;z .

Theorem 4 (see [22]). Let AN - (ay, as,ayas) wy, (a,
~IEN

as,dy, ag), uy>, B =< (b,, by, by, bs) wp, (b1, by, by, be), u->
be two TrIFNs, then

IFN =IFN

(z)V(A >V(A >V(B .
(ii) V(A + B™) = vy (&™) + vy (B™).
(iii) V#(yA )_ v, (A",
(iv) AM(AIFN ~””’N) A, (A" ) AH(BIFN).
(v) Ag(A™ + B™) = AS(A M)+ 4y (B™).
(vi) A, (yA" )— A, (A,

4. Intuitionistic Fuzzy Transportation
Problem with Quantity Discounts

The intuitionistic fuzzy transportation problem (IFTP) with
quantity discounts can be classified into two ways:

(i) Transportation problem with intuitionistic fuzzy
quantity discounts (TPIFQD)

(ii) Transportation problem with incremental intui-
tionistic fuzzy quantity discounts (TPIIFQD)

Let C, ;ji. be the unit cost of sh1pment from the i source
to the j destination with the k™ price breakpoint and X, ik
be the quantity shlp]?ed from the i source to the j des-
tination with the k™ price breakpoint. The cost structure
(price breakpoints) under TPIFQD is as follows:

~IFN . ~IFN
Cijl, 1f0SX,»jk<q )
=~ _ ) ®IFN ~IFN ~IFN
Cige =71 Cipp» i G5 <Xip<q (12)
~IFN ~IFN
Cijr > lel]k>q1]T 1

If the quantity is 0 to g1, then the cost Cl]1 If the
quantity is qulN to qf]FZN , then tile cost is C, ij2» and so on. This
scheme is known as the TPIFQD scheme, the transportation
cost of this model. Here, cost and quantity price breakpoints
are represented by trapezoidal intuitionistic fuzzy numbers.

On the other hand, if the quantity is 0 to qIFlN , then the
cost is C; ;j1- 1f the quantlty is quFll\I to quFZN , then cost is

~IFN
Gij Cijp + (x5 — ‘1112 )CUZ, and so on. This scheme is called

transportation problem with incremental intuitionistic fuzzy
quantity discounts.

4.1. General Framework of Transportation Problem with
Intuitionistic Fuzzy Quantity Discounts. Let a; be the capacity
of source i, where i=1, 2, 3,..., m; bj is the demand of the
destination j=1, 2,..., n. Let r be the total number of price
breakpoints in any given combination of source and desti-
nation; C; ji be the cost per unit of shipping from the source i to
destination j under the k™ price break, k=1,2, ..., ; q} I, the
upper bound in the last price break, in any given cell can be
either finite or infinite; X;; be the number of units to be
shipped from the source i to the destination j under the k%
price breakpoint; and p pl "N is the price per unit of the k™ price
breakpoint from the source i to the destination j. The tabular
form of the proposed model is shown in Table 1.

4.2. Mathematical Formulation of TPIFQD (Model I). The
total quantity discount is a unique discount for all units of
the goods purchased. In order to minimize the total cost of
shipment under intuitionistic fuzzy quantity discounts, let
us define

1, ifX;;>0,
ijk _{ ! (13)

0, otherwise.

Mathematical model of the transportation problem with
intuitionistic fuzzy quantity discounts is

P
minimizeZ = > Z CijeXijio (14)
i=1 j=1 j 21

subject to

(a) Z, 1Zk 1 ljk_ i’ i=1,
wise supply constramts)

b)Y Y, ijk:bj, j=1, ..., n (column-wise and
column-wise demand constraints)

() Yo Yige < Li=1, ..., m, j=1, ..., n (the con-
straints set assure that sharing is made below one and
only Value break within any given arrangement of
the starting point i and end point j)

(d) X,]k<(q}f,§ DY i=1,.om j=1,..,n k=1,

.., r (the constrain set restrlcts the d1str1but10n of
units below any Value break to the respective higher
bound within the given arrangement of the source i
to endpoint j)

(e) Xij 2 (quFlN - l)Y,JZ, i=1,...,m, j=1, ..., n (the
constraints set assures that the units arrangement
below any Value break is more than or equal to the
respective lower bound within any given arrange-
ment of the source i and end point j)

~IFN _ ~IFN .
(f) Xz]k (‘L]k qu(k 1)) Yij(k+l)’ i=1,..

nok=1,...,r
(g) Xijk 20, Y;p=0or1

.., m (row-wise and row-

smj=1,..,

4.3. Mathematical Formulation of TPIIFQD (Model II).
Discount for certain interval is called incremental quantity
discount. For example, suppose we purchase 100 units, if the
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TaBLE 1: Tabular form of the proposed model.
1 2 j n
—IFN . Z[FN
0 <Xy <qiy P % N . 5
= 1 - P SIEN , 5121 IFN | ZIFN
0 < X5 <Gy * Prrn 0 <Xy1G1m * Pim
~IFN ~IFN , ZIEN
din <X112<q112 : Pin ~IEN ~IFN | =IEN ~IFN ~IFN . ZIEN
Source 1 di21 X122912 * P Gim X1291n2 * P12 a

~IFN . HIFN
i1y <Xy, <001 Py,

~IEN e
11 (r-1) < Xypt 001 Py

—=IFN —=IFN

qlm(r—l) < Xlnr <00: plnr

~IFN , =IFN ~IFN , =IFN ~IFN , =IFN
0 <Xy <@y :Pon 0 < X551 <G : P 0 < X501 <Gyt  Pom
—IFN ~IFN , =IFN ~IFN ~IFN . =IEN ~IEN —[FN , =IFN
2 Don < X012 <Gopy :Pons D1 X022@2 : Pz Dot < X @om * Pom @
~IFN - . =IEN ~IFN v L =IN _ o ZIEN
Da1(r1) S Xo1, <001 Py D22(r1) S X22,00: Py Ty (r-1) < X300 2 Py
i G
~IFN , =IFN ~IFN , =IFN ~IFN , =IFN
0 S‘Xmll <qm11'pm11 0 SXWIZ] <qm21'pm21 0 S‘anl <qmn1'pmnl
~IFN ~IFN , 7IEN ~IFN ~IFN , ZIEN ~[FN ~IFN , 5IFN
m Im11 < Xleqmlz . Pmlz Im21 < szz%nzz . szz Dmnt anlqmnz . pmnz A
_IEN - =IFN _IEN . =IFN _IEN v o =IEN
qml(r—l) SXmlr <OO'Pm1r qmz(r—l) S‘Xer <00'Pm2r an(r—l) Sermroo'pmnr
b, b, b; b,

unit cost is Rs. 15 for 90 units and reaming unit cost is Rs. 5,
then, the total cost is Rs. 1400. In order to minimize the total
shipping cost, the mathematical model of the transportation
problem with incremental intuitionistic fuzzy quantity
discounts is

m n
minimize Z = Z Z i(jiijijk , (15)

subject to

(@) Yy Ykor Xig=8p i=1, ..., m (row-wise and row-
wise supply constraints)

(b) ¥ty Yhey Xik=bj, j=1, ..., n (column-wise and
column-wise demand constraints)

(© X <@ ~ DY, i=1, ..

~IFN _ ~IFN _ .

(d) Xijn < @ik = Gije-)Yije i=1 .o my j=1, ..., m,

=1, ..., r (the constraints limit the arrangement of

units in any cell to their higher bound on the in-

crement quantity within the given combination of

the source i to end point j)

Lsm,j=1,..,n

(e Xiji 2 (@ ~ DYy i=1,.cmj=1,..,n
() Xige< @ = @) Yijerny i= Lo mj=1, .
n,k=1,...,r(foragiven source i to end point j, if the

distribution is made with respect to the (k + D™ cost
break (k> 0), the distribution with respect to the kK
cost break must be equal to the respective higher
bound on the incremental quantity; e,
@i = ij k1))
(g) Xijx20,Y;3=0o0r1
After modelling, the Value and Ambiguity of each IFN is
computed and then the Value index and Ambiguity index are
defined. Now, the IFTP model I is converted to two sub-
problems such as Value index problem and Ambiguity index
problem, which are parametric linear programming problems

with parameter A (0 <A < 1). Similarly, model IT is converted to
Value index problem and Ambiguity index problem, which are
parametric linear programming problems with parameter A
(0<A<1). For different Values of A (0 <A < 1), the parametric
linear programming problems are converted to linear pro-
gramming problems. LP problems have been solved in classical
methods, which gives the Value and Ambiguity of the solution.
The above method is explained using the following numerical
example.

4.4. Numerical Example. A dairy firm has three plants lo-
cated throughout a state. The supply, demand (in million of
litres), and cost (in thousands of rupees) of shipping of milk
from each plant to each distribution centre is given in Ta-
bles 2 and 3.

The values in Table 3 are expressed as g .- Cijk, i=1,2,3,
j=1,2,3, k=1, 2, 3. For example, in Table 3, the first row
indicates the following: if the shipping quantity lies between
<(=0.5,0,1,2), 05, (-1, 0, 1, 3) 0.3> and < (16, 18, 20, 22),
0.6 (15, 18, 20, 23), 0.3>, then the shipping cost is < (5, 6, 7,
9), 0.6 (4, 6, 7, 10) 0.3>; or, if the shipping quantity lies
between < (16, 18, 20, 22), 0.6 (15, 18, 20, 23), 0.3> and < (44,
45, 46, 47), 0.6 (43.45, 46, 48), 0.2>, the cost is < (4, 5, 6, 7),
0.7 (3, 5, 6, 8, 8) 0.3>, and if the shipping quantity lies
between < (16, 18, 20, 22), 0.8 (15, 18, 22, 23), 0.8> and <
(99.100, 101, 102), 0.6 (98, 100, 101, 103), 0.3>, then the cost
is <(3,4,5,8),0.8(2,4,5,10) 0.3>. Similarly, the other price
breakpoints and cost are given in Table 3.

The dairy firm wishes to determine how much should be
the shipment from each milk plant to each distribution
centre so that the total cost of the shipment is minimum.

4.4.1. Value of the Solution for Intuitionistic Fuzzy Quantity
Discount and Incremental Intuitionistic Fuzzy Quantity
Discount Transportation Problems. In order to solve Value
of the solution for TPIFQD and TPIIFQD, first the Value of
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TaBLE 2: Supply and demand.

