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To control the position of the magnetic levitation ball more accurately, this paper proposes a deep neural network feedforward
compensation controller based on an improved Adagrad optimization algorithm. ,e control structure of the controller consists
of a deep neural network identifier, a deep neural network feedforward compensator, and a PID controller. First, the dynamic
inverse model of the magnetic levitation ball is established by the deep neural network identifier which is trained online based on
the improved Adagrad algorithm, and the trained network parameters are dynamically copied to the deep neural network
feedforward compensator. ,en, the position control of the magnetic levitation ball system is realized by the output of the
feedforward compensator and the PID controller. Simulations and experiments illustrate that the accuracy of the deep network
feedforward compensation control based on an improved Adagrad algorithm is higher, and its control system shows good
dynamic and static performance and robustness to some extent.

1. Introduction

Magnetic levitation system is widely used in magnetic bearing,
magnetic suspension vibration isolator, magnetic suspension
train, andmany other fields because it is contactless, frictionless,
and noiseless, etc. A magnetic levitation ball system is a
magnetic levitation systemwith a single degree of freedom [1]. It
is a typical control system to study the phenomenon ofmagnetic
levitation and verify various controllers.

Recently, the controllers of the magnetic levitation ball
have received a great deal of attention from a number of
researchers, and they have done relevant research and ob-
tained rich research results, such as PID control [2, 3], GPI
control [4, 5], sliding mode control [6, 7], and robust control
[8–10]. ,e design of the above controllers requires a dy-
namic model of a magnetic levitation ball system. However,
the precise dynamic model of the magnetic levitation ball
system is difficult to obtain, so the model-free control
method is more suitable for it.

Feedforward control is an effective method for tracking
problems, which predicts the external interference in ad-
vance and generates appropriate control law according to
the prediction and input signals. Feedforward control can
eliminate disturbance in time, so it can make the control
system have higher control accuracy. It is widely used in
various domains of the industry. In [11], the trajectory
tracking problem of the cable-driven robot is solved by using
feedforward compensation. In [12, 13], feedforward control
has achieved excellent results in machine tool control. In
[14], the hot rolling mill is well controlled by the feedforward
controller. But feedforward control is difficult to design
because the precise mathematical model of the controlled
plant is usually difficult to obtain.

,e neural network can approximate continuous func-
tions closely, so there has been much research on the use of
the neural network for model-free control. By training the
neural network online or offline, the performance of the
control system can be improved, and finally, a satisfactory
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control effect can be achieved [15–20]. Nowadays, neural
network control is promisingly used in magnetic levitation
ball system. In [21], electromagnetic parameters are ap-
proximated by the neural network. On this basis, a neural
network controller is proposed. In [22, 23], a magnetic
levitation ball model is approximated by RBF neural net-
works. ,e model parameters are identified offline by ap-
plying the structured nonlinear parameter optimization
method. Based on the model, a predictive controller is
designed. In [24], a new neural network controller for a
magnetic levitation ball system is proposed. ,e proposed
controller comprises a neural network controller and a
robust controller. In [25], a dynamic model of control
system error and control law is established online by BP
neural network. Based on the model, a neural network
controller is designed with a PID controller. ,e controllers
identify relevant parameters of the control system by the
neural network, and the controller is designed by identified
parameters. Although these controllers have achieved good
results, the control accuracy can be further improved.

,e control accuracy of the above methods is affected by
the accuracy of the neural network model. ,erefore, im-
proving the modeling accuracy of the neural network is an
effective way to improve the control accuracy of the neural
network controller. Generally, the complex neural network
can improve the modeling accuracy of the controlled plant.
In order to fully train the complex neural network, multiple
iterations are needed. However, the computation time
generated by multiple iterations is difficult to meet the re-
quirements of real-time control. In order to solve the above
problems, this paper proposed a deep neural network
feedforward compensation controller based on an improved
Adagrad algorithm. First, a dynamic inverse model of the
controlled plant is established online by the deep neural
network, which is regarded as a model identifier. Meanwhile,
the parameters of the identifier are dynamically copied to the
feedforward compensator which has the same structure as
the identifier. ,us, the proposed controller in this paper is
designed by the deep neural network identifier, feedforward
compensator, and PID controller. ,en, an improved
Adagrad optimization algorithm with better convergence
accuracy and faster convergence rate is proposed to solve the
problem of slow training of the neural network and network
parameter delay caused by online training of the neural
network controller. ,e improved Adagrad optimization
algorithm was used to train the identifier. Finally, simulation
and experiment are conducted to verify the effectiveness of
the proposed controller. ,e main innovations of this article
are summarized as follows:

(1) An improved Adagrad optimization algorithm is
proposed to solve the problems that may occur in the
online training of the neural network controller,
such as delay, slow training, and control accuracy

(2) A deep neural network feedforward compensation
controller is proposed by combining the PID con-
troller with a deep neural network. ,e effect of the
proposed controller is proved by simulation and
experiment

,e rest of the paper is organized as follows. Section 2
introduces the magnetic levitation ball control system.
Section 3 introduces the feedforward compensation
control method of a deep neural network based on an
improved Adagrad optimization algorithm. Section 4
verifies the performance of the improved Adagrad op-
timization algorithm with benchmark function and
conducts simulation and experimental research on the
control method proposed in this paper. Section 5 is the
conclusion.

2. Magnetic Levitation Ball Position
Control System

2.1. Principle of Magnetic Levitation Ball. ,e working
principle of the magnetic levitation ball control system
studied in this paper is shown in Figure 1. In the real-time
control, the light transmission area of the slit of the pho-
toelectric position sensor and the illuminance of the silicon
photocell change accordingly when the position of the steel
ball changes in the vertical direction. ,e photoelectric
position sensor transforms the displacement signal of the
ball into a voltage signal that changes in proportion to the
level of illumination. ,en, the voltage signal is input to a
computer after signal conditioning and A/D conversion.,e
controller calculates the control law after comparing the
input computer signal with the command position of the
maglev ball. After D/A conversion and power amplification,
the control law controls the current i in the electromagnet
winding, so that the electromagnet generates the corre-
sponding electromagnetic attraction F, and then controls the
position of the steel ball.

2.2. Modeling of Magnetic Levitation Ball. In order to build
the mathematical model of the magnetic levitation ball, the
following assumptions must be made:

(1) Magnetic flux leak, edge effect, and reluctance be-
tween the ball and the electromagnet are ignored

(2) ,e ball is a homogeneous sphere, and the magnetic
force is concentrated towards the center of it

(3) ,ere is a linear relationship between the output
current and the input voltage of the power amplifier,
and there is no delay

Based on the above assumptions, the mathematical
model of the magnetic levitation ball system can be estab-
lished through theoretical derivation.

,e dynamic equation of the ball is derived from
Newton’s second law as follows:

m
d2x(t)

dt
2 � F(i, x) + mg, (1)

where m is the mass of the ball, g is the acceleration of
gravity, x is the ball position, F(i, x) is the electromagnetic
force on the ball, and i is the instantaneous current of the
electromagnet winding.
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According to Kirchhoff laws and Biot-Savart Law of the
magnetic circuit, the electromagnetic force on a ball can be
deduced as follows:

F(i, x) � K
i

x
 

2
, (2)

where K is the constant coefficient related to the magnetic
flux of the electromagnet winding.

When the ball is in a state of balance, the formula is
obtained according to the mechanical balance principle as
follows:

mg + F i0, x0(  � 0, (3)

where xo and io are the air gap and the current in the coil
when the magnetic levitation ball is in equilibrium.

Combined with equations (1)–(3), the formula is as
follows:

x(s)

i(s)
�

−1
i0/2g( s

2
− i0/x0( 

. (4)

Taking the input voltage of the power amplifier (Uin) as
input and the output voltage of the photoelectric position
sensor (Uout) as output, the transfer function of the mag-
netic levitation ball control system can be given as follows:

G(s) �
Uout(s)

Uin(s)
�

Ksx(s)

Kai(s)
�

− Ks/Ka( 

io/2g( s
2

− io/xo( 
, (5)

where Ks is the gain of the photoelectric position sensor and
Ka is the gain of the voltage-current power amplifier.

For the magnetic levitation ball position control ex-
perimental platform shown in Figure 1, the relevant pa-
rameters in equation (5) are shown in Table 1.

