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Automated Guided Vehicle (AGV) indoor autonomous cargo handling and commodity transportation are inseparable fromAGV
autonomous navigation, and positioning and navigation in an unknown environment are the keys of AGV technology. In this
paper, the extended Kalman filter algorithm is used to match the sensor observations with the existing features in the map to
determine the accurate positioning of the AGV. )is paper proposes an improved joint compatibility branch and bound (JCBB)
method to divide the data and then randomly extract part of the data in the divided data set, thereby reducing the data association
space; then, the JCBB algorithm is used to perform data association and finally merge the associated data. )is method can solve
the problem of the increased computational complexity of JCBB when the amount of data to be matched is large to achieve the
effect of increasing the correlation speed and not reducing the accuracy rate, thereby ensuring the real-time positioning of
the AGV.

1. Introduction

)e traditional robot positioning method generally uses the
internal sensors, gyroscopes, odometers, and so forth of the
robot to estimate the positioning information for the robot’s
next moment or uses markers in the real environment to
estimate the robot’s pose through the AGV’s internal sen-
sors.)e accuracy of the posture of the AGV obtained by the
calculation is very low. When relying on markers to locate
the robot, additional facilities are needed for assistance.
However, in an unknown environment, the robot has no
external objects to use as a reference. )e robot uses the
internal sensors and matches the environmental charac-
teristic information collected by the lidar to obtain accurate
positioning.

Simultaneous localisation and mapping (SLAM) was
first proposed by Hugh Durrant Whyte and John J. Leonard;
it was the first time the method of map construction and
then localisation was proposed. In [1], it was first proposed
to integrate the extended Kalman filter (EKF) algorithm into
the SLAM problem, which laid the foundation for the

research into SLAM-related methods in recent years. Lowe
et al. proposed SLAM based on visual information, which is
the pioneering work in the area of SLAM research. )is
approach put forward new ideas for the research and de-
velopment of SLAM in the following decades [2]. Davison
proposed SLAM based on monocular vision on the basis of
the visual SLAM, the earliest SLAM research with real-time
performance up to 2003 [3]. Wang et al. proposed a fusion of
a laser and a vision indoor SLAM method, based on the
robot’s own odometer to establish a robot motion model,
obtain environmental information in the experimental en-
vironment through lidar, and calculate the physical coor-
dinates and pixel coordinates [4]. Davison et al. proposed a
SLAM based on a monocular vision to obtain the real-time
position and motion trajectory of the camera. Finally, the
real-time positioning of the camera was realised [5]. Gao
proposed a robot positioning and grid map construction
based on the track estimation algorithm in the absence of
environmental information and the specific information of
known road signs in the environment based on the robot’s
own driving model [6]. Luo and Chen proposed a method of
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laser andmonocular vision fusion, which solved the problem
of robot positioning and map construction when the en-
vironment is large or the obstacles in the environment are
not obvious, and designed a visual loop detection to ensure
AGV positioning with the accuracy of the map [7]. Li et al.
proposed an improved visual simultaneous positioning and
map creation (vSLAM) algorithm for high positioning ac-
curacy of the AGV in the industrial field [8]. At the front end
of the algorithm, the image collected by the camera is
matched by a binocular matching algorithm. At the back of
the algorithm, the information is detected by a monocular
camera shooting vertically to optimise the global position
and reduce the error of the SLAM system.)is configuration
can meet industrial site requirements.

Data association is a very important part of SLAM re-
search. It is the process of matching the existing environ-
mental characteristics inside the robot with the observed
environmental characteristics to determine whether they
have a common source. In this way, the noise points col-
lected by the lidar are filtered out to ensure the correct
matching of the same environmental features observed at
different times. )e correct data association will make the
robot positioning accurate while ensuring the correctness of
the environmentmap established by the robot, but if the data
matching is wrong, it will not only affect the robot’s real-
time positioning and map construction but also cause the
divergence of the SLAM algorithm, so the data association is
very important in the SLAM research. Data association is the
matching between the data in the environmental charac-
teristics and the observations. )e data association is used to
complete the simultaneous positioning and map construc-
tion of the robot. )e data association algorithm not only
compares the observations with the existing environmental
characteristics but also needs to be able to remove the noise
points. )e noise points are removed, so the data association
algorithm selects the observation values that fall within the
threshold to match the existing environmental character-
istics by setting the association threshold.