Distribution centre 1 Distribution centre 2 Distribution centre 3 Supply (in million litres )

qu: 9111 dio1 9121 d131° 9131

Plant 1 di12: 9112 di22° 9122 Q132 lez 45
dus: Cus d123: Cs d133: Cis3
o1 9211 do1° 9221 Gs1 stl

Plant 2 Ga12: Cona 322 Com G232 Cos, 45
13’ 9213 dp3: 9223 da33° 9233
5110 Cany d321: Cso1 33310 Csa

Plant 3 B312° Cana G322t Csna J332: Cs, 30
d313: Ca G231 Ca3 3330 Cs33

Demand (in million litres) 60 30 30 120

TaBLE 3: Cost and price break of the TP.

quik: Cuk’ k=1,2,3

<(-05,0, 1, 2), 0.5, (-1, 0, 1, 3) 0.3> <X, <(16.18, 20, 22), 0.6 (15, 18, 20, 23), 0.3>:<(5, 6, 7, 9), 0.6 (4, 6, 7, 10) 0.3>

<(16, 18, 20, 22), 0.6 (15, 18, 20, 23), 0.3 < X, <(44, 45, 46, 47), 0.6 (43.45, 46, 48), 0.2>:<(4, 5, 6, 7), 0.7 (3, 5, 6, 8, 8) 0.3>
<(16, 18, 20, 22), 0.8 (15, 18, 22, 23), 0.8> < X, ;5 <(99.100, 101, 102), 0.6 (98,100, 101,103), 0.3>:<(3, 4, 5, 8), 0.8 (2, 4, 5, 10) 0.3>
Juox: Cropo k=1,2,3

<(-05,0, 1, 2), 0.5, (-1, 0, 1, 3) 0.3> <X, <<(7, 8, 9, 11), 0.6 (6, 8, 9, 12), 0.3>:<(6, 7, 8, 10), 0.6 (5, 7, 8, 13) 0.3>

<(7, 8,9, 11), 0.6 (6, 8, 9, 12), 0.3> < X, <(16, 18, 20, 22), 0.6 (15, 18, 20, 23), 0.3>:<(5, 6, 7, 9), 0.6 (4, 6, 7, 10) 0.3>

<(16, 18, 20, 22), 0.6 (15, 18, 20, 23), 0.3> < X,,; <<(99.100, 101, 102), 0.6 (98,100, 101, 103), 0.3>:<(4, 5, 6, 7), 0.7 (3, 5, 6, 8, 8) 0.3>
Gisk: Crap, k=1, 2,3

<(-05,0, 1, 2), 0.5, (-1, 0, 1, 3) 0.3> < X5, <<(4, 5, 6, 7), 0.7 (3, 5, 6, 8, 8) 0.3>:<(6, 7, 8, 10), 0.6 (5, 7, 8, 13) 0.3>
<(4,5,6,7),0.7 (3, 5, 6, 8, 8) 0.3> < X3, <<(16.18, 20, 22), 0.6 (15, 18, 20, 23), 0.3>:<(6, 7, 8, 10), 0.6 (5, 7, 8, 13) 0.3>

<(16.18, 20, 22), 0.6 (15, 18, 20, 23), 0.3> < X33 <<(99.100, 101, 102), 0.6 (98,100, 101,103), 0.3>:<(5, 6, 7, 9), 0.6 (4, 6, 7, 10) 0.3>
Qs Conpo k=1,2,3

<(=0.5,0, 1, 2), 0.5, (-1, 0, 1, 3) 0.3> <X, <<(44, 45, 46, 47), 0.6 (43.45, 46, 48), 0.2>:<(16.18, 20, 22), 0.6 (15, 18, 20, 23), 0.3>
<(44, 45, 46, 47), 0.6 (43.45, 46, 48), 0.2> < X,,, <<(64, 65, 66, 68), 0.6 (63, 65, 66, 69), 0.3>:<(6, 7, 8, 10), 0.6 (5, 7, 8, 13) 0.3>
<(64, 65, 66, 68), 0.6 (63, 65, 66, 69), 0.3> < X,; <<(99.100, 101, 102), 0.6 (98,100,101, 103), 0.3>:<(4, 5, 6, 7), 0.7 (3, 5, 6, 8, 8) 0.3>
Toor: Coppo k=1,2,3

<(=0.5,0, 1, 2), 0.5, (-1, 0, 1, 3) 0.3> < X,,, <<(16.18, 20, 22), 0.6 (15, 18, 20, 23), 0.3>:<(6, 7, 8, 10), 0.6 (5, 7, 8, 13) 0.3>
<(16.18, 20, 22), 0.6 (15, 18, 20, 23), 0.3> < X,,, <<(64, 65, 66, 68), 0.6 (63, 65, 66, 69), 0.3>:<(5, 6, 7, 9), 0.6 (4, 6, 7, 10) 0.3>
<(64, 65, 66, 68), 0.6 (63, 65, 66, 69), 0.3> < X,,; <<(99.100, 101, 102), 0.6 (98,100, 101, 103), 0.3>:<(5, 6, 7, 9), 0.6 (4, 6, 7, 10) 0.3>
Doz Cozpo k=1,2,3

<(-05,0, 1, 2), 0.5, (-1, 0, 1, 3) 0.3>—< X,3,—<<(6, 7, 8, 10), 0.6 (5, 7, 8, 13) 0.3>:<(6, 7, 8, 10), 0.6 (5, 7, 8, 13) 0.3>

<(6, 7, 8, 10), 0.6 (5, 7, 8, 13) 0.3> < X3, <<(16.18, 20, 22), 0.6 (15, 18, 20, 23), 0.3>:<(4, 5, 6, 7), 0.7 (3, 5, 6, 8, 8) 0.3>

<(16.18, 20, 22), 0.6 (15, 18, 20, 23), 0.3> < X33 <<(99.100, 101, 102), 0.6 (98, 100, 101,103), 0.3>:<(3, 4, 5, 8), 0.8 (2, 4, 5, 10) 0.3>
Tt Cappo k=1, 2,3

<(-05,0, 1, 2), 0.5, (-1, 0, 1, 3) 0.3> < X3, <<(6, 7, 8, 10), 0.6 (5, 7, 8, 13) 0.3>:<(44, 45, 46, 47), 0.6 (43.45, 46, 48), 0.2>

<(6, 7, 8, 10), 0.6 (5, 7, 8, 13) 0.3> < X3, <<(16.18, 20, 22), 0.6 (15, 18, 20, 23), 0.3>:<(16.18, 20, 22), 0.6 (15, 18, 20, 23), 0.3>
<(16.18, 20, 22), 0.6 (15, 18, 20, 23), 0.3> < X33 <<(99.100, 101, 102), 0.6 (98, 100, 101, 103), 0.3><(4, 5, 6, 7), 0.7 (3, 5, 6, 8, 8) 0.3>
Tao: Cagpo k=1,2,3

<(-05,0, 1, 2), 0.5, (-1, 0, 1, 3) 0.3>-< X3, —<<(3, 4, 5, 8), 0.8 (2, 4, 5, 10) 0.3>:<(6, 7, 8, 10), 0.6 (5, 7, 8, 13) 0.3>
<(3,4,5,8),08 (2, 4, 5, 10) 0.3> < X3,, <<(16.18, 20, 22), 0.6 (15, 18, 20, 23), 0.3>:<(5, 6, 7, 9), 0.6 (4, 6, 7, 10) 0.3>

<(16.18, 20, 22), 0.6 (15, 18, 20, 23), 0.3> < X3,; <(99.100, 101, 102), 0.6 (98,100, 101,103), 0.3>:<(3, 4, 5, 8), 0.8 (2, 4, 5, 10) 0.3>
Gas: Cazpo k=1,2,3

<(-05,0, 1, 2), 0.5, (-1, 0, 1, 3) 0.3> < X33, <<(4, 5, 6, 7), 0.7 (3, 5, 6, 8, 8) 0.3>:<(6, 7, 8, 10), 0.6 (5, 7, 8, 13) 0.3>
<(4,5,6,7),0.7 (3, 5, 6, 8 8) 0.3> < X533, <<(44, 45, 46, 47), 0.6 (43.45, 46, 48), 0.2>:<(4, 5, 6,7), 0.7 (3, 5, 6, 8, 8) 0.3>

<(44, 45, 46, 47), 0.6 (43.45, 46, 48), 0.2> < X333 <(99.100, 101, 102), 0.6 (98,100, 101,103), 0.3>:<(3, 4, 5, 8), 0.8 (2, 4, 5, 10) 0.3>

all IFNs is calculated. Then, the Value index is evaluated,  and intuitionistic fuzzy price breakpoints, which is given in
which is shown in Table 4. Table 5.

Model I: now, using the above Value of the intui-
CaseI. (A=0.25). Substituting A = 0.25 in the Value index in tionistic fuzzy cost and intuitionistic fuzzy price
Table 4, we obtain the Value of the intuitionistic fuzzy cost breakpoints, the transportation problem with



TABLE 4: TheValue index for TPIFQD and TPIIFQD.

Gk 612}0 k=1,2,3

0210+ (1-1) 032 < X5, < 3120+ (1-1) 4.24:2.7A+ (1 - 1) 3.68
3120+ (1-1) 4.24 < X5, < 6.841+(1-1) 9.31: 240 + (1 - 1) 3.27
6.841+(1-1) 9.31 <X,,3< 36181 + (1 —1)64.32:1.981 +(1 - 1)
2.7

Gk élSk’ k=1,2,3

0210+ (1-1) 032 <X, < 1980+ (1 -1) 2.7:3.121 + (1 - 1) 4.24
1980 +(1—1) 2.7 < X5, < 6.84A+(1—1) 9.31:2.7A+(1—1) 3.68
6.841+(1-1) 9.31 <X,,3< 36181+ (1 —1)64.32:241+ (1 - 1)
3.27

G Cono k=1,2,3

021A+(1-1)0.32 <X,,; <031 +(1-1)0.75:6.841 + (1 - 1) 9.31
031+ (1-A) 0.75 <X, < 23.64A + (1 - A1) 32.18:3.12A + (1 - A)
4.24

23.64A+ (1 - 1) 32.18 < X,,53< 36.181 + (1 —1)64.32:
1.981+(1-7) 2.7

G Copo k=1,2,3

0214+ (1-21) 0.32 <X),; < 6.84A + (1 -1) 9.31:3.12A + (1 - 1)
4.24

6.841 +(1-1) 931 <X,,, < 23.641+(1-1) 32.18:2.7A+ (1 -7)
3.68

23.64A + (1= 1) 32.18 <X, 1,3 < 36.181 + (1 —1)64.32:2.41 +(1-
A) 3.27

Gz Cozo k=1,2,3

0211+ (1-1) 0.32 < Xp3; < 274+ (1-1) 3.68:3.121 + (1 - 1) 4.24
270+ (1-1) 3.68 <X,5, < 6.841+ (1 -1) 9.31:1.981+ (1-1) 2.7
6.841+(1—1) 9.31 <X, < 36.181 + (1 — 1)64.32:1.741 + (1 - 1)
2.45

