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With the development of powered exoskeleton in recent years, one important limitation is the capability of collaborating with
human. Human-machine interaction requires the exoskeleton to accurately predict the human motion of the upcoming
movement. Many recent works implement neural network algorithms such as recurrent neural networks (RNN) in motion
prediction. However, they are still insufficient in efficiency and accuracy. In this paper, a Gaussian process latent variable model
(GPLVM) is employed to transform the high-dimensional data into low-dimensional data. Combining with the nonlinear
autoregressive (NAR) neural network, the GPLVM-NAR method is proposed to predict human motions. Experiments with
volunteers wearing powered exoskeleton performing different types of motion are conducted. Results validate that the proposed
method can forecast the future human motion with relative error of 2%∼5% and average calculation time of 120 s∼155 s,
depending on the type of different motions.

1. Introduction

Powered exoskeleton is a type of mechanical skeleton that
can be worn by human user. )is specific kind of machinery
can provide external force and torque for the user to ac-
complish the motion, such as running, jumping, and weight
bearing. )erefore, powered exoskeletons are widely used in
military, medical rehabilitation, and disaster relief [1–3].
Motion prediction plays a crucial role in the interaction
between powered exoskeleton and human. Accurate motion
prediction makes exoskeleton react to users’ need properly
and provide efficient movement. A practical motion pre-
diction algorithm is supposed to predict user’s intention of
motion based on the sensor information, such as joint
angular of lower-limb [4], EMG signals of muscles [5],
neural activation signals [6], humanmotion sequences [7, 8],
and multisenor information [9].

Because of the stochasticity and nonlinearity of the
captured motions, researchers have involved neural network
to improve the prediction results. For example, Ghosh et al.
used a Dropout Autoencoder LSTM (long short-term

memory) method to predict natural looking motion se-
quences over long-time horizons without catastrophic drift or
motion degradation [10]. Cheng et al. proposed an adaptable
neural network for humanmotion prediction, which is able to
accommodate human’s time-varying behaviors and to pro-
vide uncertainty bounds of the predictions in real time [11].
Tang et al. employed a motion context modeling to predict
long-term motion using the recurrent neural network (RNN)
[12]. Other works, such as multilayered LSTM [13] and deep
RNNs [14], also achieved great success. )e common strategy
of these remarkable works is using neural network algorithms
as the encoder learning from motion sequence along time
domain, with distributed hidden states or quantify features to
store information about motion in the past. However, neural
network algorithms also have intrinsic problems. One is the
dilemma of choosing training data. High-dimensional ob-
served data usually leads to poor model accuracy, low cal-
culation efficiency, and impacted generalization ability. On
the other hand, using hidden states or motion features [15] to
train the neural networkmay raise the risk of information loss
and inaccurate prediction.
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GPLVM is a nonparametric probabilistic algorithm for
dimensionality reduction, which has seen remarkable suc-
cesses in generating natural and smooth human motion
[16–19]. Given the dataset xi􏼈 􏼉

n

i�1 ⊂ X, it generates the
corresponding low-dimensional representations yi􏼈 􏼉 ⊂ Y in
the latent space. )e GPLVM can be viewed as a nonlinear
probabilistic extension to the classical PCA, and it has been
extensively used in analyzing the complex human motion.
However, the GPLVM only identifies the configuration
manifold where the human motion evolves on, it does not
identify the vector field defined on the manifold which is
useful for future motion prediction. As a natural consid-
eration, we apply the NAR neural network to identify the
evolution in the low-dimensional latent space, which is
much more sufficient because the computation is imple-
mented to the low-dimensional representation. In this pa-
per, a new prediction method is proposed as the
combination of GPLVM and NAR network algorithms. )e
novel method integrates the advantages of both algorithms
and as a result achieves higher prediction accuracy with
relatively lower calculation time.

2. Method

2.1. ProblemAnalysis. In practice, exoskeletons are expected
to be compliant with users’ body gestures. )e conventional
multibody dynamical models are mostly developed based on
the assumption of ideal joints. However, the hypothesis of
ideal joints may neglect many features such as the geometric
properties of skeleton and the elasticity of tissues. Modeling
all the uncertainties with physical approaches is intractable.
)us, in this paper, we take a detour and apply the data-
driven approach.