Substitute the physical parameters of the magnetic
levitation ball system into equation (5). ,e system transfer

function of the magnetic levitation ball position control
system is calculated as follows:

G(s) �
77.8421

0.0311s
2

− 30.5250
. (6)

3. Deep Neural Network Feedforward
Compensation Control

3.1. Control Principle. ,e feedforward compensation con-
trol of a deep neural network is designed for a magnetic
levitation ball, and the structure is described in Figure 2. ,e
main design ideas of the controller shown above are as
follows:

First, the inverse model of the controlled plant is
established online by the deep neural network identifier
(DNNI), and then the trained parameters are dynamically
copied to the deep neural network compensator (DNNC).
,e data of the training network is the control law and
output signal produced in each control period. Second,
DNNC and the PID controller are combined, and it can
produce control law together. ,e inverse model of the
controlled plant cannot be established accurately by DNNC
in the early stage of control, so the PID controller is in-
troduced to ensure the control accuracy in the early stage of
control.

Power
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A/D

Computer
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2 3

4
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Figure 1: Principle of magnetic levitation ball position control system.

Table 1: Physical parameters of magnetic levitation ball system.

Parameter (unit) Numerical value
m(g) 22
i0(A) 0.6105
x0(mm) 20
K(Nm2/A2) 0.00023
Ks −458.7156
Ka 5.8929
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,e actual control law of the controller proposed in this
paper can be designed as follows:

u � u0 + uc, (7)

where u0 is the output of the PID controller and uc is the
output of DNNC.

,e output of the PID controller is calculated as follows:

uo � kpe(k) + ki 

k

i�0
e(i)Δt + kd

(e(k) − e(k − 1))

Δt
, (8)

where kp, ki, and kd are hyperparameters.
Magnetic levitation ball control system is a complex

nonlinear control system [26]. It is not accurate to establish
the inverse model of the controlled plant only by using the
neural network with a single hidden layer. ,e modeling
accuracy of the deep neural network is higher because it has
a stronger nonlinear mapping ability than that of a single
hidden layer neural network [27, 28]. ,erefore, the iden-
tifier and compensator established by a deep neural network
can enhance the control accuracy.

3.2. Control Algorithm. In Figure 2, DNNI and DNNC have
the same network structure, both of which are multi-hidden-
layer neural networks. ,e DNNI is trained online once per
control period based on real-time position y and control law
u of the control system. ,en, the trained parameters of the
DNNI are dynamically copied to the DNNC. Based on the
reference signal r, the compensation control law uc of the
current control period is determined by the forward cal-
culation of DNNC. ,e control law u is calculated by uc and

PID controller output uo. ,e deep neural network used in
DNNI and DNNC includes an input layer, multiple hidden
layers, and an output layer. ,e forward calculation and
training of the network are as follows.

3.2.1. Forward Calculation. ,e whole deep neural network
has n + 1 layers, and there is n a weight matrix w1 ∼ wn in
total. ,e input of the layer k is defined as netk and the
output as outk. ,en, the input calculation process and
output calculation process of each layer are as follows:

Input layer: by directly inputting the reference signal into the
neural network and pass it directly to the next layer, as follows:

out1 � net1 � y. (9)

Hidden layer: the value of the input hidden layer be-
comes output after being processed by the activation
function. In this paper, the Leaky ReLU function is used as
the activation function.,e input and output of layer k are as
follows:

netk � outk− 1
· w

k− 1
+ b

k− 1
,

outk � δ netk ,
(10)

where w is the weight matrix between two layers, b is the
bias, and δ is the Leaky ReLU function.

Output layer: by implementing linear operations. ,e
output of the deep neural network is as follows:

netn+1
� outn · w

n
+ b

n
,

uN � outn+1
� netn+1

.
(11)
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Figure 2: Deep neural network feedforward compensation control structure.
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,e calculation process of uc is consistent with that of
uN.

3.2.2. Training of Deep Neural Network. In Section 3, we
improved the optimization algorithm. ,e network is
trained using the improved Adagrad algorithm in the
process of backpropagation.