In this paper, the extended Kalman filter algorithm is
used to match the sensor observations of AGV with the
existing features in the map to realise the accurate posi-
tioning of the AGV. )e process of data matching [9, 10] is
the process of data association [11, 12]. )is paper proposes
an improved joint fusion branch and bound (JCBB) method
to divide the data, randomly extract part of the data in the
divided data set, reduce the data association space, perform
data association based on the JCBB algorithm, and then
combine the associated data and union. )is method can
solve the problem of the increased computational com-
plexity of JCBB when the amount of data to be matched is
large to achieve the effect of increasing the correlation speed
and not reducing the accuracy rate, thereby ensuring the
real-time positioning of the AGV. )e positioning accuracy
of AGV directly affects the accuracy of the map it builds
independently. )e data matching algorithm proposed in
this paper can improve the positioning accuracy of the AGV,
which is of great significance for the AGV to independently
construct a global map.

2. AGV System Model Based on DashgoD1

2.1. Dashgo Platform. DashgoD1 was developed by Shenz-
hen Enjoy AI Co., Ltd., which was established in 2015, and is
globally oriented. DashgoD1 includes lidar, positioning, a
navigation module, and the robot mobile platform D1. )e
application of the robot’s photomagnetic wireless technol-
ogy greatly extends the life of the robot while ensuring the
high reliability and high precision performance of the robot.
Dashgo, a mobile platform developed for ROS, has high
precision, a heavy load, long battery life, and strong scal-
ability. Its characteristics are high precision, ease of use, and
an ROS development kit, which can independently develop
robot projects, as shown in Figure 1.

2.2. AGV Coordinate Model and Motion Model. )e posi-
tioning of AGV in the warehouse environment generally
uses the Cartesian coordinate system and a polar coordinate
system. Polar coordinates are generally converted into two-
dimensional coordinates through the conversion of polar
coordinates to two-dimensional coordinates. )e Cartesian
coordinate system needs to know the abscissa of the AGV in
the environment. )e ordinate and the polar coordinate
require the angle of the AGV in the environment and the
distance under that angle. )e conversion between the two
needs to establish the relationship between the AGV co-
ordinate system and the global coordinate system. )e laser
rangefinder used in this article is installed in the centre of the
AGV. )e coordinate system of the lidar can be the coor-
dinates of the AGV by default. )e coordinates of the AGV
in the global map are the coordinates of the lidar in the
global map. )erefore, the global coordinates of AGV in the
global map are the global coordinates of the lidar XwOwYw.
For central coordinates, (xr, yr) indicates that the laser
rangefinder is in the global coordinate system XwOwYw.
Also used in Chinese, (xr, yr) represents that a feature point
is used in global coordinates (xwi, ywi) in the AGV coor-
dinate system (xri, yri) expresses. [xr(k), yr(k), θr(k)]

represents the global coordinate system of AGV at time
KXwOwYw. )e state vector of the θr(k) representation of
AGV in global coordinates xw is shown in Figure 2: it is the
schematic diagram of the AGV coordinate system.

)e establishment of the AGVmotion model is based on
the encoder installed on each wheel to count the output
pulse number of each wheel.)en, according to the diameter
of the two wheels, we can calculate the respective running
distance of the two wheels after a period of movement. )e
motion model establishes the relationship between the AGV
distance and the angle from the previous time to the next
moment, as shown in Figure 3 if the AGV state vector is
[xr(k), yr(k), θr(k)]. )en, the state vector at K+ 1 is
[xr(k + 1), yr(k + 1), θr(k + 1)]T. )e encoder, which is
used to measure the moving distance of AGV during
driving, is located on the left and right wheels. )e diameter
of the driving wheel isD. )e number of output pulses of the
encoder per wheel is n linear rotation. FromK time to (K+ 1)
time, the output pulse of the left and right encoder is mL, mR,
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then mL the mR, which can be calculated from time k to time
(K+ 1), with SL and SR distances:

SL(K⟶ K + 1) � πD ·
ML

n
,

sR(k⟶ k + 1) � πD ·
mR

n
.

