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Connectivity is a significant metric for evaluating the error lenience of an interconnected net G � (V, E). In the paper (Fàbrega
and Fiol, 1996), the authors addressed the g-extra connectivity which is applied to better measure the consistency and error
tolerance of G. As a special Cayley graph, the n-dimensional wheel network CWn has some desirable features. +is paper shows
that the g-extra connectivity of CWn(n≥ 6) is 6n − 12 when g � 2.

1. Introduction

An interconnected net (abbreviated IN) is usually charac-
tered as a graph, whereat each node (vertex) resembles a
CPU and an edge resembles the connection between a
couple of CPUs, correspondingly. Connectivity of a graph G,
written as κ(G), is defined as the minimum number of nodes
whose deletion from G implies a detached graph or has only
1 node. Connectivity is an important index in evaluating the
dependability and error tolerance of an IN. +e greater the
connectivity is, the more consistent an IN is. Nevertheless,
an understandable drawback of the index is that it adopts
that each node neighboring the same node of G can flop
simultaneously. In fact, it is highly unlikely in applied net
uses. Hence, the traditional connectivity is inappropriate for
huge computing systems.

To overcome this deficiency, Harary [1] firstly pre-
sented the idea of restricted connectivity, which is a more
refined index in determining the consistency and error
tolerance of INs. Consider G to be a linked directionless
basic graph, and p be a given 1-dimensional topology
theory feature. +e restricted connectivity, written as
κ(G; p), is obtained as the minimum cardinality of a set of
nodes, if any, whose deletion detaches G and each residual
factor has feature p. Amid the restricted connectivity, the

g-extra connectivity has been initially presented by
Fàbrega and Fiol [2]. A subset S of nodes is known as a cut-
set if G − S is detached. For a nonnegative integer g, a cut-
set S is named a g-extra cut, if each element of G − S

contains t nodes, where t≥g + 1. +e g-extra connectivity
of G, if there must exist 1 g-extra cut, written as κ(g)(G), is
now obtained as the minimum cardinality above all
g-extra cuts of G, namely, κ(g)(G) � κ(G; pg), whereat pg

is the feature that each residual element takes at least (g +

1) nodes. Obviously, κ(0)(G) � κ(G) for each linked in-
complete graph G. +erefore, the traditional connectivity
may be regarded as a simplification of g-extra connec-
tivity, and it is able to serve for more precisely measuring
the consistency and error lenience for INs. +e g-extra
connectivity of numerous INs was widely investigated (see
[2–17]).

It is worthwhile to mention that the algebraic connec-
tivity [18] is another important metric inmeasuring how fine
a graph is linked and is very significant in controller theory,
communications, etc. Further research relating to algebraic
connectivity are described in references [19, 20].

+e n-dimensional wheel network, a promising topology
arrangement of INs, has some respectable things. Here, we
establish that the g-extra connectivity of CWn(n≥ 6) is
6n − 12, when g � 2.
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2. Preliminaries

Definitions and notations used through this paper are
provided. +e n-dimensional wheel network and its basic
properties are examined. We consider [21] for terms and
notations not introduced in this paper.

2.1. Definitions and Notations. Consider a basic undirected
graph G � (V, E). Given U ⊆ V, U≠∅, the prompted graph
determined by U in G, written as G[U], is a graph in which
set of nodes is U and the set of edges contains all the edges of
G having both endpoints in U. For x ∈ V, the degree x inG is
defined as the amount of edges neighboring to x, written as
dG(x). Let the minimum degree δ(G) �min dG(x) : x ∈V 

in G. For arbitrary node x ∈V, the neighborhood NG(x) of x

is determined as the set of nodes neighboring to x in a graph
G. +e node y is named a neighbor node of x, where
y ∈NG(x). For U ⊆V, NG(U) is applied to represent
∪x∈UNG(x)\U. If no confusion arises, then NG(x), δ(G),
and dG(x) can be abbreviated into N(x), δ, and d(x),
correspondingly. +e set F containing all error nodes of G is
named as a faulty set in G. Each node in F is named faulty
and any node in V(G)\F is named faulty-free.

2.2. .e Wheel Networks. +e wheel networks have been
known as a desirable topology structure of INs. Here, we
recall its definition and some important aspects.