Zsi: Cano k= 1,2,3

0210+ (1-1)0.32 <X5,;, < 3121+ (1-1)4.24: 030+ (1 -1) 0.75
3120+ (1 1) 424 <X5,,< 6844 +(1—-1) 9.31:6.84A+(1-7)
9.31

6.841 + (1 -1) 9.31 <X3,,< 36.180 + (1 —1)64.32:3.12A + (1 - 1)
4.24

Zs: Capo k=1,2,3

0214 +(1-1)0.32 < X3, < 1.98A+ (1-1) 2.7:3.12A + (1 - 1) 4.24
1980+ (1-A) 2.7 < X35, < 6.844 + (1 —1) 9.31:1.980 + (1 - 1) 2.7
6.841 + (1 -1) 9.31 <X3,3< 36.180 + (1 —1)64.32:1.74A + (1 - 1)
2.45

G3sk: Caseo k=1,2,3 Cy

0211+ (1-1) 0.32 < X33, < 1.98A+ (1 —1) 2.7:3.12A + (1 - 1) 4.24
1.98A+(1-1) 2.7 < X335, < 0310 +(1-1) 0.75:1.980 + (1 - A) 2.7
0.3+ (1-21) 0.75 < X333 < 36.181 + (1 - 1)64.32:1.74A + (1 - 1)
2.45

intuitionistic fuzzy quantity discounts is converted to
the following linear programming problem:

Subject to
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Xy + Xy + Xz + Xy + Xy + X3
+X31 + X3 + X33 = 45;

Xon + Xon + Xoiz + Xopp + Xy + Xos
+Xp31 + X3y + X33 = 45;

X+ Xapp + Xap3 + Xagp + X + X
+X331 + X3 + X33 = 30;

X+ Xy + X+ Xo1 + X1 + X3
+X311 + X1 + X513 = 60;

X + Xigp + Xz + Xy + Xy + X

+ X331 + X + X353 = 30;

Xz + Xizp + Xyzz + X3y + Xop + X
+X331 + X3 + X333 = 30;

Yin+Y o+ Y sy +Y 5 +Y <1
Yis Y+ Y53 < LYo + Yo + Y5 < 1
Yoo + Yo + Yo S 1 Yosy + Vg + Y3 < 1
Yo + Va0 + Y33 Y s + Y5 + Y <1
Yis + Y35, + Y433 <15 -13.58Y;, + X;;; <0;
—24.94Y 1, + X1, £0;-77.74Y ;13 + X3 <05
—3.42Y 15, + X5, £0;-13.58Y |5, + X5, <0;
=77.74Y 53 + X153 <0;-1.7Y 15, + X3, <0;
—13.58Y |5, + X3, <0; =77.74Y 35 + X33 <0;
—24.94Y 5, + X5;, <0;-74.8Y,, + X,;, <0;
=77.74Y 513 + X553 <0; -13.58Y 5,; + X5, <0;
=74.8Y 55y + X5y, <05 =77.74Y 555 + X 5,3 <0;
—2.8Y 53, + X535, <0;-13.58Y 53, + X3, <0;
=77.74Y 533 + X33 <0; -3.42Y 5, + X5,, <0;
—13.58Y 3, + X3,, <0;-77.74Y 5,5 + X353 < 0;
=1.1Y3,, + X35, <£0;-13.58Y5,, + X3,, <0;
=77.74Y 353 + X353 <0; -2.8Y 33, + X3,, <0;
—13.58Y 33, + X33, < 0; =77.74Y 335 + X333 <0;
—14.58Y |, + X;, 20;-25.94Y ;5 + X3 >0;
—4.42Y |55 + X 3 20; =14.58Y 55 + X532 0;
=2.7Y 135 + X3, 2 0; —=14.58Y |33 + X35> 0;
—25.942Y,,, + X5, 20;-75.8Y,,5 + X,,3 > 0;
—14.58Y 5,, + X555, 20;=75.8Y 553 + X553 2 0;
—3.8Y 53, + X33, >0;-14.58Y 535 + X533, >0;
—4.42Y 51, + X3,,20;-14.58Y 5,3 + X5,5>0;
=2.1Y 355 + X355 > 0; —14.58Y 5,5 + X 3,3 >0;
—3.8Y 33, + X33, >0;

Minimize

3.4x,,, +2.7x +2.1x1;3 + 3.8x 5 + 3.4x15,
+2.7% 193 +4.42x 31 + 3.8x 3, + 3.4x,33
+14.58x%,1 +4.42x,, + 2.7X53 + 4.42x5y;
+3.8%95; + 3.4%5y3 + 4.42%53; +2.7X,3,
+2.1%,533 + 25.94x3,; + 14.58x3,, + 4.42x33
+4.42x3y, + 3.4X35; + 2.1x3,3 + 4.42x53,

+2.7%335 + 2.1x333

~14.58Y 533 + X333, > 0;
(16)

where X, 0,5 20 0r ;i=1,2,3;j=1,2,3;k=1,2,3.
Model II: similarly, using the Value of the intuitionistic
fuzzy cost and intuitionistic fuzzy price breakpoints in
Table 5, the transportation problem with incremental
intuitionistic fuzzy quantity discounts is converted to
the following linear programming problem:
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TaBLE 5: Value of the IF cost and IF price breakpoints when A =0.25.
A =025 Supply
028 <X, < 14.58:3.4 028 <X,y <4.42:3.8 0.28<X,3 <2.7:44
14.58 < X, ), < 25.94:2.7 442=X5,<14.38:3.4 2.7=X,5, < 14.58:3.8 45
2594 <X,,5<77.74:2.1 14.38 = X153 < 77.74: 2.7 14.58 < X,55 <77.74:3.4
0.28 =X5;; <25.94:14.58 0.28 = X5, < 14.58:4.42 0.28 =X53;<3.8:4.42
Demand 25.98 = Xy, < 75.8 : 4.42 14.58 = X,,, < 75.8:3.8 3.8=Xps, < 14.58:2.7 45
75.8=X513<77.74:2.7 75.8=X,,3<77.74:3.4 '4.58 =X33<77.74:2.1
0.28 = X3y, < 4.42:25.94 0.28 = Xy <2.1:4.42 0.28 = X33 < 3.8: 4.42
4.42 = X3, < 14.58:14.58 2.0 = X3y, < 14.58:3.4 3.8= X33, < 14.58:2.7 30
14.58 = X315 < 77.74: 4.42 14.58 = X303 < 77.74: 2.1 14.58 = X335 < 77.74: 2.1
60 30 30 120
Minimize 3.4x,;; +2.7x15 + 2.1x,13 + 3.8%5; + 3.4X15, +2.7x53 + 4.42x 3,

where X, >0,Y,, >00r 1;i=1,2,3;j=1,2,3k=1,2,3.

Case II. (A=0.50). Substituting A =0.50 in the Value index in
Table 4, we obtain the Value of the intuitionistic fuzzy cost and
intuitionistic fuzzy price breakpoints, which is given in Table 6.

Subject to

+3.8X5 + 3.4% 55 + 14.58x,,, + 442X, 1, + 2.7xy,5 + 442X,y + 3.8,
+ 3,45, + 4.42X5, + 2.7Xy5, + 215,55 + 25.94x5,, + 14.58x5,, + 44255
+ 44235, + 3.4x35, + 2.1X3y3 + 4.42X33; + 2.7X335 + 2.1x333

X+ Xyp + Xyps + Xpgy + Xigp + Xz + Xy + Xisp + X35 = 455
Xon + Xonp + Xos + Xogy + Xogp + Xopy + Xy + Xy + X33 = 45;
X+ Xapp + Xapz + Xagy + Xipp + Xipy + X0 + X3 + X33 = 30;
X+ Xy + Xyz + Xopp + Xopp + Xpp3 + X + X315 + X503 = 60;
Xiar + Xig + Xipps + Xopy + Xpgy + Xz + Xig) + Xy + X5 = 30;
Xizp + Xizp + Xizs + Xogy + Xozp + Xogs + Xz + X + X35 = 305
—13.58Yy, + X1y <0;—11.36Y,, + X1, <0;

=77.74Y |13 + X3 £0;-3.42Y 5, + X, <0;

—10.16Y 1y, + X9y <0; =77.74Y 15 + X155 <0

—17Y 5y + Xyay <03 —11.88Y 5, + X3, < 0;

—7774Y 135 + X33 <0; —24.94Y,,, + X, <0

—49.86Y ,, + Xy <0; =77.74Y 515 + Xp13 <0

—13.58Y 5y, + Xy <0; =61.22Y ), + X,y <0 (17)
— 7774 1y + Xppy <0; ~2.8Y 55, + X,y < 0;

—10.78Y y3 + X3y <0; =77.74Y 53 + X35 <0

—43.42Y 4, + Xy <0;—10.16Y 5, + X5, <0;

—7774Y 45 + Xap3 S0, =11V sy + Xgp; <0;

—12.48Y 355 + X35, <0;=77.74Y 355 + X353 <0;

—2.8Y 35, + Xa1; <0;—10.78Y 53, + X33, < 0;

—77.74Y 13y + Xa33 <0; =13.58Y 1, + X1, 20;

— 11365 + X, 1p 2 0; —3.42Y 1, + X5y 2 0;

—10.16Y 13 + X1 2 05 —1.7Y 15, + X,3) 20

—11.88Y 153 + X3 > 0; ~24.94Y,,, + X, 20

—49.86Y 55 + Xy, 2 0; —13.58Y ) + X5, >0

—61.22Y 1y + Xy 2 0; —2.8Y 55, + X,y 2 0;

—10.78Y y33 + X3 2 0; =3.42Y 5, + X3y, 2 0;

—10.16Y 35 + X531, 20; -1.1Y 35, + X35, 20;

—12.48Y 355 + X35, 20; -2.8Y 33, + X33, 20;

—10.78Y 13 + X33, > 0;

Model I: now, using the above Value of the intui-
tionistic fuzzy cost and intuitionistic fuzzy price
breakpoints, the transportation problem with intui-
tionistic fuzzy quantity discounts is converted to the
following linear programming problem:
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TaBLE 6: Value of the IF cost and IF price breakpoints when A =0.50.
A =0.50 Supply
024 <X,;, < 9.18:2.8 024<X,5 <3.4:3.18 024 < X5 <2.7:34
918 < X, < 22.75:2.7 3.4=X5,<9.18:2.8 27<X,3,<9.18:3.18 45
22.75=X,,3<73.16:1.7 9.18=X,,3<73.16:2.7 9.18 = Xy35 < 73.16: 2.8
0.24=1X5,;<22.75:9.18 0.24=1X5,,<9.18:3.4 0.24=X,3<3.18:3.4
Demand 22.75= Xy, <43.91:3.4 9.18 = X5y, <43.91:3.18 3.18 =Xy, <9.18:2.7 45

4391 =X,,3<73.16:2.7

4391 =X,,3<73.16:2.8

*9.18 = X3, < 73.16: 1.7

0.24=X3;, <3.4:22.75
34=X;3,<9.18:9.18 1.7=X32,<9.18:2.8 3.18=X33,<9.18:2.7 30
9.18=X3,3<73.16:3.4 9.18=X5,,<73.16:1.7 9.18= X333 <73.16: 1.7

60 30 30 120

0.24=X3y < 1.7:34 0.24 = X33, <3.18:3.4

Minimize

Subject to

where X, 20,Y,, >00r 1;i=1,2,3;j=1,2,3;k=1,2,3.