(1)

)e AGV angle variation from K time to (K+ 1) time is
as follows:

Δθ(k⟶ k + 1) �
sR(K⟶ K + 1) − sL(K⟶ K + 1)

d
,

(2)

where D is the distance between two wheels, that is, the
diameter of AGV:

ΔS(k⟶ k + 1) �
SL + SR

2
. (3)

From equation (2), we determine that

θ(k + 1) � θk + Δθ(k⟶ K + 1). (4)

To summarize, at (K+ 1) time, the AGV is at the global
coordinates XwOwYw. In the middle of Xw, the horizontal
and vertical coordinates of the direction are as follows:

yr(k + 1) � yr(k) + ΔS(k⟶ k + 1) · sin
θ(k) + θ(k + 1)

2
 ,

xr(k + 1) � xr(k) + ΔS(k⟶ k + 1) · cos
θ(k) + θ(k + 1)

2
 .

(5)

Hypothesis w(k) is the Gaussian white noise with zero
mean value; that is, the system equation of AGV at time k is

(a) (b)

Figure 1: Dashgo D1 mobile handling robot.
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Figure 2: Schematic diagram of the AGV coordinate system.
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Figure 3: Intention of AGV motion model.
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X(k+1) �

xr(k + 1)

yr(k + 1)

θr(k + 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

xr(k) + ΔS(k⟶ k + 1) · cos
θ(k) + θ(k + 1)

2
 

yr(k) + ΔS(k⟶ k + 1) · sin
θ(k) + θ(k + 1)

2
 

θr(k) + Δθr(k⟶ k + 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ wk. (6)

3. AGV Location Model Based on EKF-SLAM

3.1. Mathematical Model

3.1.1. State Vector. AGV needs to use the road sign infor-
mation in the existing map to locate, and the accurate posi-
tioning of the landmark information cannot do the location
without the accurate positioning performance of AGV, because
only when the AGV positioning is accurate can the sur-
rounding environment be accurately scanned, and the accurate
environment map can be obtained. )erefore, AGV posi-
tioning and map construction are two mutual problems, and
they affect each other. )e accuracy of one affects the accuracy
of the other. )erefore, they cannot be studied as two separate
problems, and they cannot be estimated separately as two
separate problems. )e extended Kalman filter algorithm is
adopted, which takes the AGV position and all the landmarks
in the environment into an extended state vector and carries
them into the algorithm for iterative estimation.)e covariance
matrix is used to reflect the degree of uncertainty between each
landmark and between AGV and each landmark
xr(k) � [xr(k), yr(k), θr(k)]. With the ith characteristic,
Pi(k) � [xi(k), yi(k)]. )e vector composed of all the feature
points in the map is P(k) � [P1(K), P2(K), . . . , Pm(K)]T.
)e pose of AGV and all the feature points in the map con-

stitute an extended state vector X(K) �
xr(k)

p(k)
 . )e co-

variance matrix corresponding to the state vector is as follows:

P(k) � 1m

pvv(k) pv1(k) · · · pvm(k)

p
T
v1(k) p11(k) · · · p1m(k)

⋮ ⋮ ⋱ ⋮

p
T
vm(k) p

T
1m(k) · · · pmm(k)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

3.1.2. State Transition Model. At k time, the state of the
system isX(K) control input of the system U(k) (U(k) is the
angle of rotation of the AGV θ). At K+ 1, the state of the

system is X(k + 1). )e state vector transition model of the
system is as follows:

X(K + 1) � F(X(k), u(k)) � F xr(k), P(k), u(k)( . (8)