,e loss function is as follows:

L �
1
2

u − uN( 
2
, (12)

where u is the reference signal, and uN is the output of
DNNI. ,e training objective of the deep neural network is
to minimize L. ,e training process of parameters is as
follows:

wn error gradient:

g
n
w �

zL

zw
n � u − uN(  · outn. (13)

wn− 1 error gradient:

g
n−1
w �

zL

zw
n−1 �

znetn

zw
n−1 ·

zL

znetn
� outn− 1

· ξn− 1
, (14)

ξn− 1
�

zL

znetn
� δ′ netn(  · w

n
( 

T
· u − uN( , (15)

where δ′ is the derivative of the activation function, wT is the
transposition of the weight matrix, and ξ is the intermediate
variable. ,e other symbols are the same as before.

wn− 2 error gradient:

g
n−2
w �

zL

zw
n−2 �

znetn− 1

zw
n−2 ·

zL

znetn−1 � outn− 2
· ξn− 2

, (16)

ξn− 2
�

zL

znetn−1 � δ′ netn− 1
  · w

n− 1
 

T
· ξn− 1

. (17)

,e above symbols are the same as before.
,e calculation method of wn− 3 ∼ w1 error gradient is

the same as that of wn− 2.
bn error gradient:

g
n
b �

zL

zb
n � u − uN( . (18)

,e above symbols are the same as before. ,e error
gradient of bn− 1 ∼ b1 is ξn− 1 ∼ ξ1.

,e gradient of all network parameters can be obtained
by the above formula. ,en, the gradient is substituted into
the appropriate optimization algorithm to update the net-
work. ,e dynamic inverse model of the controlled plant is
established by an online training network, and the network
is trained only once per control period. ,erefore, it is
necessary to select the optimization algorithm with better
convergence accuracy and faster convergence rate; other-
wise, the network is not fully trained, which will affect the
control accuracy.

Using the Adagrad algorithm instead of the gradient
descent method to train the neural network can improve

the accuracy of network modeling with fewer iterations,
which can meet the accuracy requirements of parameter
identification in neural network control. ,is is because
the Adagrad algorithm has better convergence accuracy
and convergence rate [29, 30]. However, Adagrad is
still to be improved for instance. ,e convergence
accuracy and convergence rate are far from satisfying
and the learning rate is too small in the later stage of
training.

In order to fully train the network with fewer iterations
to make the established model have higher accuracy, this
paper improves Adagrad. ,e formula of improved Adagrad
is as follows:

st � αst−1 + gt( 
2
, (19)

wt � wt−1 −
η

�����
st + ε√ gt + c gt − gt−1( , (20)

where wt−1 is the parameter before the update, wt is the
parameter after the update, η is the learning rate, gt is the
gradient value, st is the sum of the squares of the gradient
used in this update, st−1 is the sum of the squares of the
gradient used in the previous update, the initial value of s

is 0, and ε is a smoothing term that avoids division by zero
(the value is usually le − 8). α and c are hyperparameters,
and the value of α is 0.95, which guarantees that the
learning rate will not be too low in the later stage of
training.

,e gradient obtained in equations (13)–(18) is
substituted into equations (7) and (8) to update the network
parameters. In [31], it reveals the similarity between the
calculation of the parameter update amount in the process of
neural network training and calculation of control law in the
process of control by the PID controller. Based on this, we
add a gradient differentiation term to Adagrad to build an
improved Adagrad algorithm. ,e function of gradient
differentiation is to predict the change trend of neural
network parameters in the future and it is similar to the error
differentiation in the PID controller. It improves the con-
vergence accuracy and convergence rate of Adagrad by
providing predictive compensation amount in the process of
weight updating.

4. Results and Discussion

In this section, the effectiveness of the improved Adagrad
optimization algorithm is verified by the benchmark func-
tion, and then the effectiveness of the controller proposed is
verified by simulation and experiment. Simulation and
experiment will compare the control effect of the four
controllers. ,ese four controllers are PID controllers and
three controllers proposed in this paper. ,e three con-
trollers are an Adagrad-based neural network controller
(ANNC), an improved Adagrad-based neural network
controller (IANNC), and an improved Adagrad-based deep
neural network controller (IADNNC), respectively. ,e
three controllers have the same control structure as shown in
Figure 2, but the implementation of model identifier and
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feedforward compensator is different in these controllers.
,eir implementation is similar to DNNI and DNNC in
Figure 2, but not identical. ,ey are implemented by dif-
ferent optimization algorithms and different numbers of
hidden layers, as shown in Table 2.