Model II: similarly, using the Value of the intuitionistic
fuzzy cost and intuitionistic fuzzy price breakpoints in

2.8x111 +2.7x115 + L.7x113 + 3.18x 5 + 2.8X 5y + 2.7x153 + 3.4x3; + 3.18x 3, + 2.8x 33 + 9.18x,,;
+3.4%515 + 2.7x53 + 3.4%5y; + 3.18%y5, + 2.8x,53 + 3.4X53; + 2.7Xy3, + 1.7x,33 + 22.75x5),;
+9.18x3;, + 3.4x313 + 3.4%x35; + 2.8X35, + 1.7X353 + 3.4X33; +2.7X33, + 1.7x333

X+ X+ Xy + Xippp + Xygp + Xz + Xz + X3y + X33 = 455
Xon + Xopp + Xois + Xogp + Xy + Xz + Xogy + Xy + X33 = 455
X+ Xspp + Xspz + Xipp + Xy + Xpz + Xizp + X3 + X333 = 30;
X+ X+ Xy + Xo + X + Xops + Xapp + X1, + X535 = 60;
X1 + Xygp + Xpgs + Xogy + Xy + Xz + Xgpp + X + X353 = 30;
Yin+Y 0+ Y5 LY + Y + Y3 < 1

Yisp + Y+ Y55 Y, + Yy + Y51

Yoo + Yo + Yo S L Y5 + Y5 + V33 < 1

Y + Y35+ Y33 <Y + Y5, + Y <1

Y31 + Va3 + V335 <1, -8.18Y 4 + X3, <0

=21.75Y |, + X;, £0;-73.16Y |5 + X3 <0;

=2.4Y 5, + X5, £0;-8.18Y |, + X5, <0;

=73.16Y |53 + X 53 <0; -1.7Y 15, + X5, <0;

~8.18Y 5, + X3, <0; =73.16Y |33 + X35 <0 (18)
=21.75Y,;; + X;;, £0;-42.91Y,,, + X,,, <0;

—73.16Y 53 + X553 <0; -8.18Y,,, + X,,; <0;

—42.91Y 55, + X5y, <0;=73.16Y 5,53 + X5,3 <0;

—2.18Y 55, + X3, <0; =8.18Y 3, + X5, <0;

—73.16Y 533 + X33 <0;-2.4Y 5, + X5, <0;

—8.18Y 3y, + X3;, <0; -73.16Y 3,5 + X3;3<0;

=0.7Y 35, + X35, <0;-8.18Y5,, + X5,, <0;

=73.16Y 353 + X353 <0;-2.18Y 35, + X5;, <0;

—8.18Y 33, + X33, <0; =73.16Y 333 + X333 <0;

=9.18Y 1, + X1, 20; -22.75Y |5 + X352 0;

=3.4Y 15, + X5, 20;-9.18Y |55 + X553 > 0;

=2.7Y 135 + X3, 20;-9.18Y |35 + X33 > 0;

=22.75Y 515 + X515, 20; -43.91Y 55 + X532 0;

=9.18Y 5y, + X5, 2 0;-43.91Y 55 + X 5,32 0;

=3.18Y 53, + X3, 2 0; =9.18Y )55 + X35> 0;

—3.4Y 5, + X5, 20;-9.18Y 5,5 + X5,320;

—1.7Y 355 + X355, > 0;-9.18Y 3,5 + X3,5,>0;

=3.18Y 33, + X33, 2 0; =9.18Y 335 + X335, >0;

Table 7, the transportation problem with intuitionistic
fuzzy incremental quantity discounts is converted to
the following linear programming problem:
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TaBLE 7: Value of the IF cost and IF price breakpoints when A =0.75.
A =075 Supply
0.19 <X, < 12.97:2.7 0.19 <X,y < 2.8:2.94 0.19<X,5 <2.7:2.94
12.97 <X, < 19.57:2.1 2.8<X),, <12.97:2.7 27<X3,<12.97:2.8 45
19.57=X,13<68.3:1.44 12.97 < X,3<68.83:2.1 12.97 =X133<68.83:2.1
0.19=X5,<19.57:12.97 0.19=X,,,<12.97:2.94 0.19=X,3,<2.94:2.8
Demand 19.57 = X5y, <41.3:2.8 12.97 = X5y, < 41.3:2.8 2.94< X5, <12.97:2.7 45
41.3=X,,3<68.83:2.7 41.3=X,,3<68.83:2.1 12.97 = X533 < 68.83:1.44
0.19 = X3y, < 2.8:19.57 0.19=Xsy < 1.44:2.8 0.19 = X33, <2.94:2.8
2.8=Xs,<12.97:12.97 1.44=X5,,<12.97:2.1 2.94=X33,<12.97:2.7 30
12.97 = X35 < 68.83: 2.8 12.97 = X33 < 68.83 : 1.4 12.97 = X335 < 68.83: 1.4
60 3330 30 120

Minimize 2.8x;; +2.7xy 5 + 1.7x,13 + 3.18x 51 + 2.8 5y + 2.7X153 + 3.4x3; + 3.18x 3, + 2.8x 33 + 9.18x,;; + 3.4x,,,

+2.7X513 + 3.4X5y; + 3.18X59, + 2.8Xyy3 + 3.4X53; + 2.7X)35 + 1.7X533 + 22.75x3;; + 9.18x31, + 3.4x3,3

+3.4x35; + 2.8X39) + 1.7x353 + 3.4X337 + 2.7X335 + 1.7x333

Subjectto  Xyyy + X5 X153 + Xygp + Xy + Xipz + Xizp + Xz + X33 = 45;
Xon + Xonp + Xois + Xopp + Xy + Xogs + Xoay + Xy + X33 = 455
Xap + Xapp + Xaps + Xipp + Xy + Xpz + Xz + X + X333 = 30;
X+ X + Xy + Xy + X0 + Xop3 + Xapp + X515 + X35 = 60;
X+ Xigp + Xigs + Xopy + Xy + Xops + Xgpp + X + X353 = 30;
Xz + Xysp + Xz + Xozp + Xozp + Xogz + Xz + X + X333 = 30;

—8.18Y;, + Xyy, <0;-13.57Y ), + X1, < 0;
—73.16Y 15 + Xyp3 <0; ~2.4Y ) + Xy <0;
—5.78Y 1y + X 13y <03 =73.16Y 155 + X 13 < 0;
—L7Y gy + X3y <0;-6.48Y 5, + X5, <0;
—73.16Y 133 + X33 0; ~21.75Y 5, + Xy, <0
—21.16Y,, + Xy, <0; =73.16Y 55 + X,15 <0
—8.18Y 5y, + Xpp; <0;=34.73Y 5, + X, < O0;
—73.16Y 55 + Xppy <0; —=2.18Y 5 + X3y <0
—6Y 55y + Xy <0:=73.16Y 55 + X33 <0
—24Y 4, + Xy, <0;-5.76Y 5, + Xap, <0;
—73.16Y 55 + X313 €0, —0.7Y 3y, + X5, <0;
—7A48Y 5y, + Xy <0;-73.16Y 555 + X593 <0
—2.18Y 35, + X3y, <0;—6Y 33, + X33, <0
—73.16Y 333 + Xa35 <0; —8.18Y, + X1, 20
S 13.57Y s + Xypp 2 0: =2.4Y 1y + Xy 2 0;
—5.78Y 1y + X gy 205 —1.7Y 13, + Xp3, 2 0;
—6.48Y 155 + Xy3y 20, —21.75Y 1, + Xy, 20
—21.16Y 55 + Xpp 2 0; —8.18Y ) + Xy >0
—34.73Y 3 + Xppp 2 0; =2.18Y 5, + X3 20
—6Y y33 + X3y 2 0;—2.4Y 5, + X5y, 2 0;
—5.78Y 315 + X310 2 0;=0.7Y 5, + X5, 20
—7.48Y 15 + Xppy 20, ~2.18Y 5, + X3y 2 0;
—6Y 335 + X33, 20;

where X, >0,Y,;; >00r 1;i=1,2,3;j=1,2,3k=1,2,3.

Case III. (A=0.75). Substituting A = 0.75 in the Value index in
Table 4, we obtain the Value of the intuitionistic fuzzy cost and
intuitionistic fuzzy price breakpoints, which is given in Table 7.

