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We study simple mathematical models for the dynamics of interactive wild and sterile insect populations. As well as being
mathematically tractable, these models can be used as first approximations to real situations occurring with the Sterile Insect
Technique (SIT) in which sterile males are released to reduce or eradicate a pest population. +is is a method of biological control
which can effectively help contain the spread of many pest insects such as the Red PalmWeevil (RPW). Models formulated in this
paper are continuous-time, include a strong Allee effect that captures extinction events, and incorporate different strategies of
releasing sterile insects. We perform basic studies of dynamical features of these models, with an emphasis on the condition of
excitation, and the impact of the different release methods is investigated. Our findings are also demonstrated with some
numerical examples.

1. Introduction

In recent years, there has been a rapid rise in the use of
biological methods for the control of insect pests. One tool,
which has proved effective in the area-wide control of
various insects, is the SIT. +is method, introduced initially
by Knipling [1], consists in releasing high numbers of
sterilized males into the environment. Such a technique
constitutes a biological control process that disturbs the
natural reproduction of the insect pests. +is is carried out
by using chemical or physical or other radical procedures to
treat male insect pests to make them infertile, so they be-
come unable to reproduce regardless of their sex drive. +e

infertile males are then introduced to the environment and
compete for mates with fertile males, such that interaction
between sterilized males and any female wild insect pests will
not lead to any insect reproduction, thereby disrupting the
natural reproductive process of the population. Despite the
fact that frequent release of treated insect pests in large
amounts will eventually eradicate the wild pest population
completely, it is more practical to control the wild insect pest
population instead of eliminating it completely. +en, if the
number of released sterile males is high enough and is re-
peated over a sufficient period of time, the average fertility of
the target population could be reduced leading to the control
or even the eradication of the pest population from large
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areas. +e first successful SIT operation was against the
screwworm population in Florida in the late 1950s. Later,
this technique has been applied to combat a number of pests
and disease vectors, such as the Mediterranean fruit fly
(medfly), the RPW in coconut and date palm gardens, and
the tsetse fly in Africa (see [2] for an overall review of the SIT
and its applications). Moreover, diseases like dengue fever
and malaria that are transmitted to humans by blood-
feeding mosquitoes present a significant health concern for
people. Roughly around one to three million people every
year succumb to malaria as indicated by the World Health
Organization (WHO). Malaria vastly hits Africa and South
America, majorly taking the lives of children and pregnant
women. As there are no vaccines available to prevent
mosquito-borne diseases, the only way to prevent these
diseases is to control the mosquitoes.

On the other hand, for vector control in particular, new
approaches with similar working principles as the SIT have
been developed. +ose include, on the one hand, genetically
modified control methods, such as the RIDL (Release of
Insects with Dominant Lethality) technique, and, on the
other hand, the Wolbachia technique. +e former involve
the release of genetically engineered insects (that have a
lethal gene in their genome in the RIDL strategy), while the
latter utilizes the Cytoplasmic Incompatibility (CI) property
of the Wolbachia bacterium [3–5]. Indeed, these bacteria
have the property to alter the sperm of infected males
making it unable to fertilize uninfected eggs. +is is the
principle of the Incompatible Insect Technique (IIT) [6–11].
Moreover, the CI property raises considerably the progeny
of infected females. And since Wolbachia is maternally
inherited, releasing high numbers of W-females into a target
population may lead to a Population Replacement (PR) by
Wolbachia-infected insects and eventually to the elimination
of the wild population (see, for example, [12] for a recent
review of the Wolbachia-based PR strategy). Note that PRs
and invasions have been observed in natural populations,
such as with the Californian Culex pipiens [13] and the
Australian Aedes aegypti [14].

Motivated by the issue of controlling a pest population
by means of an SIT-like method, numerous theoretical
studies, especially on the mathematical modelling of the
classical SIT, the IIT, and the Wolbachia-PR, have been
conducted (see, for example, [15–26] for SIT/IIT and
[27–30] for PR and references therein). As a matter of fact,
mathematical models have proven valuable in under-
standing various important issues in population dynamics,
such as suppressionmechanisms and the success or failure of
different strategies. +us, various classes of models have
been formulated, including deterministic, stochastic, con-
tinuous-time, discrete-time, hybrid approaches, and tem-
poral and spatiotemporal models.