AGV is the equation of motion:

xr(k + 1) � xr(k) + ΔS(k⟶ k + 1) · cos
θ(k) + θ(k + 1)

2
 ,

yr(k + 1) � yr(k) + ΔS(k⟶ k + 1) · sin
θ(k) + θ(k + 1)

2
 ,

θr(k + 1) � θr(k) + Δθr(k⟶ k + 1).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

In this formula, the coordinates of agv x and y at time
K+ 1 are expressed as the coordinates of time k plus the
variation from time k to time K+ 1. )is variation is the
average value of the moving distance of AGV in this time
period and the angle of AGV at two times.)e angle of K+ 1
is the angle change of K time and this time period.

3.1.3. Observation Model. )e observation model can
connect the global coordinate system with the AGV coor-
dinate system. It is assumed that the ith environmental
feature point is observed by AGV at k-time Pi for the es-
tablishment of the observation model and the position and
attitude of AGV xr(k) as well as Pi.)e observationmodel is
as follows:

Z(k) � h(x(k)) + w(k) � h xr(k), Pi(k)(  + w(k). (10)

According to Pi, the state variables of the characteristic
point at time k and AGV at time k, as well as the angle value
of AGV at this time, are expanded from equation (10) to
obtain the following equation:

Zx(k) � xpi(k) − xr(k) cos θr(k) + ypi(k) − yr(k) sin θr(k) + wx(k),

Zy(k) � xpi(k) − xr(k) sin θr(k) + ypi(k) − yr(k) cos θr(k) + wy(k).

⎧⎪⎨

⎪⎩
(11)
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Among thew(k) values is the white Gaussian noise when
observing the feature points, and the variance is R(k).

3.2. Algorithm Flow

3.2.1. Initialisation. In the initial state, the AGV has no
action, so the state vector has only three parameters to
describe the position and attitude of the AGV, that is, the
two-dimensional coordinates and the angle value of the
AGV at the initial time. )e initial dimension of the ex-
tended state vector is 3D. To make the extended state vector
have parameters and carry out subsequent motion and
scanning, the AGV coordinate system is taken as the global
coordinate system of the system. If there is no initialisation
operation at the initial time of AGV, the subsequent dead
reckoning will become quite complex, and the accuracy of
AGV positioning will be affected, which will lead to the low
accuracy of the environment map constructed at
x0 � 0 0 0 

T.)e covariance matrix corresponding to the
position and pose of AGV and the state vector composed of
all feature points in the map is as follows:

P0 �

0 · · · 0

⋮ ⋱ ⋮

0 · · · 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (12)

3.2.2. Forecast. When the AGV is walking, whenever its
angle or walking distance exceeds a certain range, the AGV
will automatically adjust. It will be adjusted according to the
AGV internal sensor data and the data collected by the lidar,
based on the extended Kalman Filter estimation, which are
to use AGV internal sensor data and lidar data to estimate
the pose at the next moment.

According to the state transition equation, the estimated
value of the system at the last moment and the control input
of the system are taken as the input parameters u(k) (the
control input is the robot rotation angle θ). According to the
state transition model equation (8), the system state esti-
mation value and its corresponding covariance matrix can
be calculated:

x(k + 1| k) � F(x(k | k), u
−
(k)). (13)

Formula (8) is linearly expanded by the Taylor formula
(Taylor formula is a formula that uses the information of a
function to describe the value near it):

x(k + 1|k) ≈ F(x(k|k), u(k))

+
zF

zx
|x�x(k|k)

zF

zu
|u�u(k) 

x(k) − x(k|k)

u(k) − u
−
(k)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(14)

According to the definition of covariance

P(k + 1| k) � cov(x(k + 1| k), x(k + 1| k)),

� E (x(k + 1) − x(k + 1 | k)) · (x(k + 1) − x(k + 1 | k))
T

 .