One natural representation of human poses can be given
with the positions of characteristic points, such as joints and
tips, of human body. Such representation belongs to a high-
dimensional Euclidean space R3N, where N denotes the
number of characteristic points. Due to the actual con-
straints of human body, the motion happens in a subset of
the entire space. In particular, we assume that the repre-
sentations of all possible poses form an embedded manifold
in R3N, which is called configuration manifold in geometric
mechanics. Although the configuration manifold of human
body is complicated due to the uncertainties mentioned
above, most of human motion can actually be categorized
into a number of regimes, each of which evolves on a
submanifold of much lower dimensions. With the mea-
surements of poses from motion capture experiments, we
may apply manifold learning algorithms to reveal an em-
pirical estimate of the submanifold.

Two ingredients are necessary in predicting the be-
havior of dynamical systems. One is the configuration
manifold on which the motion evolves and another is the
vector field defined over the manifold, which determines
the evolution of motion. In this paper, the manifold

learning algorithm is applied to generate estimate of the
submanifold of regime of motion. In particular, the
GPLVM is implemented since it generates smooth em-
pirical estimates, which is necessary for defining smooth
evolution law. )e vector field is then identified using the
NAR neural network.

2.2. Definitions and Fundamental Assumptions of GPLVM
Method. )e Gaussian process latent variable model
(GPLVM) proposed in is a nonparametric probabilistic
algorithm for dimensionality reduction, which has seen lots
of remarkable successes in generating natural and smooth
human motion [20–22]. As a probabilistic algorithm,
GPLVM is inherently robust to the measurement error. )is
feature is especially helpful for handling digitized motion
capture data, since the usage of adhesive landmarks may
introduce error due to the displacement and deformation of
the skin. Compared to other common manifold learning
algorithms, such as isometric mapping (ISOMAP) and local
linear embedding (LLE), the estimate generated with
GPLVM is a smooth map from the latent space to config-
uration space along with the probability distribution, which
are both helpful for estimating the evolution law.

Here is a brief review of GPLVM. Gaussian process (GP) is
the essential underlying definition of the algorithm. Roughly
speaking, for x ∈ Rn, a stochastic process S : x↦ S(x) ∈ Rm is
called GP if any finite collection of images S(xi)􏼈 􏼉

N
i�1 form the

joint Gaussian distribution. Any function f : Rn⟶ Rm can
be viewed as a realization of the GP. Analogous to the finite
dimensional case, GP is characterized by a mean function μ(x)

and a kernel (or covariance) function k(xi, xj). )e kernel
function must have positive definite Grammatrix such that the
covariance matrix is valid. Such functions k(xi, xj) are also
called to be of positive type. For any set of images S(xi)􏼈 􏼉

N
i�1,

the probability distribution is characterized by the mean and
covariance as follows:

E S xi( 􏼁􏼂 􏼃 � μ xi( 􏼁, (1)

cov S xi( 􏼁, S xj􏼐 􏼑􏽨 􏽩 � k xi, xj􏼐 􏼑, ∀i, j � 1, . . . , N. (2)

One commonly used kernel function is the Gaussian
kernel k(xi, xj) � exp(−xi − x2

j/σ2). )e constant coeffi-
cients of kernel functions are called hyperparameters. In
statistical inference, the mean function μ(x) of a GP is
usually set to constant zero, and the type of kernel function is
selected based on the smoothness. Any given samples of the
mapping xi, yi􏼈 􏼉

N
i�1 ∈ Rn×m form an event. Given the value of

hyperparameters β, the probability can be calculated from
the joint Gaussian distribution:

P (x, y)􏼈 􏼉 � N y: x, k xi, xj􏼐 􏼑􏽨 􏽩
N×N

􏽮 􏽯, (3)

where y � [y1, . . . , yN] and x � [x1, . . . , xN]. If only sam-
ples (xi, xj)􏽮 􏽯 are given, the estimation of hyperparameters
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can be obtained with maximum likelihood estimation
(MLE):

β∗ � argmin P(x, y); β􏼈 􏼉. (4)

In the problem of dimensionality reduction, the only
available information is the samples (yi)􏼈 􏼉 in the original
space. )e corresponding latent coordinates (xi)􏼈 􏼉 and
hyperparameters are to be identified. )e study [23] gives an
algorithm with the assumption that the hyperparameter β
follows a certain probability distribution. )e conditional
probability P(y|x) can be calculated by marginalizing out
the hyperparameters from P(y|x, β). )en, the coordinates
(xi)􏼈 􏼉 and β are jointly estimated through optimizing the
marginalized likelihood. Readers are referred to reference
[23, 24] for the details of the algorithm.