Consider D to be a bounded group, Z to be a spanning
set of D, where the identity element of D cannot be in Z. +e
linked Cayley graph Cay(Z, D) has a set of nodes D and a set
of arcs (d, dz) : d ∈ D, z ∈ Z{ }. +e condition that Z is a
spanning set of D ensures that Cay(Z, D) is linked. +e
assumption that the identity element of D cannot be in Z

guarantees that Cay(Z, D) is simple. For convenience, let
[n] � 1, 2, . . . , n{ }. Here, we concentrate on the Cayley
graphs produced by transpositions. We choose the sym-
metric group Sn on [n] as D, and a set of transpositions of Sn

as Z. Notice that Z contains only transposition, and there
exists an arc (x, y) iff there exists an arc (y, x), where
x andy are two nodes. +us, the corresponding Cayley
graph can be viewed as an undirected Cayley graph.

Consider a basic linked graph H whose set of nodes is
[n](n≥ 3). Each edge of H is viewed as a transposition of the
symmetric graph Sn on [n]; hence, the set of all edges of H

resembles a transposition set Z of Sn.+erefore,H is entitled
a transposition basic graph, and the resulting Cayley graph is
said to be the corresponding Cayley graph of H, written as
Cay(H, D). Akers et al. [22] proved that D � Sn in
Cay(H, D).

If H mentioned above is a tree (resp. a path, a star), then
the resulting Cayley graph is named a transposition tree
(resp. a bubble-sort graph, a star graph) [22], written as CΓn
(resp. Bn, Sn). When H is a sector SEn of n (n≥ 3) nodes, i.e.,
V(SEn) � [n] and E(SEn) � (1, k) : 2≤k≤n{ } ∪ (k, k + 1) :{

2≤k≤n − 1}, the resulting Cayley graph is named a bubble-
sort star graph [23], written as BSn. If H is a wheel Wn of
n (n≥4) nodes, i.e., V(Wn) � [n] and E(Wn) � (1, k) :{

2≤k≤n} ∪ (k, k + 1): 2≤k≤n − 1{ } ∪ (2, n){ }, then the

resulting Cayley graph is named a n-dimensional wheel
network [24], written as CWn. In other words, CWn rep-
resents a graph with set of nodes V(CWn) � Sn, where 2
nodes x andy are neighboring iff x � y(1, k), 2≤k≤n, or
x � y(k, k + 1), 2≤k≤n − 1, or x � y(2, n). Figure 1 illus-
trates the Cayley graph CW4.

To discuss conveniently, we denote by a1a2 · · · an the

permutation 1 2 . . . n

a1 a2 . . . an

 , where k⟶ ak.

Theorem 1 (see [25]). Each permutation different from
identity within the symmetric group is the only (considering
the order of the factors) multiply of cycles that are not joined,
where every cycle has length greater or equal to 2.

Theorem 2 (see [26]). Suppose that H is a basic linked graph
where n � |V(H)|≥ 3, and H1 and H2 are a pair of diverse
graphs gained by labelling H with [n]. .en, Cay(H1, Sn)

must be isomorphic to Cay(H2, Sn).
By Theorem 1, each permutation must be written as a

multiplication of cycles. For instance, 1 2 3
2 3 1  � (123). In

particular, 1 2 . . . n

1 2 . . . n
  � (1). +e product η1η2 of 2

permutations η1 and η2 is the composition function η2
trailed by η1, i.e., (13)(23) � (132). For terms and notations

not mentioned here we follow [25].
As a special Cayley graph, CWn owns many attractive

properties.

Proposition 1 (see [27]). CWn is (2n − 2)-regular, node
transitive, ∀n≥ 4.

Proposition 2 (see [27]). CWn is bipartite, ∀n≥ 4.

Proposition 3 (see [28]). The girth of CWn is 4, ∀n≥ 4.
In the next discussion, we often partition CWninto n

disjoint subgraphs CW1
n, CW2

n, . . . ,CWn
n, where each node

x � x1x2 . . . xn ∈ V(CWk
n)takes a specified integer k in the

latter place xn for k ∈ [n]. Evidently, each CWk
nis isomorphic

to BSn− 1, where BSnis the bubble-sort star graph. For each
node, x ∈ V(CWk

n), x(1n), x(n − 1, n), and x(2n)are all
named external neighbors of x, written as x+ � x(1n),
x− � x(n − 1, n), and x∗ � x(2n), respectively. Any edge is
named a cross-edge respectful to a fixed factorization if its 2
nodes are in diverse CWk

n’s.