(15)

Because of the error, Δx � x(k + 1) − x(k + 1| k),
Δu � u(k) − u(k). )e state estimation is independent of
control input noise Δu(Δx)T � 0. By combining formulas
(13) and (16), we obtain the following results:

p(k + 1|k) �
zF

zx
|x�x(k|k) P(k|k)

zF

zx
| x�x(k|k) 

T

+
zF

zu
| u�u(k|k) Q(k)

zF

zu
| u�u(k|k) 

T

.

(16)

3.2.3. State Estimation. Suppose that, at the time of K+ 1,
the observed value of AGV is Z(k + 1). If the influence of
noise is ignored, then the observed value at K+ 1 time is

Z
∧

(k + 1) � h(x(k + 1| k)). (17)

Innovation is the difference between observation and
prediction V(k + 1). )e specific steps of information cal-
culation are as follows: (1) first, the observation model h is
used to calculate the predicted observation through the
current state estimation; (2) the laser rangefinder scans the
real environment to obtain the characteristic information of
the environment, and the characteristic information is used
for the observation information z(k); and (3) according to
the innovation calculation formula, the new interest is
obtained as follows:

v(k + 1) � Z(k + 1) − Z
∧

(k + 1). (18)

)e error covariance of innovation is used with s(k + 1)

to express R(k):

s(k + 1) � HP(k + 1| k)H
T

+ R(k). (19)

To observe the noise covariance, h is the Jacobian matrix
of the partial derivative of H to X Hi,j � (zhi/zwi).

3.2.4. Data Association. Data association matches the
landmark features existing in the environment with the
measured values of the environment observed by AGV, so
that the AGV can obtain accurate positioning, thus building
an accurate environment map. Suppose there are n envi-
ronmental features in the robot environment map at a
certain time Fn � F1, F2, F3, . . . , Fn . )e data obtained by
the sensor are Em � E1, E2, E3, . . . , Em . Data association is
to establish the hypothesis of the two
Hm � j1, j2, j3, . . . , jm .

Mathematical Problems in Engineering 5



3.2.5. Pose Estimation

(1). Calculation of Kalman Gain. Kalman gain can be easily
understood as a controller in feedback control, where the
parameters of this controller can change from time to time.
When we can control a system, the Kalman filter is stable,
and the corresponding value is in the Kalman filter equation.
)e variance matrix P tends to a constant, so the Kalman
gain tends to a constant. )e calculation formula is as
follows:

Kk � P(k | k − 1)H
T
S

−1
k . (20)

(2). Pose Estimation. According to the above steps, the in-
novation, the innovation covariance, and the state prediction
value are calculated to update the pose state, assuming that
there are n line segment features in the global map. )e
specific pose state formula is as follows:

X(k + 1) � x(k + 1| k) +
1
n



n

i�1
K(k+1)(i)v(k+1)(i). (21)

3.2.6. Feature Update. If there are n environmental features
in the AGV environment map at K+ 1 time, when the N
features in the environment are matched with lidar data, the
existing environment feature data contains the data that
cannot bematched with xi. At this time, the data can be added
to the environment feature data as a new environment feature:

F(n,k+1) � F1, F2, F3, . . . , Fn ⟶ ,

F(n,k+1)+ � F1, F2, F3, . . . , Fn, Ei .
(22)

According to the above steps, the accurate positioning of
AGV is basically completed. )rough the extended Kalman
filter algorithm, AGV will always calibrate its own posture in
the process of walking to ensure the accuracy of AGV’s
position and posture at each time. During the walking
process, AGVwill scan the feature points in the environment
through the lidar and match these environmental feature
points with the data association algorithm. If the new fea-
tures have not been added to the environment, the new
features are added to the environment.