In this paper, we study the dynamics of the interactive
wild and sterile insects with a particular focus on the impact
of the strategy adopted in releasing sterile individuals. +ree
release methods are then incorporated based on works
[25, 31, 32]. +e sterile-fertile interaction is assumed to be a
one-sided competition that affects only the wild-type pop-
ulation. To reflect the need of a critical threshold density for

the persistence of the wild population, a strong Allee effect is
included. Moreover, to keep the model reasonably simple,
we consider homogeneous insect populations such that no
male-female or stage distinction is made and death rates for
sterile and fertile insects are assumed to be density-inde-
pendent and equal.

+e paper is organized as follows. In Section 2, we
present our general modelling assumptions. In Sections 3, 4,
and 5, respectively, we consider three submodels, each with a
different strategy of release: the first involves a constant
release rate, the second assumes a release rate proportional
to the size of the wild population, and the third uses a release
rate of Holling-II type. We carry out detailed mathematical
analysis of these models and discuss their dynamical fea-
tures, especially the existence of equilibria and their stability.
We also illustrate our analytical findings with numerical
calculations. In the final section, we give a brief conclusion.

2. The General Model

We consider a two-dimensional one-stage model that in-
volves density dependence solely in the growth term of pest
insects. We assume that the birth rate of the sterile insects is
their release rate and that the sterile-fertile competition
affects only the wild population.

Let N(t) be the number of wild insects at time t. In the
absence of sterile insects, N(t) is assumed to evolve
according to the following equation:

dN

dt
� G(N) − μN, t≥ 0, (1)

where G(N) is the growth function of the wild population
and μ is its death rate taken to be density independent.
Furthermore, considering that the subsistence of the wild
population requires some critical threshold density, we
assume an Allee effect such that the birth function takes the
form [33, 34]

G(N) � αrN(K − N)(N − ε), (2)

where K is the carrying capacity of the niche and ϵ is the
Allee effect parameter (ϵ<K), and we have set
α � 4/(K − ϵ)2, so that the parameter r is the maximum
value of the growth rate as in the usual logistic model. Note
that the Allee effect has been attracting a lot of interest
recently due to its strong potential impact on population
dynamics (see, for instance, [35]). +is effect may arise from
different causes, but the most obvious of them is the diffi-
culty of finding mates at low population sizes [36].

dN

dt
� αrN(K − N)(N − ε) − μN. (3)

+is equation has a trivial equilibrium point at N∗0 � 0,
which is locally asymptotically stable. A positive equilibrium
of equation (3) should be a zero of the function Q(N)

defined by

Q(N) ≔ (K − N)(N − ε) − 􏽥μ, (4)

with 􏽥μ � μ/αr. +is function has two roots:

2 Mathematical Problems in Engineering



N
∗
± �

K + ε ±(K − ε)
������
1 − μ/r

􏽰

2
, (5)

which are real under the condition r> μ, i.e., provided that
the mortality rate remains below the maximum growth rate.
Hence, the model given by equation (3) may have no, one, or
two positive equilibria depending on whether r> μ, μ � r, or
r< μ, respectively.

In the case when the condition r> μ is fulfilled, at a
positive equilibrium N∗ we have

d
dN

[αrN(K − N)(N − ε) − μN] N
∗

( 􏼁

� αrN
∗

K + ε − 2N
∗

( 􏼁.

(6)

+us,

d
dN

[αrN(K − N)(N − ε) − μN] N
∗
±( 􏼁

� ∓N∗± (K − ε)
�����
1 − μ

r

􏽲

,

(7)

which means that the equilibrium N∗− is unstable, whereas
the equilibrium N∗+ is asymptotically stable. From now, we
assume that the condition r> μ is satisfied.

Now, after sterile insects are released throughout the
wild population, its reproductive success will be reduced.We
shall assume that the birth rate of wild insects is affected so
that it follows the harmonic mean. On the other hand, as the
sterile-fertile interaction is admitted to be a one-sided
competition (for mates), sterile insects are not affected by the
presence of fertile individuals. +us, if we denote by M(t)

the number of sterile insects at time t, the interactive dy-
namics are then governed by the following system:

dN

dt
� αr

N
2

N + M
(K − N)(N − ε) − μN,

dM

dt
� R(N) − μM,

(8)

where we have assumed that sterile insects have the same
survivability as wild insects. R(N) is a functional charac-
terizing the release strategy, assumed to be independent of t.
Subsequently, we will be considering three different forms of
R(N), along with the assumption r> μ.