2.3.NARNeuralNetwork. NAR neural network is a dynamic
neural network with feedback andmemory function [25]. Its
output depends not only on the current input, but also on
the previous input and output. It uses the dynamic cor-
rection method to reduce the calculation time of model
updating, and thematrix order remains unchanged when the
sample increased, which improves the calculation efficiency
[26]. )is method has the advantages of less operation time
and high prediction accuracy and has the characteristics of
strong learning ability and approximation of any nonlinear
function. It is more suitable for time series prediction than
static neural network.

)e algorithm model of the NAR neural network is
expressed as follows:

y(t) � f[y(t − 1), y(t − 2), . . . , y(t − d)], (5)

where y(t) is the output value at time t, y(t − 1), y(t −

2), . . . y(t − d) are the output values before time t, d is the
delay order, and f[ ] is the nonlinear function obtained by
learning and training. It is clear that the predicted value of
y(t) at this moment is determined by the values of y(t) in
the past.

)e NAR dynamic neural network is composed of input
layer, output layer, hidden layer, and delay variable. It has
two network modes, one is parallel (close-loop) network
mode, in which the output of the neural network will be
feedback to the input layer and continue to learn with other
inputs. )e other is series-parallel (open-loop) network
mode, in which the expected output of the neural network
will be feedback to the input layer. In this paper, we choose
the series-parallel network model, which can improve the
prediction accuracy.

To summarize, our strategy of GPLVM-NAR is shown
in Figure 1. By using the GPLVM method, the high-di-
mensional motion data are mapped into low-dimensional
latent space. )en, prediction in the latent space is made
using the NAR neural network. At last, future motion can

be forecasted by inverse mapping of the predicted
representation.

)e proposed procedure consists of five steps: (1)
compute sequence of human motion wearing exoskeleton
with motion capture devices; (2) calculate the velocities of
every mark points between frames; (3) obtain the latent
coordinates of velocity data by training the GPLVM; (4)
predict future changes of the representations of training
data in latent space using NAR neural network; (5) get
future motion data in observation space by inverse
mapping.

3. Experiments and Results

Experiment is conducted in order to verify the capability of
the proposed humanmotion prediction algorithm. Amotor-
driven lower-limb prototype exoskeleton with 6 degrees of
freedom is used in the experiment. )e volunteer wearing
this powered exoskeleton is asked to perform different types
of motion indoors.)e assignedmotion includes (1) walking
on ground, (2) walking on slope, and (3) walking on stairs.
)e lower-limb exoskeleton is activated to help the user
complete the assigned motion.

Video image sequences of the volunteer’s motion wearing
powered exoskeleton are captured utilizing Coda Motion cx1
analysis system (Charnwood Dynamics Ltd.).)e dual-camera
system is used to reconstruct the motions in Cartesian coor-
dinates. Each motion is required to last 4 seconds. And the
motions are recorded by 200 frames (camera frame rate 50 fps).

For the motion capture system, we place 22 marker
points on volunteer’s lower body in advance. )ey are
arranged as follows: 4 markers on each side of thigh, 4
markers on each side of crus, and each marker on every hip,
knee, and ankle. )e marker points and their locations are
shown in Figure 2.

)e positions of landmarks are digitized from stereo
vision. And the sequences of human skeletons are cal-
culated automatically by the Coda Motion analysis sys-
tem based on linear regression between markers, as
shown in Figures 3(a)–3(f ). Notice that every group of 4
points on the thighs and cruses are replaced by a virtual
point for visualization. We take one motion sequence of
walking on ground as an example. Firstly, markers’ ve-
locities are calculated from frame to frame. Secondly, the
velocities are input to the GPLVM model to reduce the
dimension from 66-dimensional matrix (22 points∗3
coordinates) to 2-dimensional latent vector. In the 2-
dimensional latent space, each point is corresponded to
the motion matrix in each frame in observation space, as
shown in Figure 3(g).