4. Data Association in EKF-SLAM

Data association, a very important part of SLAM research, is
a process of matching the existing environmental charac-
teristics and the observed environmental characteristics of
robots to determine whether they have a common source, to
filter out the noise points collected by lidar, and to ensure the
correct matching of the same environmental features ob-
served at different times. )e correct data association will
make the robot positioning accurate and ensure the cor-
rectness of the environment map established by the robot.
However, if the data matching is wrong, it will not only affect
the robot’s real-time positioning and map construction but
also lead to the divergence of the SLAM algorithm.
)erefore, data association is very important in SLAM

research. Data association is the matching between the data
in the environment features and the observation values.
Using the data association to complete the robot positioning
and map construction at the same time, the data association
algorithm not only needs to match the observed values with
the existing environmental features but also needs to be able
to remove the noise points. )erefore, the data association
algorithm selects the observation values falling into the
threshold and matches the existing environmental features
by setting the correlation threshold.

4.1. JCBB Data Association Method. To limit the occurrence
of uncertain matching, it is necessary to reconsider the
matching constraints. )e joint compatibility branch and
bound (JCBB) data association algorithm improves the
shortcomings of ICNN. JCBB uses a joint compatibility test
to test the compatibility between all observations and map
features. Moreover, considering the correlation between all
features and robots and between features, the probability of
joint compatibility between a wrong pair and other pairs
decreases with the increase in the number of pairs. JCBB uses
the branch and bound algorithm to search the solution space
and locate the association with the largest number of pairs.
)e single nondecreasing rule of the pairing number will
discard the data points that will not match correctly. )ere
are three possibilities between the survey data and the
existing features in the map: ① the same source as a
landmark feature in the previously constructed map;② the
data point being a new landmark feature; or ③ being an
abnormal value, which is not a real physical feature. In
addition, it is necessary to update the observed values
according to the observed value zk,i, which represents the
characteristic observation at k time.

)e principle of joint compatibility is to set an associ-
ation gate in advance and take the observation point that
falls within the association gate and is closest to the predicted
position of the target as the target association object. )e
“association gate” here refers to the preset association range,
and the so-called “nearest neighbour” means the smallest
Mahalanobis distance. )e dotted line represents the cor-
relation threshold, the ellipse represents the variance, the
triangle represents the observation prediction, the dot
represents the observation feature, and the five-pointed star
represents the real environment feature. As Figure 4 shows,
there are two circles of observations of real environmental
features, which indicate that another feature point with a
large variance may be noise. )e triangle represents the
observed prediction. However, within the same variance
range, there is a certain error. )e robot’s SLAM process is a
process of constant prediction and correction. As the robot
continues to observe, the number of features in the envi-
ronment continues to increase. If each new feature is as-
sociated with the feature in the environment, the
computational complexity will be very large. At this time, the
association threshold plays a role. Filtering out a large
amount of data that will not fall within this threshold greatly
reduces the amount of calculation and ensures the real-time
performance of robot positioning and map construction.
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Suppose there are n environmental features in the robot
environment map at a certain time Fn � F1, F2, F3, . . . , Fn .
)e data obtained by the sensor are
Em � E1, E2, E3, . . . , Em . Data association establishes the
hypothesis of the two Hm � j1, j2, j3, . . . , jm  features of
the environment Fj. )e observation value of the robot can
be obtained by a nonlinear measurement function including
the position of the robot and the feature point hk,j. Both are
included in the state vector x(k|k−1). It observed z(k,i) from Fj;
that is, there is zk,i � hk,i(xk|k−1) + wk,i.

hk,j xk|k−1  � hk,1 xk|k−1 , hk,2 xk|k−1 , . . . , hk,m xk|k−1  .

(23)

)e difference between the predicted values of the ob-
served value I and the characteristic value J is expressed by
deviation innovation information:

vk,ij � Zk,i − hk,j x
∧

k|k−1 . (24)

)e corresponding covariance is as follows:

sk,ij � ∇Hk,jPk∇H
T
k,j + Rk,i. (25)

∇Hk,j � (zhk,j/zxk|k−1)|x
∧

k|k−1
, Rk,i for observation noise

vHm
.
If the Mahalanobis distance satisfies

D
2
k,ij � v

T
k,ijS

−1
k,ijvk,ij < χ

2
d,1−α, (26)

D is observation Zk,i dimension, 1 − α. In general, if the
confidence value of the observed value is equal to that of the
observed value (95.0), then the solution is considered to be
consistent with the observed value Hm. )e compatibility
condition is satisfied.