3. Constant Release Rate

We consider here the situation where sterile insects are
constantly released so that R(N) � c, with c, a positive
constant. +en, system (8) takes the form

dN

dt
� αr

N
2

N + M
(K − N)(N − ε) − μN,

dM

dt
� c − μM.

(9)

For this model, it is easy to check that the rectangle of the
phase plane

Ω1 ≔ (N, M) ∈ R2
: 0≤N≤N

∗
+, 0≤M≤ η􏽮 􏽯, (10)

with η ≔ c/μ, is a positive invariant, and we assume in this
section that (N, M) ∈ Ω1.

System (9) has a first equilibrium Ec
0 ≔ (0, η) lying on

the boundary of Ω1. It corresponds to the situation of no
wild insects, but only a constant population of sterile in-
dividuals is present. Besides that, if it exists, a positive
equilibrium should be a solution of the cubic equation:

NQ(N) − 􏽥c � 0, (11)

with 􏽥c � c/αr. By Descartes’ rule of signs, this equation has
always one real negative solution (that we will disregard) and
either no, one, or two real positive solutions. And one or two
positive roots occur if the curve of the function
W(N) ≔ NQ(N) intercepts the 􏽥c-axis once or twice, re-
spectively. Furthermore, an elementary study of the varia-
tions of W(N) shows that W(N)< 0 for N<N∗− . +en, as N

increases from N∗− , this function also increases from zero to
attain a certain maximum at the point

Nh ≔
K + ε +

��������������������

Kε +(K − ε)2(1 − 3μ/4r)

􏽱

3
, (12)

before lowering indefinitely. Note here that Nh is always real
and positive as we have presumed that r> μ. We then deduce
that the condition for the existence of two positive solutions
for equation (11) is

NhQ Nh( 􏼁> 􏽥c. (13)

+is defines a threshold value of the release rate c as

c
c
c ≔ αrNhQ Nh( 􏼁, (14)

at which equation (11) admits a unique positive root. Note
that this definition of cc

c tacitly requires that Q(Nh) be
positive, and we can easily show that this is still the case as
r> μ.

+us, we infer that the model given by equation (9) will
have no, one, or two positive equilibria if c> cc

c, c � cc
c, or

c< cc
c, respectively. Note also that all the equilibria of the

model lie on the border of the rectangle Ω1 at which M � η.
Next, we address the stability of the equilibria. +e Ja-

cobian matrix at an equilibrium point (N∗, η) has the form

J
c ≔

J
c
11, −

μN
∗

N
∗

+ η( 􏼁
,

0, − μ.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(15)

At the boundary equilibrium Ec
0, we have Jc

11 � − μ;
therefore, Ec

0 is always asymptotically stable. Moreover, in
the case where no positive equilibrium exists as Ω1 is a
positive invariant set, we conclude by the Poin-
caré–Bendixson theorem that Ec

0 is globally asymptotically
stable.+us, for a release rate of sterile insects c> cc

c, the wild
population evolves to extinction whatever its initial number
is. +is is a very important outcome of the model since
estimating the optimal number of sterile insects to be
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released in order to eradicate the pest population remains
one of the ultimate goals of the SIT modelling.

At a positive equilibrium (N∗, η), the matrix element Jc
11

can be written as

J
c
11 �

d
dN

αrN

(N + η)
[W(N) − 􏽥c]􏼨 􏼩 N

∗
( 􏼁. (16)

+en, keeping in mind that W(N∗) � 􏽥c, we can re-ex-
press J11 as

J
c
11 �

αrN
∗

N
∗

+ η( 􏼁
W′ N

∗
( 􏼁, (17)

with W′ � dW/dN. On the other hand, if we denote by N∗,c1
and N∗,c2 the two positive equilibria of the model (with
N∗,c2 >N∗,c1 ), we can deduce from the aforesaid behavior of
the function W(N) that N0

− <N∗,c1 <Nh and N∗,c2 >Nh.
Moreover, since W(N) is strictly increasing over (N0

− , Nh),
then, in particular, W′(N∗,c1 ) is strictly positive and thus
J11(N∗,c1 )> 0. Similarly, as W(N) is strictly decreasing for
N>Nh, it follows that, in particular, W′(N∗,c2 ) is strictly
negative and so J11(N∗,c2 )< 0. +is eventually implies that
the equilibrium Ec

1 ≔ (N ∗,c1 , η) is a saddle point and that
Ec
2 ≔ (N∗,c2 , η) is a locally asymptotically stable node.
+e above results are summed up in the following

theorem.