(19)

Model I: now, using the above Value of the intui-
tionistic fuzzy cost and intuitionistic fuzzy price
breakpoints, the transportation problem with intui-
tionistic fuzzy quantity discounts is converted to the
following linear programming problem:
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Minimize 2.7x;;; +2.1x 5 + 1.44x, 15 + 2.94x 5, + 2.7X 15 + 2.1x 53 + 2.94%3; + 2.8x 3, + 2.1x33 + 12.97x,;; + 2.8%,,

+ 2.7, + 2.94%,,, + 2.8%,0, + 2.1%,); + 2.8%,5, + 2.7% 3, + 144,55 + 19.57x5,, + 12.97x;,, + 2.8x5,5

+2.8x3y; + 2.1x35; + 1.44x3,3 + 2.8X33; + 2.7X33, + 1.44x333

Subjectto  Xyy; + Xypp + Xy + Xppy + Xipp + Xipz + Xy3p + Xy3p + X33 = 45;

Xon +Xo1n + Xoi3 + Xopy + Xogy + Xopz + X3y + Xy + X33 = 45;

Ko+ Xapp + X3 + Xapy + Xy + Xz + X3y + X3 + X33 = 30;

Xin+ X+ X3+ X + X + X3 + Xy + Xipp + X543 = 60;

Xior+ Xip + X3 + Xppy + Xopy + X3 + Xip + X + Xp3 = 30;

Xz + Xz + X33 + Xopsp + Xopp + Xos3 + X3 + X3 + X33 = 30;

Yin+Y i+ Y s hiY +Y n + V<1
Vi + Y5+ Y5 <1iYy + Yy + Yy 1
Yoor + Yo + Yo 1Y ps + Yo + Yo < 1
Yo + Y5, + Va3 S 1Yoy + Vs + Vi <1
Y3 + Y33 + V333, <1, -11.97Y, + X, <0
—18.57Y 1y, + Xy, <0;—68.83Y 5 + X, 15 < 0;
—1.8Y y, + Xppy 0;—11.97Y p,, + X5, <O0;
—68.83Y |55 + X 1p3 <0; —1.7Y 3 + X5, <O0;
—11.97Y 5, + X3, <0;-68.83Y |33 + X35 <0;
—18.57Y,;; + X5, £0;-40.3Y,,, + X, <0;
—68.83Y 55 + X5 <0: —11.97Y 5, + X, <0
~40.3Y 55, + X, <0; —68.83Y 5 + Xpps < — 0;
—1.94Y 5, + X5, <0; —11.97Y 5, + X3, <0
— 68.83Y 535 + X33 <0; —1.82Y 5, + X, <0;
—11.97Y 5y, + X3y, <0;—68.83Y 55 + X315 < 0;
—0.44Y 35, + X533, <0;—11.97Y 5, + X5y, <0;
—68.83Y 355 + X3,3 <0;-1.94Y 35, + X5, <0;
—11.97Y 33, + X33, <05 —68.83Y 335 + X335 <0;
—12.97Y 15 + X1, 2 0;=19.57Y | 5 + X, 13 > 0;
—2.8Y 5 + X5, 20;-12.97Y |3 + X532 0;
=2.7Y 135 + X3, 20;=12.97Y |33 + X332 0;
—19.57Y 15 + X5 = 0; =41.3Y 5 + X5 20
—41.3Y 5y, + Xy 2 0;—2.94Y 55, + X3, > 0;
—12.97Y y35 + X33 > 0; ~2.8Y 5, + X5, > 0;
—12.97Y 55 + X515 > 0; —1.44Y 35, + X5 > 0;
—12.97Y 355 + X33 2 0;—2.94Y 35, + X33, 2 0;
—12.97Y 333 + X333 2 0;

where X, >0, Y, >0o0r 1;i=1,2,3;j=1,2,3;k=1,2,3.

Model II: similarly, using the Value of the intuitionistic
fuzzy cost and intuitionistic fuzzy price breakpoints in

(20)

Table 6, the transportation problem with intuitionistic
fuzzy incremental quantity discounts is converted to
the following linear programming problem:
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Minimize 2.7x;;, + 2.1, + 1L44x 5 + 2.94% 5, + 2.7x,5, + 2.1 55 + 2.94% 5, + 2.8%3, + 2.1x,55 + 12.97x,,,

+2.8%515 + 2.7X513 + 2.94%5,1 + 2.8X59, + 2.1X953 + 2.8%x53; + 2.7Xy3, + 1.44x,35 + 19.57x5;

+12.97x315 + 2.8x315 + 2.8X35; + 2.1x35) + 1.44x355 + 2.8X33; + 2.7X33, + 1.44x333

Subject to

X+ Xy + Xyps + Xpgy + Xygp + Xz + Xy + Xisp + X35 = 455
Xon + Xonp + Xops + Xogy + Xogp + X + Xogy + Xogp + X33 = 455
X+ Xapp + Xapz + Xagy + Xipp + Xgpy + X3 + Xz + X33 = 30;
X+ Xy + Xypz + Xogp + Xopp + X3+ Xapy + Xy + X503 = 60;
Xior + Xigg + Xigs + Xogy + Xogp + X + Xy + Xipp + X33 = 30;
Xiz1 + Xyzp + Xysz + Xogy + Xogp + Xpzz + X + Xz + X33 = 30;
—11.97Y y; + Xyp €0;=6.6Y 5 + X115 < 0;

—68.83Y 5 + Xy 13 <0; —1.8Y 5, + X1y <O;

—10.17Y 1y + X9y <0;—68.83Y 153 + X p3 <0

—17Y 3y + X3y <05 -10.27Y 5 + X35 < 0;

—68.83Y 55 + X33 <0; —18.57Y,,, + X, <O0;

—21.73Y,,, + X,,, <0; —68.83Y 5 + X, 5 <0;

—11.97Y,,, + X,,, £0;-28.33Y,,, + X,,, <0;

—68.83Y 555 + X3 <0; —1.94Y 55, + X5, <0

—10.03Y 55, + X3, <0; —68.83Y 555 + X35 < 0;

—1.8Y5, + X5, <0;-10.17Y 5, + X5, <O0;

—68.83Y 3,5 + X35 <0; -1.94Y 55, + X, <0;

—10.03Y 35, + X535, <0; —68.83Y 555 + X535 < 0;

—11.97Y,, + X1, 20;=6.6Y 5 + X, > 0;
—1.8Y 5 + X5 20; =10.11Y 55 + X 1, > 0;

— L7 13y + X3, 20; = 10.27Y 55 + X3, 2 0;

—18.57Y,, + X, 2 0; —21.73Y, 5 + X, 5 > 0;

—11.9Y 5, + Xy, 2 0; =28.33Y 5,5 + X5, 2 0;

—1.94Y 55, + X535, 2 0; —10.03Y 555 + X3, > 0;

—1.8Y 5, + X5, 20;-10.17Y 5 5 + X5, 2 0;

—0.44Y 55, + X35, 2 0; —11.53Y 5,5 + X35, > 0;

—1.94Y 35, + X33, 2 0; —10.03Y 555 + X33, > 0;

where X >0, Y, >00r 1;i=1,2,3;j=1,2,3,k=1,2,3.

4.4.2. Ambiguity-Based Intuitionistic Fuzzy Quantity Dis-
count and Incremental Intuitionistic Fuzzy Quantity Dis-
count Transportation Problems. In order to compute the
Ambiguity of the solution, we formulate the Ambiguity-
based intuitionistic fuzzy quantity discount and incremental
intuitionistic fuzzy quantity discount transportation

(21)

problems. In this regard, Ambiguity measure of all cost and
price breakpoints is calculated. Then, the Ambiguity index is
evaluated, which is shown in Table 8.

Case IV. I(A =0.25). Substituting A =0.25 in the Ambiguity
index in Table 8, the Ambiguity measures of the intuitionistic
fuzzy cost and intuitionistic fuzzy price breakpoints are pro-
vided in Table 9.
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TaBLE 8: Ambiguity of the IF cost and IF price breakpoints.

Gk Cio k=1,2,3

0271+ (1-1) 047 <X;;; < 0.6A+(1-A) 0.98:0.31 +(1-1) 0.65
0.6A+(1-2) 0.98 <X;;,<031+(1—-1) 0.75:0.41A + (1 - 1) 0.57
031+ (1-1)0.75<X,,3<0.491 + (1 -1)0.85:0.421 + (1 - 1) 0.82

diak C12k> k=1,2,3

0271+ (1 -1) 0.47 < X15; < 0.364+(1—1) 0.65:0.361+(1—1)
0.82

0.36A+(1-A) 0.65 <X,,;,<0.6A+(1—-2) 0.98:0.31+(1-1) 0.65
0.6+ (1-21) 0.98 < X,3< 0.494 + (1 —1)0.85:0.41A+ (1 - 1)
0.57

Zisk: Cizo k=1,2,3

0274+ (1 =1) 047 < X5, < 0.41A+(1-1) 0.57:0.36A + (1 - 1)
0.65

0.41A+(1-1)0.57 <X, < 0.64+(1-1)0.98:0.361 + (1 - A7) 0.82
0.6A+(1-2)0.98 <X,,;< 0491 + (1 -1)0.85:0.31+ (1 — 1) 0.65
ok Corpo k=1,2,3

0271+ (1 -A) 047 <X,;; < 034+ (1-A) 0.75:0.61 + (1 —1) 0.98
031+(1-2) 0.75 £ X,,,< 0364+ (1—-1) 0.65:0.36A+(1-1)
0.65

0.36A + (1 —A) 0.65 <X,5< 0.494 + (1 —1)0.85:0.31 + (1 - A7)
0.74

dnk’ Coo k=1,2,3

0271+ (1 -A) 0.47 <X,,, < 0.6A+(1—-21) 0.98:0.361+(1-1)
0.65

0.6A+(1-A) 0.98 <X,,,< 0361+ (1—-A1) 0.65:0.36A1+(1—-1)
0.82

0.36A + (1 —1) 0.65 < X,153 < 0.491 + (1 —2)0.85:0.31 + (1 -A)
0.65

Qoai: Cozpo k=1,2,3

0271+ (1 —=1) 0.47 <X,3, < 0.36A+(1-7) 0.82:0.361+(1-7)
0.65

0.36A+(1—-1) 0.82 < X,3, < 0.64+(1—-21) 0.98:0.31+(1-1) 0.74
0.61+(1-1) 0.98 < X,335< 0.494 + (1 -1)0.85:0.42A + (1 - 1)
0.82

Gau: Canpo k=1,2,3

0271+ (1 =A) 0.47 < X3, < 0361+ (1-A) 0.65:03A+(1-1)
0.75

0.36A+(1-1) 0.65 < X3, < 0.64+(1—-2) 0.98:0.61+(1-1) 0.98
0.64+(1-1) 0.98 < X3, < 0.494 + (1 -1)0.85:0.36A + (1 - 1)
0.65

Gaor: Cagpo k=1,2,3

0274+ (1 =1) 0.47 < X3,, < 0424 +(1-7) 0.82:0.36 A+ (1 - A7)
0.65

0.421 +(1-2) 0.82 < X35, < 0.64+(1—-A) 0.98:0.31+(1-1) 0.65
0.61+(1-A) 0.98 < X33 < 04914 + (1 —1)0.85:0.421 + (1 - A)
0.82

Fysi: Cazeo k=1,2,3

0274+ (1 =1) 0.47 < X33, < 0.3+ (1 —-A) 0.74:0.36A+ (1 - A)
0.65

031+ (1-A) 0.74 < X33, < 031 +(1-1) 0.75:0.31 + (1 - 1) 0.74
0.3+ (1-A) 0.75 < X333 < 04914 + (1 —1)0.85:0.421 + (1 - A)
0.82

Model I: Now, using the Ambiguity measures of the
intuitionistic fuzzy cost and intuitionistic fuzzy price
breakpoints provided in Table 9, the transportation
problem with intuitionistic fuzzy quantity discounts is
converted to the following linear programming
problem:

Minimize

Subject to

Mathematical Problems in Engineering

0.48x;; +0.46x,,, +0.44x,,5 + 0.5x,;
+0.48,5, + 0.46x 55 + 0.53x,3, + 0.5x,3,
+0.48x33 + 0.54x,;; +0.53x,;, +0.46x,,3
+0.53% 0,1 + 0.5%y, + 0.48% 5 + 0.53%3,
+0.56x,3, + 0.44x,35 + 0.46x3,, + 0.45x5,
+0.53x3;3 + 0.53x3,; +0.48x3,, +0.44x3,3
+0.53%53, + 0.46x33, + 0.4455,4
X+ X + Xz + Xygp + Xy + Xips + X3
+X13 + X33 = 45;
Xon + Xonp + Xopz + Xy + Xy + Xips + X3
+X3; + X33 = 45;
X + X + Xapz + Xy + Xigpp + Xz + X3
+X33; + X333 = 30;
X+ Xy + Xz + Xo + X1 + Xo + X5
+X315 + X313 = 60;
Xig1 + Xigp + Xigz + Xy + Xy + Xipz + Xy
+X 39 + X353 = 30;
Xiap + Xizp + Xyzz + Xy + X + Xia + X3
+X33; + X333 = 30;
Yin Y43 LY + Y + Y53 <1
Y + Y + Y < LY + Y, + Y <1
Yoor + Y + Yo S Y5 + Y05 + V33 <15
Vi + Y+ Y3V + Vi + Va3 <
Y31+ Vg + V333 <1;-0.46Yy, + Xy, <0
—0.36Y 1, + X1 <05 —1.45Y 5 + X 15 < O;
~0.47Y 1y + X 13, <0;-0.46Y ,, + X5, <0;
— 1.45Y 1y + X 55 <0;—0.54Y 5, + X3, <O;
—0.46Y 13, + X139 <03 —1.45Y 55 + X33 0;
—0.36Y 5, + Xy <0;-0.15Y,,, + Xy, <0;
— 145Y ;5 + Xpp3 <05 —0.46Y 1y, + X, <0;
—0.15Y 5y, + Xppp <03 —1.45Y 5 + X3 < 0;
—0.5Y 53, + X3y <0;=0.46Y 15, + X, <0;
— 1.45Y 5 + Xp33 <0;—0.47Y 5, + X5, <O;
—0.46Y 5, + Xapp <03 —1.45Y 55 + X5 <0;
—0.56Y 35, + Xsp; <0;=0.46Y 5, + X5y, <0;
—1.45Y 355 + X353 <0; -0.5Y 33, + X5;; <0;
—0.46Y 53, + X33, <03 —1.45Y 135 + X335 <0
—0.54Y 1, + X1 2 05 —0.64Y |5 + X5 2 0;
—0.53Y 1, + Xppp = 05 —0.54Y 5 + X3 2 0;
—0.46Y 13, + X502 03 —0.54Y 55 + X33 2 0;
—0.64Y,;, + Xppp 2 05 —0.85Y 55 + X5 2 0;
—0.54Y 5, + X0 2 03 =0.85Y 55 + Xp3 > 0;
—0.5Y 53, + X3y = 05 =0.54Y 55 + X33 2 0;
—0.53Y 5, + X315 2 0;=0.54Y 5,5 + X35 > 0;
—0.44Y 5, + Xapp 2 05 —0.54Y 3, + X503 2 0;
—0.5Y 33, + X33, 20;
—0.54Y 535 + Xa35 2 0

(22)
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TABLE 9: Ambiguity measures of the IF cost and IF price breakpoints when A =0.25.

15

A=0.25

Supply

Demand

041 <X,,, < 0.54:0.48
0.54 < X,,, < 0.64:0.46
0.64=X,,3<1.45:0.44
0.41 = X5, < 0.64:0.54
0.64 = X5;, < 0.85:0.53
0.85= X535 < 1.45:0.46
0.41 = X3, < 0.53:0.64
0.53 = X3;, < 0.54:0.54

0.54 = X33 < 1.45:0.53

60

0.41 <X, < 0.53:0.5
0.53 = X,5, < 0.54:0.48
0.54=X,,5 < 1.45:0.46
0.41 =X221 <0.54:0.53
0.54=X,,,<0.85:0.5
0.85=X5,3<1.45:0.48
0.41 = X5,, < 0.44:0.53
0.44 = X35, < 0.54:0.48
0.54 :X323 <1.45:0.44
30

0.41 < X,3, < 0.46:0.53
0.46 < X132 <0.54:0.5
0.54 =X, 43 < 1.45:0.48
0.41 :X231 <0.5:0.53
0.5 = Xy3, < 0.54:0.46
0.54 = X,33 < 1.45:0.44
0.41 = X33, <0.5:0.53
0.5 = X33, < 0.54:0.46
0.54 = X335 < 1.45:0.44
30

45

45

30

120

where X, >0,Y,; >00r 1;i=1,2,3;j=1,2,3k=1,2,3.
Model II: similarly, using the Value of the intuitionistic

fuzzy cost and intuitionistic fuzzy price breakpoints in
Table 9, the transportation problem with intuitionistic

Minimize

Subject to

0.48x,,, +0.46x,, + 0.44x, 3 + 0.5x,,; + 0.48x,,, + 0.46x,,3 + 0.53x,5; + 0.5x,3, + 0.48x 33 + 0.54x,,

fuzzy incremental quantity discounts is converted to
the following linear programming problem:

+0.53x5;, +0.46x,,5 + 0.53%5,; +0.5x,,, + 0.48x,,3 + 0.53x,3; + 0.56x,3, + 0.44x,3; + 0.46x5,; + 0.45x5,,
+0.53x313 + 0.53x3,; +0.48x3,, + 0.44x3,3 + 0.53x33, + 0.46x33, + 0.44x533

X+ X+ Xz + Xppp + Xy + Xips + Xz + X35 + X33 = 455
Xon + Xon + Xoiz + Xopp + Xy + Xops + Xoay + X3y + X33 = 455
KXo+ Xapp + Xaps + Xapp + Xy + Xaps + Xzp + X3, + X333 = 30;
X+ X + Xy + Xy + X + Xops + Xipp + X1 + X305 = 60;
Xio1 + Xpgp + Xigs + Xopy + Xy + Xops + Xigpp + Xy + X353 = 30;
Xz + Xizp + Xyzz + Xz + Xogp + Xogz + X3 + Xz + X33 = 30;

-0.46Y |, + X, £0;-0.1Y,, + X1, <0;
—1.45Y 3 + X3 <0;-0.47Y |, + X},, <0;
—0.01Y 5, + X5, <0;-1.45Y 55 + X553 <0;
—0.54Y |3, + X3, £0;-0.8Y 3, + X3, <0;
—1.45Y 133 + X33 <0;-0.36Y,;; + X,;; <0;
—0.21Y,,, + X5, <0;-1.45Y 5,5 + X3 < 0;
—0.46Y ,,; + X,,, <0;-0.31Y,,, + X,,, <0;
—1.45Y 55 + X553 <0;-0.5Y 53, + X3, <0;
—0.04Y 53, + X3, <0;=1.45Y 533 + X33 <0;
—0.47Y 3y, + X3, £0;-0.01Y 5, + X3, <0;
—1.45Y 3,3 + X33 <0;-0.56Y 3,, + X3,, <0;
—0.1Y 35, + X35, <0;=1.45Y 3,5 + X355 <0;
—0.5Y 33, + X3, £0;-0.4Y 33, + X33, <0;
—1.45Y 333 + X333 <0;-0.46Y |, + X, 20;
=0.1Y 3 + X1, 20; -0.47Y 5, + X5, 2 0;
—0.01Y 3 + X5, 20; -0.54Y |3, + X3, > 0;
—0.08Y 33 + X3, 20;-0.36Y,,, + X,;; >0;
=0.21Y,,3 + X;,, 20; -0.46Y 55, + X,,, > 0;
—0.31Y )3 + X555, 20; -0.5Y 53, + X3, >0;
—0.04Y 533 + X3, 20;-0.47Y 51, + X3,;, 2 0;

—0.01Y 3,5 + X3, >0;
—0.46Y 55, + X35, 20;
—0.1Y 3,5 + X;3,, 20;
—0.5Y 35, + X33, 20;
—0.04Y 5535 + X33, > 0;

(23)
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whereXAijO,YAijOOrl;i=1,2,3;]':1,2,3;k=1,2,

1 1

Case V. I1I(A =0.50). Substituting A =0.50 in the Ambiguity
index in Table 8, the Ambiguity measures of the intui-
tionistic fuzzy cost and intuitionistic fuzzy price breakpoints
are provided in Table 10.

From the ambiguity measures of the intuitionistic fuzzy
cost and intuitionistic fuzzy price breakpoints in Table 10,
the transportation problem with intuitionistic fuzzy quantity
discounts and intuitionistic fuzzy incremental quantity
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discounts is transformed into the linear programming
problems Model I and Model II, respectively.

Model I: now, using the Ambiguity measures of the
intuitionistic fuzzy cost and intuitionistic fuzzy price
breakpoints provided in Table 10, the transportation
problem with intuitionistic fuzzy quantity discounts is
converted to the following linear programming
problem:

Minimize 0.45x,;; + 0.43x,;, + 0.39x;5 + 0.45x,,; + 0.42x,,, + 0.39x,3 + 0.44x 5, + 0.42x 3, + 0.39x 35 + 0.47x,,; +
0.45%,,, + 0.44%,3 + 0.44%,,, + 0.42X,y, + 0.39% 5 + 0.45%,3, + 0.44%,5, + 0.43x,55 + 0.53x5,,+
0.47x5,, + 0.44x3 5 + 0.44x ), + 0.43X5y, + 0.39x3,5 + 0.45x 53, + 04455, + 0.43%33;
Subjectto  Xiy; + Xypp + X3 + Xipy + Xy + Xypz + Xyzp + X3 + X33 = 45;
Xon + Xonp + Xopz + Xogy + Xy + Xips + Xipzy + X3y + X33 = 45;
X + Xapp + Xapz + Xagy + Xipg + Xgps + Xp + X3 + X33 = 30;
X + X + Xz + Xop + Xy + Xops + X + Xip5 + X503 = 60;
X + Xigp + Xz + Xogy + Xy + Xips + Xy + Xy + Xp3 = 30;
Xiap + Xyzp + X3z + Xo3) + Xy + Xigs + X1 + X3, + X33 = 30;