4.1. Benchmark Function Verification. ,e performance of
the Adagrad optimization algorithm and the improved
Adagrad optimization algorithm is compared by five
benchmark functions [32]. ,e benchmark functions are
shown in Table 3.

,e convergence accuracy of the optimization algo-
rithm is evaluated by the result of iteratively solving the
benchmark function. ,e function iterates from the same
initial value. ,e maximum number of iterations is se-
lected as 5000. ,e learning rates of both optimization
algorithms are 0.1. ,e closer the result of either algo-
rithm is to the theoretical minimum value of the reference
function result, the better the convergence accuracy of the
algorithm is. ,e experimental results are shown in
Table 4.

,e results in Table 4 show that the improved Adagrad
algorithm has better convergence accuracy, and its solution
results are closer to the theoretical minimum.

,e convergence rate of the optimization algorithm is
evaluated by the number of iterations needed to solve the
benchmark function to reach the standard. ,e standard
result of each benchmark function is the one with the
larger result in Table 4. ,e learning rates of both op-
timization algorithms are 0.1. ,e fewer the number of
iterations required, the faster the convergence rate of
the algorithm. ,e experimental results are shown in
Table 5.

,e results in Table 5 show that the improved Adagrad
algorithm has a faster convergence rate. ,e standard can be
reached faster by solving the benchmark function iteratively
with the improved Adagrad algorithm.

,e results of benchmark function verification show that
the improved Adagrad optimization algorithm has better
convergence accuracy and faster convergence rate. So, the
proposed controller will use the improved Adagrad opti-
mization algorithm to train the network.

4.2. Simulation Results. ,e following simulation tests the
influence of the improved Adagrad optimization algorithm
on the control effect. In the simulation, the control period is
3ms. ,e parameters of the PID controller are kp � 8, ki � 6,
and kd � 0.2. Parameters of the PID controller are the op-
timal parameters obtained by many experiments.,e weight
matrix and bias initial value of the neural network are
random numbers within (−1, 1). ,ere are five neurons in
each hidden layer. ,e learning rate is 0.015, and the
hyperparameter c of the optimization algorithms in IANNC
is 0.98. ,e activation function is Leaky ReLU. ,e sinu-
soidal signal is as in equation (18) which is in radians and
one period of the trapezoidal signal is as in equation (19).
Time is in seconds.

r(t) � sin(0.4t),

r(t) �

0.2t, (0< t≤ 5),

1, (5< t≤ 10),

1 − 0.2t, (10< t≤ 15),

0, (15< t≤ 20).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(21)

,e simulation results of the magnetic levitation ball
follow the sinusoidal reference signal, as shown in Figures 3
and 4, and the trapezoidal reference signal, as shown in
Figures 5 and 6. ,e results show that the IANNC provides
better control in simulations.

Figures 7 and 8 show the training process of the weight
matrix between the hidden layer and the output layer when
using IANNC to control the magnetic levitation ball system
to track sinusoidal and trapezoidal signals. Each line rep-
resents a weight parameter. It can be known from the figure
that the weights in the controller will change because the
network will be trained once per control period.,e training
data is the control law and output signal that are generated in
each control period. Using the Adagrad algorithm to train
the network will produce some problems. ,e first is the
delay problem. ,is is because we use the data generated in
the tn−1 control period to train the network and then use the
trained network to predict the control law of the tn control
period. In the prediction process, it will be affected by
various time-varying factors, so the predicted result will have
certain errors. ,erefore, we add a gradient differential term
to Adagrad. According to the change trend of the gradient,
we can predict the future parameter value, so the way of
calculation will help to reduce the delay error. ,e second is
inadequate network training. Because we train the network
only once per control period, it is difficult to train the
network fully in one iteration using the Adagrad algorithm.
,e convergence rate can be improved by increasing the
differential of the gradient, which has been proved in Table 5.
In order to ensure real-time performance, we can only train
the network once per control period in actual control.
,erefore, the improved Adagrad optimization algorithm is
used to speed up the network training, so that the network
model established under one training has higher accuracy,
which improves the control accuracy.

,e next simulation tests the influence of the number of
hidden layers on the control effect. ,rough this simulation,
the number of hidden layers in the controller is selected. PID
controller parameters, neural network parameters, and si-
nusoidal signal are the same as those in the previous sim-
ulation. In the simulation, the feedforward compensation
control effect of the neural network with 1, 2, 3, 4, 5, 6, 7, and
8 hidden layers is tested. ,e control reference signal is a
sinusoidal signal. For each kind of neural network, the

Table 2: Differences between three controllers.