Proposition 4 (see [28]). Let x ∈ V(CWk
n)(k � 1, 2, . . . , n),

where CWk
n is mentioned as previously. .en, x+, x− , and x∗

are in three diverse CW l
n’s (l≠ k).

Proposition 5 (see [29]). For x, y ∈ V(CWk
n), then

x+, x− , x∗{ } ∩ y+, y− , y∗  � ∅, where k ∈ [n].

Proposition 6 (see [28]). Let CWk
n be denoted as previously.

.ere exist exactly 3(n − 2)! autonomous cross-edges among 2
diverse CWk

n’s.

Theorem 3 (see [28]). Let CWn be denoted as previously. If 2
nodes x and y are neighboring, no shared neighboring nodes
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exist of those nodes, that is, |N(x) ∩N(y)| � 0. If node x is
not neighboring to y, maximally 3 mutual neighboring nodes
exist of these nodes, namely, |N(x) ∩ N(y)|≤ 3.

3. κ(2)(CWn)

Here, we establish κ(2)(CWn) � 6n − 12.

Proposition 7 (see [30]). Suppose that BSn is denoted as
previously. .us, BSn is (2n − 3)-regular, node transitive,
∀n≥ 2.

Proposition 8 (see [30]). Suppose that BSn is denoted as
previously. .e connectivity κ(BSn) � 2n − 3, ∀n≥ 4.

Lemma 1 (see [30]). For n greater or equal to 4 and F is a
subset of V(BSn), where |F|≤ 4n − 9. When BSn − F is de-
tached, a single of these situations for BSn − F is valid:

(1) BSn − F has 2 constituents, with 1 isolated node
(2) BSn − F has 3 constituents, with 2 isolated nodes

Corollary 1 (see [29]). For n greater or equal to 4 and F is a
subset of V(BSn), where |F|≤ 4n − 9. When BSn − F has 3
components, with 2 isolated nodes, it is valid that |F|≤ 4n − 9.

Lemma 2. .e 2-extra connectivity κ(2)(CWn)≤ 6n−

12 (n≥ 5).

Proof. Observe n≥ 5 and Z � (12), (13), . . . , (1n),{

(23), (34), . . . , (n − 1, n)} ∪ (2n){ }. From +eorem 2, as-
sume that A � (1), (12), (123){ }. It is valid: N((1)) ∩ N

((123)) � (12), (13), (23){ }, |(N((1)) ∩ N((123)))\A| � 2.
From Proposition 2, CWn contains none of 3-cycles. Ap-
plying it and+eorem 3, it is valid that |NCWn

(A)| � 6n − 12.
Consider F1 � NCWn

(A) and F2 � NCWn
(A)∪A, and CWn −

F1 has two parts CWn − F2 and CWn[A] (see Figure 2). □

Let us now prove that CWn − F2 is linked and
δ(CWn − F2)≥ 2.

We factorize CWn lengthways the latter location, written
as CWk

n(k � 1, . . . , n). Recall that each CWk
n and BSn− 1 are

isomorphic for k ∈ [n]. Hence, CWk
n is (2n − 5)-regular

using Proposition 7, and κ(CWk
n) � 2n − 5 by Proposition 8

for each k ∈ [n].
Notice that A⊆V(CWn

n), and |N(A) ∩ V(CW1
n)| � 2,

|N(A) ∩ V(CW2
n)| � 3, |N(A) ∩ V(CW3

n)| � 1, |N(A) ∩V

(CW4
n)| � · · · � |N(A) ∩V(CWn− 2

n )| � 0, and |N(A) ∩V

(CWn− 1
n )| � 3. Using Proposition 6 and κ(CWk

n) � 2n − 5,
CWn[∪n− 1

k�1V(CWk
n − F1)] is linked. Using Proposition 5,

every node of CWn
n − F2 is neighboring to 3 faulty-free nodes

of CWn[∪n− 1
k�1V(CWk

n − F1)], and CWn[∪n− 1
k�1V(CWk

n−

F1)∪V(CWn
n − F2)] is linked. Combining |N(A) ∩

V(CWk
n)|≤3 and κ(CWk

n) � 2n − 5, hence δ(CWk
n − F2)≥2,

where k ∈ 1,2, . . . ,n − 1{ } and n≥5. +erefore, CWn − F2 is
linked and δ(CWn − F2)≥2. Consequently, |V(CWn−

F2)|≥3. CWn − F1 has 2 constituents: CWn − F2 and
CWn[A]. Notice that |V(CWn[A])| � 3 is valid. Hence, F1 is
really a 2-extra cut and κ(2)(CWn)≤6n − 12.