Theorem 1. Assume that μ< r; then, system (9) possesses a
boundary equilibrium Ec

0 ≔ (0, η), which is globally as-
ymptotically stable if no positive equilibrium occurs and lo-
cally asymptotically stable if it is not the case. System (9) has
either no, one, or two positive equilibria depending on
whether c> cc

c, c � cc
c, or c< cc

c, respectively, where cc
c is

defined by equation (14). In that case where two positive
equilibria exist, Ec

1 ≔ (N∗,c1 , η) and Ec
2 ≔ (N∗,c2 , η) with

N∗− <N∗,c1 <Nh and N∗,c2 >Nh, Ec
1 is a saddle point, and Ec

2 is
locally asymptotically stable node.

+ese results are illustrated with numerical examples
presented in Figure 1.

4. Release Rate Proportional to the
Wild Population

In general, a constant release rate of sterile insects is not
optimal and better strategies can be adopted by adjusting the
release rate to the size of the wild population [37–39]. One
choice is to let the release rate be proportional to the number
of pest insects if the latter is relatively small [25, 31]. Of
course, a close monitoring of the pest population will be
required, and particularly, its smallness remains critical for
the economy of this choice. Within this strategy, the release
function is given by R(N) � cN, where c is a positive
constant (hereafter referred to as the relative release rate).
+en, system (8) takes the form

dN

dt
� αr

N
2

N + M
(K − N)(N − ε) − μN,

dM

dt
� cN − μM.

(18)

Define the region of the phase plan Ω2 as

Ω2 ≔ (N, M) ∈ R2
: 0≤N≤N

∗
+, 0≤M≤ ηN

∗
+􏽮 􏽯, (19)

and then we can easily verify that Ω2 is a positive invariant
set for system (18), and we only consider (N, M) ∈ Ω2 in this
section.

+e model (18) has a trivial equilibrium at the origin
(0, 0), and it is always locally asymptotically stable. A
possible positive equilibrium verifies the quadratic equation

(K − N)(N − ε) − (􏽥μ + 􏽥c) � 0. (20)

It is worth noting that equation (20) is completely similar
to the equation Q(N) � 0, giving the positive equilibria of
the model in the absence of sterile insects, but with 􏽥μ
substituted now by 􏽥μe : � 􏽥μ + 􏽥c. +is term highlights the
effect of the sterile-fertile interactivity within the present
model and may be seen as the effective death rate after sterile
insects are released. +en, equation (4) has two roots:

N
∗ ,p
± ≔

K + ε ±(K − ε)
�������
1 − 􏽥μe/r

􏽰

2
. (21)

+us, if 􏽥μe < r, both solutions N∗p, ± are real and system
(18) has two positive equilibria. But if 􏽥μe > r, that is, the
effective mortality rate exceeds the maximum growth rate,
no positive equilibrium occurs. +is clearly defines a
threshold value of the relative release rate: c

p
c ≔ r − μ, such

that the model (18) has either no, one, or two positive
equilibria if either c> c

p
c , c � c

p
c , or c< c

p
c , respectively.

Moreover, for c> c
p
c the unique equilibrium (0, 0) is

globally asymptotically stable since Ω2 is a positive invariant
set for system (18). +us, if the relative release rate of sterile
insects is greater than c> c

p
c , the wild population ends up

being eradicated whatever its initial size is.
In the case where c< c

p
c , the equilibria are given by

Ep
− ≔ (N ∗,p− , ηN∗,p− ) and E

p
+ ≔ (N

∗,p
+ , ηN

∗,p
+ ). +e stability

of these equilibria is investigated below.
+e general form of the Jacobian matrix at an equilib-

rium is

J
p ≔

J
p
11, J

p
12,

c, − μ.
⎛⎝ ⎞⎠. (22)

At a positive equilibrium (N∗, cN∗/μ), the matrix ele-
ment Jc

11 can be written as

J
p
11 �

z

zN

αrN

(N + M)
[W(N) − 􏽥μM]􏼨 􏼩

N
∗
, cN
∗

μ
􏼠 􏼡. (23)

+en, since W(N∗) � 􏽥cN∗, we readily find
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J
p
11 �

αr

1 + η
􏽥c + N

∗
Q′ N

∗
( 􏼁􏼂 􏼃

�
αr

1 + η
􏽥c + N

∗
K + ε − 2N

∗
( 􏼁􏼂 􏼃.