Controller Number of hidden layers Optimization algorithm
ANNC 1 Adagrad
IANNC 1 Improved Adagrad
IADNNC More than 1 Improved Adagrad

6 Mathematical Problems in Engineering



average absolute value integral of the error over ten times
simulation is reported for comparison.

,e simulation results are shown in Figure 9.
According to the analysis of the simulation results in

Figure 9, it can be known that increasing the number of
hidden layers can improve the control accuracy within
limited. For the magnetic levitation ball control system, it is
suitable that the neural network in the controller has 5
hidden layers. When the hidden layer is increased to five
layers, increasing the number of hidden layers will not only
not improve the control accuracy but also increase the
calculation time.

,e last simulation further tests the influence of the
number of hidden layers on the control effect. PID
controller parameters, neural network parameters, and
reference signals are the same as those in the previous
simulation. In the simulation, we test the influence of
IANNC and IADNNC (with five hidden layers) on the
control accuracy.

,e simulation results of the magnetic levitation ball
follow the sinusoidal reference signal, as shown in Figure 10,
and a trapezoidal reference signal, as shown in Figure 11.,e
results of the two controllers in the comparison figure show
that the IADNNC provides the best control in simulations.
We can know that the network structure of IADNNC is
more complex than that of IANNC, so more data is needed
to fully train the network used in IADNNC. In the initial
phase, the network of IADNNC is not fully trained by
enough data, resulting in a less accurately established net-
work model and a larger error of tracking.

4.3. ExperimentalResults. Figure 12 shows the experimental
platform of magnetic levitation ball position control. In this
paper, the data acquisition control card PCI-1711 sup-
ported by MATLAB/Simulink is used to realize the real-
time collection of magnetic levitation ball position and the
output of control law. Based on the MATLAB/RTW
software platform, the hardware in the loop experiment
verification of the control method proposed in this paper is
carried out.

,e following experiment tests the influence of the im-
proved Adagrad optimization algorithm on the control effect.
In the experiment, the control period is 3ms. ,e parameters
of the PID controller are kp � 1.5, ki � 0.3, and kd � 15. Pa-
rameters of the PID controller are the optimal parameters
obtained by many experiments. ,e weight matrix and bias
initial value of the neural network are random numbers
within (−1, 1). ,ere are five neurons in each hidden layer.
,e learning rate is 0.015, and the hyperparameter c of the
optimization algorithms in IANNC is 0.98. ,e activation
function is Leaky ReLU.,e sinusoidal signal is as in equation
(18) which is in radians and one period of the trapezoidal
signal is as in equation (19). Time is in seconds.

r(t) � 2.18 sin(0.5t + 2.4328) + 10.9,

r(t) �

8.72 + 1.1637t, (0< t≤ 3.75),

13.08, (3.75< t≤ 7.5),

13.08 − 1.1637t, (7.5< t≤ 11.25),

8.72, (11.25< t≤ 15).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(22)

,e experimental results of the magnetic levitation ball
follow a sinusoidal reference signal, as shown in Figures 13
and 14, and a trapezoidal reference signal, as shown in
Figures 15 and 16. Table 6 shows the error range when three
controllers are used to control the magnetic levitation ball.

Based on the above experimental results, it can be
concluded that IANNC has a better control effect under the
same PID controller parameters. IANNC can make the
control system perform with better steady-state accuracy
and dynamism.

Table 3: Benchmark functions used in experiments.

No. Range Function Formulation
1 [−100, 100] Bohachevsky2 f(x) � x2

1 + 2x2
2 − 0.3 cos(3πx1)cos(4πx2) + 0.3

2 [−4.5, 4.5] Beale f(x) � (1.5 − x1 + x1x2)
2 + (2.25 − x1 + x1x

2
2)

2 + (2.625 − x1 + x1x
3
2)

2

3 [−100, 100] Bohachevsky1 f(x) � x2
1 + 2x2

2 − 0.3 cos(3πx1) − 0.4 cos(4πx2) + 0.7
4 [−5, 5] Six-hump camel back f(x) � 4x2

1 − 2.1x4
1 + 1/3x6

1 + x1x2 − 4x2
2 + 4x4

2
5 [−100, 100] Bohachevsky3 f(x) � x2

1 + 2x2
2 − 0.3 cos(3πx1 + 4πx2) + 0.3

Table 4: Iterative results of two optimization algorithms.