According to Lemma 2, the next lemma is formulated.

Lemma 3. Let A � (1), (12), (123){ }. For n greater or equal
to 5, F1 � NCWn

(A), F2 � NCWn
(A) ∪ A, now

|F1| � 6n − 12 and |F2| � 6n − 9, F1 is a 2-extra cut of CWn,
and CWn − F1 must have 2 constituents: CWn − F2 and
CWn[A] (see Figure 2).

Lemma 4. For any integer n≥ 6, κ(2)(CWn)≥ 6n − 12.

Proof. Consider F to be a minimum 2-extra cut, and sup-
pose |F|≤ 6n − 13. We shall obtain a contradiction. Assume
Fk � F ∩ CWk

n. Observe 2 situations. □

Situation 1. |Fk|≤ 2n − 6 for all k.
Notice that κ(CWk

n) � 2n − 5; hence, CWk
n − Fk is linked

for each k. Using Proposition 6 and 2(n − 2)! − |Fk|

− |Fl|≥ 2(n − 2)! − 2(2n − 6)> 0 for n≥ 6, we have that there
must exist at least one edge to connect CWk

n and CW
l
n, where

k, l ∈ [n] and k≠ l. +erefore, CWn − F is linked, which
contradicts the assumption that F is a minimum 2-extra cut.

A

F1 = NCΓn
(A)

CΓn − F2

Figure 2: A depiction regarding the demonstrations of Lemma 2
and Lemma 3.
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Figure 1: +e wheel network CW4.
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Situation 2. |Fk|≥ 2n − 5 for some k.
Assume K � k | |Fk|≥ 2n − 5 . Recall that |F|≤ 6n − 13,

then we have |K|≤ 3. For any l ∉ K, |Fl|≤ 2n − 6. From an
analogous statement as in Situation 1, it is valid that
∪l∉K(CWl

n − Fl) is linked, denoted it by B.

Situation 2.1. |K| � 1.
In general, suppose K � 1{ }. Let C is a liked element of

CW1
n − F1. When |V(C)| ≤ 2, C must be linked to B, since F

is a 2-extra cut. If |V(C)| ≥ 3, then C has a path P of three
nodes. Suppose N1 � NCW1

n
(P) ∩ F1 and N2 � (NCW1

n
(P)−

N1) ∪ V(P). +us, N1 ⊆ F1 and N2 ⊆ V(C) (see Figure 3.).
Combining +eorem3 and CWk

n is (2n − 5)-regular,
|NCW1

n
(P)|≥ 3(2n − 5) − 4 − 2 � 6n − 21. By Propositions 4

and 5, |N∪l∉ KCWl
n(N2)| � 3 |N2| � 3(|NCW1

n

(P)| − |N1|) + 3|V(P)| ≥ |NCW1
n
(P)| − |N1| + 3|V(P)|≥ 6n−

21 − |F1| + 3 × 3 � 6n − 12 − |F1|> |F| − |F1|. +en, there
must exist at least one node x ∈ C which has an external
neighbor x′ ∈ B; thus, C is linked to B. Using the ran-
domness of C, CWn − F is linked, which contradicts that F is
a minimum 2-extra cut.

Situation 2.2. |K| � 2.
In general, suppose that K � 1, 2{ } and C is a linked

element of (CW1
n∪CW

2
n) − F1 − F2. When |V(C)|≤ 2, C

must be linked to B, since F is an 2-extra cut. If |V(C)| ≥ 3,
then C has a path P of 3 nodes.

First, suppose that one of CW1
n − F1 and CW2

n − F2, say
CW1

n − F1, has a path P on 3 nodes of C. Let
N1 � NCW1

n
(P) ∩ F1 and N2 � (NCW1

n
(P) − N1) ∪ V(P).

+en, N1⊆F1, N2⊆V(C), and |F| − |F1| − |F2|≤
6n − 13 − (2n − 5) − |F1|≤ 4n − 8 − |F1|. When n≥ 6,
|NCW1

n
(P)|≥ 3(2n − 5) − 4 − 2 � 6n − 21. By Propositions

4and 5, |N∪l∉KCWl
n
(N2)|≥ |N2| � |NCW1

n
(P)| − |N1| + |V(P)

|≥ 6n − 21 − |F1| + 3 � 6n − 18 − |F1|> 4n − 8 − |F1|≥ |F| −

|F1| − |F2| for n≥ 6. +en, there must exist at least one node
x ∈ C which has an external neighbor x′ ∈ B, and C is linked
to B. From the randomness of C, CWn − F is linked, which
contradicts that F is a minimum 2-extra cut.