(24)

+e calculation of the element J
p
12 is also straightforward

and gives

J
p
12 � −

μ
1 + η

. (25)

+is leads to

det J
p

� −
αrμ
1 + η

N
∗

K + ε − 2N
∗

( 􏼁, (26)

wherein N∗ is either N ∗ ,p
− or N

∗ ,p
+ . It follows from equation

(26) that

det J
p

N
∗ ,p
±( 􏼁 � ∓

αrμ
1 + η

N
∗ ,p
± (K − ε)

�����
1 − 􏽥μe

r

􏽲

. (27)

+is means firstly that the equilibrium Ep
− is a saddle

point. For the equilibrium E
p
+, we need once more to see the

sign of trJp. +en, we easily verify that

trJ
p

N
∗ ,p
+( 􏼁 � −

αrμ
1 + η

N
∗ ,p
+ 􏽥μ +(K − ε)

�����
1 − 􏽥μe

r

􏽲

􏼢 􏼣< 0.

(28)

Equation (27) and equation (28) allow concluding that
E

p
+ is a locally asymptotically stable node or spiral.
We sum up the results of this section in the following

theorem.

Theorem 2. ?e origin (0, 0) is a locally asymptotically
stable node for system (18). Furthermore, assume that μ< r; if

c> c
p
c where c

p
c � r − μ, the origin is the unique equilibrium

and it is globally asymptotically stable. And if c< c
p
c , system

(9) possesses two positive equilibria, Ep
− � (N∗ ,p

− , ηN∗ ,p
− ) and

E
p
+ � (N

∗ ,p
+ , ηN

∗ ,p
+ ), with N

∗ ,p
+ given by equation (21).

Moreover, Ep
− is a saddle point and E

p
+ is a locally asymp-

totically stable node or spiral.

We illustrate the above results with numerical examples
as given in Figure 2.

5. Saturating Proportional Release Rate

As noted in the previous section, the proportional release
rate may turn out to be a very costly process if the wild
population becomes big sized, since the number of releases
should be great as well. +en, a new strategy, compromising
the two previous strategies, has been proposed in [31]. It
consists in adjusting the release rate so that it is proportional
to N for a small N but tends towards saturation for suffi-
ciently large N. Following [31], in this section we consider a
release function of Holling-II type: R(N) � cN/(1 + N)

with c a positive constant. +en, system (8) takes the form

dN

dt
� αr

N
2

N + M
(K − N)(N − ε) − μN,

dM

dt
�

cN

1 + N
− μM.

(29)

+en, it can be easily checked thatΩ1 defined in equation
(19) is a positive invariant set for system (29), and we assume
(N, M) ∈ Ω1 in this section.

+e model (29) has a trivial equilibrium at the origin
(0, 0), which is always locally asymptotically stable. For a

γ = 3.5 γ = 6.5

0

1

2

3

M

2 4 6 8 10 120
N

0

1

2

3

4

5

6

M

2 4 6 8 10 120
N

Figure 1: Trajectories and equilibria of system (9) for parameters values chosen as K � 14.7, ϵ � 4.3, r � 1.7, and μ � 1.1. +e release
threshold is cc

c � 5.843. For c � 6.5> cc
c, the unique equilibrium is Ec

0 � (0, 5.91) and it is globally stable (all solutions approach this point).
For c � 3.5< cc

c, two positive equilibria occur: Ec
1 � (7.915, 3.182) and Ec

2 � (11.686, 5.909), with Ec
1 a saddle point and Ec

2 a stable node.
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positive equilibrium, the following cubic equation should be
satisfied:

(N + 1)Q(N) − 􏽥c � 0, (30)

or equivalently

N
3

− (K + ε − 1)N
2

− (K + ε − Kε − 􏽥μ)

N − (Kε + 􏽥μ + 􏽥c) � 0.
(31)