Y+ Y+ Y 3 LY + Y +Y <1
Yisp+ Y+ Y5 <3Y, + Y + Y5 < 1
Yo+ Yo Y00S5 Y 5 + Yoy + Y55 <15

Yo+ Yoo+ Va3 <1V + Yoy + Vs <1

Vg1 + Y33 + Y333 <15-0.53Y ), + Xy, <0;
—0.47Y 1, + X115 < 0;~1.29Y |13 + X, 13 <0;
—0.56Y 5y + X1py <0;~0.53Y 1y + X 19 < 0;
= 1.29Y 13 + X153 <0;-0.55Y 3, + X3, <0;
—0.53Y 15 + X3y <03 —1.29Y |43 + X35 <0;
—0.47Y 5y, + Xy, £0;-0.26Y 5, + X1, < 0;
—1.29Y,;3 + X,;3<0;-0.53Y5,; + X5, <0;
—0.26Y 3y, + Xy < 0;~1.29Y 53 + X3 < 0;
—0.58Y 53, + Xy3; < 0;~0.53Y 53, + X3, <0;
—1.29Y 533 + X33 <0, =0.56Y 5, + X5, <O0;
—0.53Y 5, + X315 <0, —1.29Y 55 + X315 < 0;
—0.57Y 355, + X35, <£0;-0.53Y5,, + X3,, <0;
—1.29Y 53 + X33 <0;—0.58Y 33, + X5, <O0;
—0.53Y 35, + X33 < 0; ~1.29Y 335 + X333 < 0;
—0.47Y 1, + X115 20, =0.53Y |5 + X132 0;
—0.44Y |, + X130 2 0; ~0.47Y 155 + X153 2 0;
— 0.45Y 15, + X3, 2 0;~0.47Y 133 + X35 > 0;
—0.53Y 4, + Xypp 2 0;—0.74Y 5 5 + X3 > 0;
—0.47Y py + Xy = 03 —0.74Y 53 + X3 > 0;
—0.42Y 3, + X3y 2 03 —0.47Y 533 + X33 > 0;
—0.44Y 5, + X315 2 0;—0.47Y 5 5 + X313 2 0;
—0.43Y 5y, + X3y 2 0;—0.47Y 53 + X503 > 0;
—0.45Y 53, + Xaz) > 0;~0.53 335 + X533 > 0;

(24)
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TaBLE 10: Ambiguity of the IF cost and IF price breakpoints when A = 0.50.
A =0.50 Supply
0.34 <X, < 0.47:0.45 0.34 <X, < 0.44:0.45 0.34 < X3 < 0.45:0.44
047 <X, < 0.53:0.43 0.44 = X, < 0.47:0.42 0.45 < X3, < 0.47:0.42 45
0.53=X,,5<1.29:0.39 0.47 = X155 < 1.29:0.39 0.47 = X133 < 1.29:0.39
0.34=X5,,<0.53:0.47 0.34=X5,,<0.47:0.44 0.34=X55,<0.42:0.45
Demand 0.53 = Xy, < 0.74:0.45 0.47 = Xy, < 0.74:0.42 0.42 = X3, < 0.47 :0.44 45
0.74 = X513 < 1.450.44 0.74 =X,,3<1.29:0.39 0.47 = X533<1.29:0.43
0.34=X3, <0.44:0.53 0.34 = X35, <0.43:0.44 0.34= X33, < 0.42:0.45
0.44 = X3, < 0.47:0.47 0.43 = X5, < 0.47:0.43 0.42 = X33, < 0.47:0.44 30
0.47 = X35 < 1.45: 0.4 0.47 = X355 < 1.29:0.39 0.47 = X335 < 1.29:0.43
60 30 30 120
where X5 >0,Y;x >00r 1;i=1,2,3,j=1,2,3k=1,2,3. Table 10, the transportation problem with intuitionistic

Model II: similarly, using the Value of the intuitionistic
fuzzy cost and intuitionistic fuzzy price breakpoints in

Minimize

Subject to

fuzzy incremental quantity discounts is converted to
the following linear programming problem:

0.45x,;; + 0.43%x,1, + 0.39x, 13 + 0.45x 5, + 0.42X 5, + 0.39x 3 + 0.44% 5, + 0.42x 3 + 0.39x,35
+0.47%,; + 0.45%, ), + 0445 + 0.44%5y, + 0.42X5y, + 0.39%y5 + 0453, + 0.44,3, + 0.43%,55 + 0.53x3,
+0.47315 + 0.44%35 + 0.44x 5y, + 0.43x50, + 0.39%55 + 0.45x 13, + 0.44x53, + 0.43x533
X+ Xy + Xyps + Xy + Xigy + Xyps + X3y + Xz + X33 = 455
Xon + Xonp + Xops + Xogy + Xogp + Xops + Xz + Xipgp + X33 = 455
X+ Xapp + Xaps + Xagp + Xipp + Xags + X + Xz + X333 = 30;
X+ X + Xyps + Xop + Xopp + Xops + Xy + X5 + X315 = 60;
Xigr + Xigp + Xiyps + Xogy + Xogp + Xops + X + Xy + Xp3 = 305
Xizn + Xizy + Xias + Xozp + Xozp + Xogs + Xz + Xpp + X333 = 30;
—0.53Y,, + X1 £0;-0.06Y 1, + X1, < 0;
—1.29Y 15 + X, 13 0;=0.56Y py; + X gy <0;
—0.03Y 5, + X9y 0;—1.29Y 3 + X 13 < O;
~0.55Y 13y + Xy5; <05 =0.02Y 5, + X5, <0;
—1.29Y 133 + Xy33 03 —0.47Y 5, + X,y <O0;
—0.21Y,;, + Xppp <05 -1.29Y 55 + X,y5 <0;
—0.53Y 5, + Xpp, <0;-0.27Y 1y + X0y <0;
—1.29Y 55 + Xpp3 <03 —0.58Y 5, + X,y <0;
—0.05Y 55, + Xpsp <03 —1.29Y 55 + X33 <0;
—0.56Y 5, + Xay, <0;-0.03Y 5, + X5, 0;
—1.29Y 55 + Xap3 03 =0.57Y 3y, + X5y, <0;
—0.4Y 5y, + Xy <0;=1.29Y 55 + X503 <0;
~0.58Y 53, + X3y, <0;=0.05Y 5, + X5, <0;
—1.29Y 53, + Xa35 <0;=0.53Y ), + X, 2 0;
~0.06Y 5 + X1 2 0;—0.56Y 5, + X, > 0;
—0.03Y 55 + Xp 2 0;=0.55Y |, + X3 > 0;
—0.02Y 55 + X3, 2 0;=0.47Y,,, + Xy, > 0;
—0.21Y ;5 + Xppp 2 05 —0.53Y oy, + X, > 0;
~0.31Y 55 + Xppp 20;=0.58Y 53, + X3y > 0;
—0.05Y 535 + X3 2 0;=0.56Y 5, + X3, > 0;
—0.03Y 5,5 + X315 2 0;—0.57Y 1y + X5, 2 0;
—0.04Y 55 + Xy > 0;—0.58Y 35, + X3, > 0;
—0.05Y 333 + X33, >0;
(25)
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where X4 >0,Y;3 >00r1;i=1,2,3;j=1,2,3;k=1,2,  discounts and intuitionistic fuzzy incremental quantity
discounts is transformed into the linear programming
problems Model I and Model II, respectively.

Case VI. TII(A =0.75). Substituting A = 0.75 in the Ambiguity Model I: now, using the Ambiguity measures of the
index in Table 8, the Ambiguity measures of the intui- intuitionistic fuzzy cost and intuitionistic fuzzy price
tionistic fuzzy cost and intuitionistic fuzzy price breakpoints breakpoints provided in Table 11, the transportation
are provided in Table 11. problem with intuitionistic fuzzy quantity discounts is

From the Ambiguity measures of the intuitionistic fuzzy converted to the following linear programming
cost and intuitionistic fuzzy price breakpoints in Table 11, problem:

the transportation problem with intuitionistic fuzzy quantity

Minimize 0.45x;;; +0.35x;;, +0.29x;5 + 0.45x5; + 0.37x,, + 0.29x,3 + 0.39x3; + 0.37x 3, + 0.29x 35 + 0.45x,,; +
0.41x,,, + 0.39%;3 + 0.39%,y, + 0.37X5y + 0.29%,y3 + 0.45x,3; + 0.39% 3, + 0.35%,53 + 0.445, +
04151 + 0.39x33 + 0.39x5y; + 0.35x5, + 0.29% 3,5 + 0.45x55; + 0.39x53, + 0.35x 333

Subjectto  Xyy; + Xjpp + Xyp3 + Xiop + Xipp + Xips + Xizp + X3 + X33 = 45
Xon + Xon + Xois + Xopp + Xy + Xops + Xoay + Xy + X33 = 455
Xan + Xapp + Xaps + Xipp + Xy + Xpz + Xz + X + X333 = 30;

X+ X + Xy + Xop + X + Xops + Xapp + X515 + X35 = 60;
X+ Xigp + Xigs + Xopy + Xy + Xops + Xgpp + X + X355 = 30;
Xz + Xyzp + Xz + Xoap + Xozp + Xozz + Xizp + X + X333 = 30;
Yin Y+ Y3 LY + Y5 + Y3 <1
Yisi + Y3+ Y3 < LY + Y5, + Y5 < 1
Yoor + Y0 + Y03 15 Vg + Yigp + Yz <1
Yo+ Yo+ Yo <1 Vg + Vg + Vs <1
Vg1 + Y33 + Y333 <15-0.59Yy, + Xy, <0;
—0.56Y 1, + X 15 03— 1.13Y 5 + X 15 < O;
—0.61Y ; + Xpp; <0;-0.59Y 15, + X 1y <0
= 1.13Y )3 + X3 <0;-0.59Y 5, + X3, <0;
—0.55Y 1, + Xy5p <05 —1.13Y 55 + X33 0;
—0.56Y 5, + Xpy, <05 =036 5, + X,, <0;
— L13Y 5 + X3 0;-0.59Y 5y, + Xy, <0;
—0.36Y 5, + Xppy <03 —1.13Y 5 + X3 <0;
—0.63Y 53 + Xps; <0;-0.59Y 5, + X, <0;
— 113Y 5 + Xpa3 03 =0.61Y 5, + X5, <O0;
—0.59Y 5, + Xapp <03 —1.13Y 55 + X5 <0;
—0.65Y 5, + Xap, <03 =059 3, + X, <0;
— 113Y 5, + Xaps <03 -0.63Y 33, + X5, <0;
—0.59Y 33, + Xazp <03 —1.13Y 335 + X33 <0;
—0.41Y 1, + Xypp 2 0;—0.44Y |5 + X, 13 2 0;
—0.39Y 1, + Xppp 2 05 —0.41Y 5 + X3 2 0;
— 0.41Y 5, + X132 0;—0.05Y |33 + X35 20
—0.44Y,,, + Xy, 2 05 —0.64Y 5 5 + X,,5 2 0;
—0.41Y 5y, + Xpp 2 05 —0.64Y 5y + X,y > 0;
~0.37Y 53, + Xp3p 2 0;—0.41Y 55 + X33 > 0;
~0.39Y 5, + Xapp 205 =041 5 5 + X552 0;
~0.35Y 5, + Xapp 2 05 —0.41Y 35 + X3 2 0;
—0.37Y 33, + X33, 2 0;
—0.41Y 535 + X533 2 0;
(26)
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TaBLE 11: Ambiguity measures of the IF cost and IF price breakpoints when A =0.75.
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A=0.75