If neither CW1
n − F1 nor CW2

n − F2 has a path on three
nodes of C, then any path P of (CW1

n − F1)∪(CW2
n − F2) on

three nodes has 2 nodes in a single side and 1 node in the
different side, say P � y1y2y3 with y1, y2 ∈ V(CW1

n − F1)

and y3 ∈ V(CW2
n − F2). +us, NCW1

n
( y1, y2 ) ⊆ F1,

|F1|≥ |NCW1
n
( y1, y2 )| � 2(2n − 5) − 2 � 4n − 12 from

Proposition 2, 
n
l�3 |Fl| � |F| − |F1|− |F2|≤ 6n − 13−

(4n − 12) − (2n − 5) � 4. By Propositions 4 and 5, we see
that |N∪l∉KCWl

n
(P)|≥ 6> 

n
l�3 |Fl|; hence, P is linked to B;

thus, C is also linked to B.
In any situations, we have shown that CWn − F is linked,

which contradicts the assumption that F is a minimum 2-
extra cut.

Situation 2.3. |K| � 3.
In general, suppose K � 1, 2, 3{ }. Since |F|≤ 6n − 13 and

|Fk|≥ 2n − 5 for each k ∈ K, we have that
2n − 5≤ |Fk|≤ 2n − 3, for k � 1, 2, 3, and 

n
k�4 |Fk|≤ 2. No-

tice that 2n − 3< 4n − 13 for n≥ 6, combining each CWk
n is

isomorphic to BSn− 1 and Lemma 1 and Corollary 1; we have

that, for each k ∈ K, if CWk
n − Fk is disconnected, then

CWk
n − Fk has exactly 2 constituents, one of which is an

inaccessible node which is written by yk. Notice that


n
l�4 |Fl|≤ 2 and n≥ 6; hence, there must exist some CWl

n

which does not contain any faulty node. By Proposition 6
and 3(n − 2)!> 2n − 3 + 1 + 0≥ |Fk| + |Fl|, CWk

n − Fk − yk 

and CWl
n are linked for each k ∈ K. Hence, we have that

(∪3k�1(CW
k
n − Fk − yk )) ∪ Bwhich is written as B is linked.

Next, we merely need to consider the situation that CWn − F

is disconnected. Let CWn − F be disconnected and C be an
arbitrary linked component. If |V(C)| ≤ 2, then C is linked to
B since F is a 2-extra cut; thus, y1, y2, andy3 must form a
path, and the path is the only other linked component of
CWn − F different from B. Using Propositions 2, 4, and 5,
then y1, y2, andy3 does not form a 3-cycle, and each of
y1, y2, and y3 must have an external neighbor in ∪nl�4CW

l
n.

Notice that 
n
l�4 |Fl|≤ 2; thus, there must exist at least one

node yk which has an external neighbor yk
′ ∈ B; hence, it is

shown that CWn − F is linked, which contradicts the as-
sumption that F is a minimum 2-extra cut.

By Situations 1 and 2, F must be not a 2-extra cut of CWn

and therefore |F|≥ 6n − 12. Hence, κ(2)(CWn)≥ 6n − 12 for
n≥ 6.

According to obtained Lemmas 2 and 4, the next is valid.

Theorem 4. κ(2)(CWn) � 6n − 12 , ∀n≥ 6 .

4. Conclusion

+e traditional connectivity may be regarded as a simpli-
fication of the g-extra connectivity. It is gained that
κ(2)(CWn) � 6n − 12 (n≥ 6). Notice that κ(0)(CWn) �

κ(CWn) � 2n − 2 when n≥ 4 and κ(1)(CWn) � 4n − 6,
When n≥ 5 are obtained in [9]. We conclude the paper by
summarizing which situations of g-extra connectivity of
CWn have been not solved in Table 1.

CW1
n CW2

n CWn
n

F1 F2 Fn

N1

P

……

……
CN2

Figure 3: A diagram about the demonstration of Situation 2.1 of
Lemma 4.

Table 1: Some situations of g-extra connectivity of CWn continue.
g/n 4 5 n≥ 6
0 4 6 2n − 4
1 ? 14 4n − 6
2 ? ? 6n − 12
g≥ 3 ? ? ?
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