Obvious cyclical trends can be found in Figure 3(g). As a
result, prediction based on the representations of training
data in the latent space is made. We assume that early 75% of
the captured data (150 frames of poses) as train data and last
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25% of the captured data (50 frames of poses) as true ref-
erence data. )e NAR neural network is used to forecast
future value of the representations in this paper. )e NAR
neural network is constructed with 10 input layer nodes, 10
hidden layer neurons, and 1 output layer node. It uses the

last 10 dataset as feedback delays to estimate the next future
data and then iterate over to the end. Additionally, future
motion data in observation space are obtained by inverse
mapping of the data in latent space. Prediction results are
shown in Figure 4. It can be observed that the NAR neural

Figure 2: Diagrammatic sketch of the marker points and their locations: left/right thigh (marker no. 1–4/no. 5–8), left/right crus (marker
no. 9–12/no. 13–16), left/right hip (marker no. 17/no. 20), left/right knee (marker no. 18/no. 21), and left/right ankle (marker no. 19/no. 22).
Note that markers on the thigh are in front of them. So, they are invisible from this visual angle.

[X(t), Y(t)] [Xp(t), Yp(t)]Hidden
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Output
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Latent space
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Figure 1: Strategy of the GPLVM-NAR method. Mapping motion data into low-dimensional latent space, predicting coordinates in the
latent space using the NAR neural network, and obtaining future motions nondestructively by inverse mapping.
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network method performs very high predicting accuracy in
latent space, as shown in Figure 4(e). Consequently,
predicted motion in observation space shows the same
high similarity with human truth, as shown in Figure 4(a)–
4(d).

Different motions of human user wearing powered
exoskeleton walking on ground, on slope, and on stairs are
experimented. 10 best performances of each motion are
picked up for prediction practice. Comparisons are made
with the existing method including Res-GRU and LSTM-
3LR [12]. )e prediction results using different methods are
shown in Figure 5. We introduce mean relative error (MRE)
and their standard deviation (SD) to evaluate the ability of
the proposed method for human motion predicting. )e
averages of relative errors of all the marker points between

predicted motion and true value are first calculated. )en,
their mean values and standard deviations are listed as a
reference value. )e comparison of prediction results are
shown in Table 1. Furthermore, average calculation time of
each method is calculated and shown in Figure 6. Com-
putation time of the GPLVM-NARmethod is less than other
two methods, because of the data dimensionality reduction.
Furthermore, the calculation time of the proposed method
does not increase significantly with the increase of motion
complexity.

From the comparison of prediction accuracy and
average calculation time, conclusion can be made that our
method is more competitive than other competitors. One
reason is that GPLVM has its advantage in the training of
one single set of motion data, especially when the amount
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Figure 3: GPLVM training result of a sequence of walking on ground. (a)–(f) Frames of motion poses in observation space. Human leg
skeletons are calculated based on captured marker data. (g) Representations of the training data in latent space. Cyclicity of the repre-
sentations reflects the periodicity of human movement.
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Figure 5: Prediction results using different methods, Res-GRU, LSTM-3LR and GPLVM-NAR. )e predicted motion results are in dotted
lines and ground-truths are in solid lines.
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of training data is also very small, while other methods
may lose their convergences. Although the method is less
accurate when predicting human motion of walking on
stairs due to the motion complexity, it still outperforms
others.

4. Conclusions

In this paper, a GPLVM-NAR method is proposed to
predict future motions of human wearing powered exo-
skeleton. With the help of the GPLVM method, the di-
mension of observed human motion data is reduced. )en,
prediction is made by employing the NAR network algo-
rithm. Experiment results demonstrate that the proposed
algorithm outperforms existing methods with advantages
in relative error of 2%∼5% and average calculation time of
120 s∼155 s.

)e GPLVM method generates a smooth map from the
latent space to configuration space. It shows great potential
in the prediction with a small amount of data. Because the
predicting process is performed on the low-dimensional
latent coordinates, the proposed method achieves higher
model accuracy, computational efficiency, and generaliza-
tion ability compared to the conventional neural network
approaches. )erefore, it is more applicable for the real
assistive strategies of powered exoskeleton.
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