+e situation here is very similar to that of constant
release rate. According to Descartes’ rule of signs, equation
(31) may have either no, one, or two real positive solutions.
Note that the non-existence of positive roots requires both
conditions K + ϵ< 1 and K + ϵ − Kϵ< 􏽥μ, which cannot be
fulfilled simultaneously because r> μ. Furthermore, a pos-
itive root occurs when the curve of the function
P(N) ≔ (N + 1)Q(N) intercepts the 􏽥c-axis. Furthermore,
the study of the variations of P(N) shows that P(N)< 0 for
N<N∗− . +en, as N increases from N∗− , the function P(N)

rises to reach a maximum at the point

Nh
′ ≔

K + ε − 1 +

������������������������������

(K + 1)(ε + 1) +(K − ε)2(1 − 3μ/4r)

􏽱

3
,

(32)

with Nh
′ always real and positive since r> μ. And for r> μ,

P(N) is strictly decreasing. Hence, the condition for the
occurrence of two positive solutions for equation (30) is

Nh
′ + 1( 􏼁Q Nh

′( 􏼁> 􏽥c. (33)

+is clearly defines a threshold value of c as

c
s
c ≔ αr Nh

′ + 1( 􏼁Q Nh
′( 􏼁, (34)

such that equation (30) admits only one positive root if
c � cs

c. +erefore, we conclude that system (29) has no, one,
or two positive equilibria if c> cs

c, c � cs
c, or c< cs

c, re-
spectively. Moreover, for c> cs

c the origin (0, 0) is globally
asymptotically stable as Ω1 is a positive invariant set for
system (29). For c< cs

c, the additional positive equilibria of
the model are given by Es

1 ≔ [N ∗ ,s
1 , ηN∗ ,s

1 /(1 + N∗ ,s
1 )] and

Es
2 ≔ [N ∗ ,s

2 , ηN∗ ,s
2 /(1 + N∗ ,s

2 )], where N∗ ,s
1 and N∗ ,s

2 are
positive solutions of equation (30).

Next, we investigate the stability of the equilibria Es
1 and

Es
2. +e Jacobian matrix at an equilibrium point has the form

J
s ≔

J
s
11, −

μ 1 + N
∗

( 􏼁

N
∗

+ 1 + η
,

c

1 + N
∗

( 􏼁
2, − μ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (35)

wherein N∗ is either N∗ ,s
1 or N∗ ,s

2 . In addition, using the
relation W(N∗) � 􏽥cN∗/(N∗ + 1), Js

11 can be written as

J
s
11 �

αr N
∗

+ 1( 􏼁

N
∗

+ 1 + η
W′ N

∗
( 􏼁. (36)

+is entails

detJs
� −

μαr

N
∗

+ 1 + η
N
∗

+ 1( 􏼁
2
W′ N

∗
( 􏼁 − 􏽥c􏽨 􏽩. (37)

On the other hand, it follows from the relation W(N) �

NP(N)/N + 1 and the fact that P(N∗) � 􏽥c that

W′ N
∗

( 􏼁 �
N
∗

N
∗

+ 1
P′ N

∗
( 􏼁 +

􏽥c

N
∗

+ 1( 􏼁
2. (38)

+is leads to
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Figure 2: Trajectories and equilibria of system (18) for parameters values chosen as K � 17.3, ϵ � 4.9, r � 2.7, and μ � 0.9. +e release
threshold is cc

c � 1.9. For c � 3.2> cc
c, the unique equilibrium is the origin (0, 0) and it is globally stable (all solutions approach the origin).

For c � 1.1< cc
c, there are two positive equilibria: Ep

− � (7.943, 9.708) and E
p
+ � (14.257, 17.425), where Ep

− is a saddle point and E
p
+ is a stable

node.
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det J
s

� − μαr
N
∗

N
∗

+ 1( 􏼁

N
∗

+ 1 + η
P′ N

∗
( 􏼁. (39)

Furthermore, from the variations of the function P(N),
we can infer that N0

− <N∗ ,s
1 <Nh and N∗ ,s

2 >Nh. Subse-
quently, as P(N) is strictly increasing over (N0

− , Nh), then
P′(N∗ ,s

1 ) is certainly strictly positive and thus
det Js(N∗ ,s

1 )> 0. Similarly, as P(N) is strictly decreasing for
N>Nh, P′(N∗ ,s

2 ) is consequently strictly negative and thus
det Js(N∗ ,s

2 )< 0. +is implies firstly that the equilibrium Es
1

is a saddle point. Next, to identify the nature of the equi-
librium Es

2 let us write trJs. We have

trJ
s

� αr
N
∗

+ 1
N
∗

+ 1 + η
W′ N

∗
( 􏼁 − 􏽥μ −

􏽥c

N
∗

+ 1
􏼔 􏼕. (40)