No. Min Adagrad iteration results Improved Adagrad iteration results
1 0 1.0648 0.2806
2 0 0.3442 0.2813
3 0 3.5184 0.4130
4 −1.03163 2.1352 −0.2115
5 0 3.6049 0.0001

Table 5: Iteration times of the two algorithms under the same
iteration result.

No. Standard Adagrad iterations Improve Adagrad iterations
1 1.0648 273 10
2 0.3442 2997 655
3 3.5184 96 8
4 2.1352 500 4
5 3.6049 364 6
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,e next experiment tests the influence of the number of
hidden layers on the control effect. PID controller parameters,
neural network parameters, and reference signals are the same
as those in the previous experiment. In the experiment, using
the neural network with too many hidden layers will lead to a
longer calculation time of the control quantity than that of the
control period. ,erefore, we test the influence of IANNC and
IADNNC (with two hidden layers) on the control accuracy,
only to verify whether increasing the number of hidden layers
can improve the control accuracy and the change trend of
control accuracy is shown in Figure 9.

,e experimental results of the magnetic levitation ball
follow a sinusoidal reference signal, as shown in Figure 17,
and a trapezoidal reference signal, as shown in Figure 18.
Table 7 shows the error range when two controllers are used
to control the magnetic levitation ball.

Based on the above experimental analysis results, it can
be concluded that increasing the number of hidden layers of
neural network in the controller can improve the control
accuracy. In Figure 17, the trend of error change caused by
increasing the number of hidden layers is similar to that in
Figure 9.
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Figure 9: Effect of hidden layer number on control accuracy.
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,e root-mean-squared error (RMSE) shown in Table 8
proves that the IADNNC produces an obviously smaller
RMSE than the other controllers.

In order to test the anti-interference ability of the
controller IANNC and IADNNC, the interference is
exerted by touching the steel ball with fingers at a random
moment in the sinusoidal signal tracking experiment. ,e
anti-interference experiment results of IANNC and
IADNNC sinusoidal signal tracking control are shown in
Figures 19 and 20. ,ey prove that the control system can
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Figure 11: Trapezoidal signal error.
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Figure 12: Magnetic levitation ball position control experiment
platform.
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Table 6: Comparison of the experimental results for error range.

Controller Sinusoidal signal (mm) Trapezium signal (mm)
PID [−0.45, 0.45] [−0.50, 0.50]
ANNC [−0.38, 0.38] [−0.39, 0.43]
IANNC [−0.10, 0.10] [−0.09, 0.09]
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Figure 17: Sinusoidal signal error.
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Table 7: Comparison of the experimental results for error range.

Controller Sinusoidal signal (mm) Trapezium signal (mm)
IANNC [−0.10, 0.10] [−0.09, 0.09]
IADNNC [−0.035,0.035] [−0.035, 0.035]
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quickly return to a stable state after being disturbed by the
external environment, and the control system has certain
robustness.

5. Conclusion

In this paper, a deep neural network feedforward com-
pensation controller based on the improved Adagrad op-
timization algorithm is proposed. ,e improved Adagrad
optimization algorithm and deep neural network are used to
solve the problems that may occur in the application of the
neural network in the control field, such as delay, slow
training of the neural network, model accuracy, and control
accuracy. By improving the accuracy of the dynamic inverse
model of the controlled plant in the neural network con-
troller, the control accuracy can be further improved without
changing the controller structure. In the proposed con-
troller, the dynamic inverse model of the controlled plant is
established by a deep neural network that is trained by an
improved Adagrad optimization algorithm. ,en, a feed-
forward compensation controller is obtained by mixing this
model with the PID controller. ,e simulation and exper-
imental results demonstrate that the proposed IADNNC has
a good control effect. ,e proposed controller can also be
applied to other nonlinear systems, particularly time-varying
systems and systems with uncertainty which are difficult to
be obtained by mathematical methods. ,e application of
other deep neural network models in the control field will be
a topic for future study.
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