Supply

Demand

0.26 < X,,, < 0.41:0.45
041 <X, < 0.44:0.35
0.44=X,,5<1.13:0.29
0.26=X,,, < 0.44:0.45
0.44 :X212 <0.64:0.41
0.64=X,5<1.13:0.39
0.26 =X3,;<0.39:0.44
0.39 = X3, < 0.41: 0.41
0.41 = X3,5< 1.13:0.39
60

0.26 <X, < 0.39:0.45
0.39=X,,,<0.41:0.37
0.41 = X;53 < 1.13:0.29
0.26 = X5, < 0.41:0.39
0.41 :X222 <0.64:0.37
0.64=X5,3,<1.13:0.29
0.26 = X3, <0.35:0.39
0.35=X3,,<0.41:0.35
0.41 = X353 < 1.13:0.29
30

0.26 < X3, < 0.41:0.39
0.41< X132 <0.45:0.37
0.45= X33 < 1.13:0.29
0.26 = Xp3) < 0.37:0.45
0.37 = X232 <0.41:0.39
0.41 = X535 < 1.13:0.35
0.26 = X33 < 0.37:0.45
0.37 = X33, < 0.41:0.39
0.41 = X335 < 1.13:0.47
30

45

45

30

120

where X >0,Y;x >00r 1;i=1,2,3;j=1,2,3k=1,2,3.

1 1
Model II: similarly, using the Value of the intuitionistic
fuzzy cost and intuitionistic fuzzy price breakpoints in
Table 11, the transportation problem with intuitionistic

fuzzy incremental quantity discounts is converted to
the following linear programming problem:

Minimize 0.45x;;; +0.35x,;, + 0.29x;3 + 0.45x15; + 0.37x5; + 0.29x,3 + 0.39x,3; + 0.37x3, + 0.29x 35 + 0.45x,,; +

0.41x,), + 0.39x, 15 + 0.39x,,, + 0.37%,y, + 0.29%,5 + 0.45x,3, + 0.39x,5, + 0.35x,5; + 0.44x5,,+

0.41x5,, + 0.39x3,5 + 0.39x5y, + 0.35X55, + 0.29x3,5 + 0.45x 53, + 0.39x55, + 0.35x13;
Subjectto  Xy; + Xy + Xyp3 + X + Xppy + X3 + X5y + X3 + X35 = 455

Xon + Xonp + Xop3 + Xogy + Xogp + Xpy + Xogy + X + X33 = 45;

X+ Xapp + Xapz + Xagy + Xipp + Xgpz + X + X + X33 = 30;

X+ Xy + Xyps + Xop + Xopp + Xops + Xy + X5 + X355 = 60;

Xiar + Xigp + Xz + Xogy + Xogp + Xppy + X + X + Xp3 = 30;

Xizr + Xigg + Xyas + Xogp + Xogp + Xz + X + Xz + X333 = 30;

~0.59Y,; + Xyy, <0;-0.03Y, ), + X, < 0;

—L13Y 5 + Xyp3 03 =0.61Y 5, + X1y < 0;

~0.02Y 1, + X1y <0; —113Y 55 + X5 <O

—0.59Y 3, + X135, <0;=0.04Y 5, + X3, < 0;

—1.13Y 33 + X33 <0; —0.56Y,; + X, <0;

—0.22Y,p + Xpp5 €07 — 1.13Y ;5 + Xyp5 < 0;

—0.59Y 5, + Xpp, <0;-0.23Y,y, + Xy < 0;

= 1.13Y )5 + X5,3<0;-0.63Y 53, + X3, <0;

—0.04Y 53, + Xp3) <0;—1.13Y 55 + X33 < 0;

—0.61Y 5, + X3, <0;-0.02Ys,, + X5, <O0;

= 1.13Y 3,3 + X33 <0;-0.65Y3,, + X3,, <0;

—0.06Y 53, + Xapy <0; =113 355 + X3 < 0;

~0.63Y 35, + X3, <0;-0.04Y 53, + X3, <O0;

= 1.13Y 333 + X333 <0;-0.59Y,, + X;;, =0;

—0.03Y 5 + Xyp3 2 05 =061 5 + X1y 2 0;

—0.02Y 53 + X1z 2 0;=0.59Y 1, + X3, > 0;

—0.04Y 133 + X150 2 05 =0.56Y 5, + X,y 2 0;

—0.2Y 55 + X5 2 0;-0.59Y 5, + X, 20;

—0.23Y 13 + Xppp 2 0;=0.63Y 53, + X,y 2 0;

—0.04Y 53 + Xpzp 2 05 =0.61Y 5, + X5y, 2 0;

—0.02Y 55 + X312 05 —0.65Y 3, + X530 20

—0.06Y 55 + X3y = 03 ~0.63Y 3, + X3 2 0;

—0.04Y 533 + Xa3, 20

(27)
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where X; 4 >0,Y,3>00r1;i=1,2,3;j=1,2,3;k=1,2.

1 1

5. Advantages and Limitations

The transport cost is one of the most important influences in
the pricing system. The cost of goods per unit transported
from the source to the destination is considered to be fixed
irrespective of the number of units transported. In fact, the
cost of transport cannot be fixed exactly. In reality, volume
discounts are often available for large shipments so that
marginal shipping costs for one unit may follow a specific
pattern. The main advantage of the proposed paper is to
develop the mathematical model with a transportation
problem with a quantity discount. Moreover, in the case of
traditional transportation problems, it is believed that the
decision-maker is certain of the exact values of the trans-
portation costs, supply, and demand for the commodity. In
real-world applications, due to uncontrollable variables, all
these transport parameters cannot be determined precisely.
Hence, here, the transport cost and price break quantities are
represented by trapezoidal intuitionistic fuzzy numbers.
Therefore, the proposed model is more realistic. Further-
more, most of the intuitionistic optimization problems are
converted to linear problems using the ranking function. In
the proposed paper, without using the ranking function, the
problems are solved. The major drawback is when an
intuitionistic fuzzy transportation problem is converted to
a parametric transportation problem based on their Value
indices and Ambiguity indices, the problems become more
complex and have a high number of constraints.

6. Results and Discussion

Solving the above Value- and Ambiguity-based linear
programming problems by using classical methods, we
obtain the solution of the Value and Ambiguity for both
Model I and Model II, which is provided in Tables 12 and 13.

(1) Value index given in Table 12 helps the buyer how to
choose the best discount policy in TPIFQD and
TPIIFQD.

(2) In the Value index TPIFQD, for the parameter Value
0.25, the optimal Value is Rs. 261 and, for 0.5, the
optimal Value is 219. For the parameter Value 0.75,
the optimal Value is 191.7. As the parameter Value
increased, the optimal Value decreased.

(3) In the Value index TPIIFQD also, as the parameter
Value increased (1 =0.25, 0.5, and 0.7), the optimal
Value decreased (319.72, 256.88, and 236.98).

(4) Here, the TPIFQD Value is less than the TPIIFQD
value for A =0.25, 0.5, and 0.7.

(1) Ambiguity measures given Table 13 help the buyer
how to choose the best discount policy in TPIFQD
and TPITFQD.

(2) In the Ambiguity measure TPIFQD, for the pa-
rameter Value 0.25, the optimal Value is 56.64 and,
for 0.5, the optimal Value is 48.75. And for the
parameter Value 0.75, the optimal Value is 38.1.
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TABLE 12: Solution for the Value-based TPIFQD and TPIIFQD.

Value TPIFQD TPIIFQD
A=0.25 261 319.72
A=0.5 219 256.88
A=0.75 191.7 236.98

TaBLE 13: Solution for the Ambiguity-based TPIFQD and
TPIIFQD.

Value TPIFQD TPIIFQD
A=0.25 56.64 55.31
A=0.5 48.75 50.36
A=0.75 38.1 43.05

(3) In the Ambiguity index TPIIFQD, as the parameter
Values increased (A =0.25, 0.5, and 0.75), the optimal
Value decreased (55.31, 50.31, and 43.05)

(4) Here, the TPIFQD Value is less than the TPIIFQD
Value for A =0.50 and 0.75, but in the case of A = 0.25,
it is vice versa.

7. Conclusions and Future Work

In the classical method, all quantity discount scheme is
usually less than the incremental quantity discount scheme,
but in this research, there is a difference in the trapezoidal all
quantity discount scheme. In the Value and Ambiguity
index trapezoidal incremental quantity discount scheme, for
the parameter Value 0.75, the all quantity is greater and the
incremental quantity is smaller in Numerical Example 1.
And, for the parameter Value 0.25, the all quantity is greater
and the incremental quantity is smaller. Hence, the intui-
tionistic fuzzy transportation model is more practical and
flexible in nature. The theory of Value and Ambiguity index
discussed here is very extensive and can be applied to other
areas of operational research such as the supply chain model
and market research. This research proposed that this
method is more effective than the classical method. The
future direction is to examine the possibilities for the for-
mation of dual results of intuitionistic fuzzy transportation
problem with quantity discounts using different heuristic
methods. One can extend the concept for solving trans-
portation problems with total quantity discounts and in-
cremental quantity discounts by considering type 2 fuzzy
numbers or neutrosophic numbers as parameters. To im-
prove the solution of the intuitionistic fuzzy quantity dis-
count problems, one may use the nonlinear membership and
nonmembership functions.

Nomenclature

IFN: Intuitionistic fuzzy number

IVIFTP:  Interval-valued intuitionistic fuzzy
transportation problem

IVTIEN: Interval-valued trapezoidal intuitionistic fuzzy
number

TrIFN: Trapezoidal intuitionistic fuzzy number
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TPIFQD: Transportation problem with intuitionistic fuzzy
quantity discounts

TPIIFQD: Transportation problem with incremental
intuitionistic fuzzy quantity discounts.
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