+en, using equation (38) we find

trJs
� αr

N
∗

N
∗

+ 1 + η
P′ N

∗
( 􏼁 −

􏽥μ N
∗

+ 1( 􏼁

N
∗ −

􏽥c

N
∗

+ 1
􏼢 􏼣,

(41)

And since P′(N∗ ,s
2 )< 0, we conclude that Es

2 is a locally
asymptotically stable node.

+e results of this section are summed up in the fol-
lowing theorem.

Theorem 3. System (29) has a locally asymptotically stable
node at the origin (0, 0). Moreover, assume that μ< r, if c> cs

c

where cs
c is given in equation (34), the origin is the unique

equilibrium and it is globally asymptotically stable. And if
c< cs

c system two positive equilibria occur for (29):
Es
1 ≔ [N∗ ,s

1 , ηN∗ ,s
1 /(1 + N∗ ,s

1 )] and Es
2 ≔ [N∗ ,s

2 , ηN∗ ,s
2 /

(1 + N∗ ,s
2 )], with N∗− <N∗ ,s

1 <Nh and N∗ ,s
2 >Nh. In

addition, Es
1 is a saddle point and Es

2 is a locally asymptot-
ically stable node.

+e results for this model are illustrated with numerical
examples shown in Figure 3.

6. Conclusion

In summary, this work studies relatively simple mathe-
matical models describing the dynamics of interactive wild
and sterile insect populations, occurring within the SIT. +e
latter is a method of biological control, in which sterile males
are released to reduce or eradicate a pest population, which
can effectively help contain the spread of many pest insects
such as the Red Palm Weevil (RPW). Modelling assump-
tions adopted in this paper allow for substantial simplifi-
cations of the SIT dynamics but in the meantime yield a
model that can bias the results in comparison with real
biological situations. As a matter of fact, we assumed ho-
mogeneous insect populations such that no male-female or
stage distinction has been made. Here, we note that a recent
comparison made between stage structured models and
homogeneous models revealed that they share very similar
dynamical features [25]. Moreover, death rates for sterile
and fertile insects are assumed density-independent and
equal. +is seems reasonable since released insects are all
adults so that the competition between them for natural
resources is relatively weak. On the other hand, the com-
petition for mates is the mechanism emphasised by SIT.
Such competition obviously does not affect the sterile
population. +e sterile-fertile interaction is then assumed to
be a one-sided competition that affects only the wild-type
population. Moreover, to account for the need of a critical
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Figure 3: Trajectories and equilibria of system (29) for parameters values chosen as K � 16.7, ϵ � 3.7, r � 1.3, and μ � 0.7. +e release
threshold is cs

c � 6.862. For c � 8> cs
c, the origin Ec

0 � (0, 0) is the unique equilibrium and it is globally stable (all solutions approach this
point). For c � 5< cs

c, two positive equilibria occur: Es
1 � (8.441, 6.386) and Ec

2 � (12.877, 6.628), with Es
1 a saddle point and Es

2 a stable
node.
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threshold density in order that the wild population could
persist, a strong Allee effect has been included in the growth
term of the wild population. Subsequently, we considered
three submodels, each characterized by a different strategy of
release: the first involves a constant release rate, the second
assumes a release rate proportional to the size of the wild
population, and the third uses a release rate of Holling-II
type. We have carried out complete mathematical analysis of
these submodels and discussed their dynamical features,
especially the existence of equilibria and their stability. In
particular, we demonstrated the existence of release
threshold for all the three strategies. +us, if the release rate
is below the threshold value, each submodel admits two
positive interior equilibria: a saddle point and a stable node
(or spiral for the second submodel). However, as soon as the
release rate exceeds the threshold value, positive equilibria
no longer exist. Each of the three submodels possesses a
unique equilibrium with a vanishing number of wild insects.
In this situation, the wild population evolves to extinction
whatever its initial number is. Finally, our analytical findings
for all submodels have been illustrated with numerical
examples.
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