4.2. Improved JCBB Algorithm. As the core of the JCBB
algorithm, joint compatibility considers the compatibility
between all measurements and map features. However, the
time complexity of the JCBB algorithm increases expo-
nentially with the number of observations, which seriously
affects its real-time performance in the SLAM process. First,
the range of data association is divided into a certain range.

Second, the strategy based on the angle threshold is used to
collect and classify the data set of the divided area. It is
assumed that there are n environmental features at k time
Fn

k � F1, F2, F3, . . . , Fn  and M observational features:
Em

k � E1, E2, E3, . . . , Em .

4.2.1. Local Data Region Selection. )e main idea of local
area data selection is to be within a certain range, which is
represented by R. R is the effective scanning range of the
lidar, and D is the compensation distance. Since the lidar
continuously collects data in the process of robot navigation
and positioning, there are more and more environmental
characteristic data in the system. If the radius of the ob-
servation area is too long to match the observation area, the
new algorithm is used to match all the features in the en-
vironment. To reduce the amount of calculation of system
data matching and ensure the real-time performance of
SLAM, the specific division method is shown in equation
(27) (xr, yr), the location of the environment feature points
in the global coordinate system (xi, yi) (Figures 5 and 6).
)e area divided meets the following conditions:

xr − xi


≤ r + d,

yr − yi


≤ r + d,

������������������

xr − xi( 
2

+ yr − yi( 
2



≤ r + d.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(27)

4.2.2. Batch Processing of Data Sets. In this paper, the lidar
scanning range is 360°, the angular resolution is 0.36°, and
the environment feature points obtained by the robot
scanning one circle are 1000360°. )e set angle is
−180°± 180°; that is, the environmental feature points ob-
tained by lidar are arranged in the order of angle, and the
difference between each two environmental feature points is
0.36°. )erefore, the proposed data set is divided by angles in
batches. First, a threshold is set as Δθ. First, the angle
resolution of the lidar can be 3 times that of the lidar, which
can be adjusted according to the experimental results in the
experimental verification process. Second, in the local area
set in the local data area selection, any existing environ-
mental feature and any observation feature can be selected to
calculate the distance between them. )e angle between the
two feature points and the robot’s positive direction is
calculated, respectively, when the angle between the two
points is less than or equal to Δθ. When the distance between
them is less than or equal to the sum of the robot scanning
radius and the compensation distance, the environmental
characteristics and observation features in equation (28) are
matched (xk, yk), including the angle with the x-axis of the
robot coordinate system in the positive direction θk. Other
observation feature points (xi, yi) included the angle with
the x-axis of the robot coordinate system in a positive di-
rection θk(θk, θi ∈ (0°, 180°)). If the following conditions are
met, the feature points can be observed (xk, yk) and other
observed feature points (xi, yi) will be grouped into a data
set:

Figure 4: Schematic diagram of joint compatibility.
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θk − θi


≤Δθ,

�������������������

xk − xi( 
2

+ yk − yi( 
2



≤ r + d.

⎧⎪⎨

⎪⎩
(28)

In the experimental verification stage, because the F4
angle resolution of the flash lidar series is 00.36°, it is
temporarily set at Δθ � 3∗ 0.36. Using the above method,
the environment features are divided into m small data
sets: E1

k � Ei|i � 1, 2, . . . , m1 , E
j

k � Ei|i � 1, 2, . . . , mj ,

. . . , EM
k � Ei|i � 1, 2, . . . , mM , m � m1 + mj + · · · + mM.

Using JCBB to get each divided data set E
j

K and the en-
vironmental map features Fn

k for the correlation solution
H

j

best, each of the solutions obtained will be composed of
Hbest.

In the process of laser data processing, the robot uses the
internal sensor to obtain the attitude of the robot. At the
same time, the robot scans the environment features to
obtain the real-time environment characteristic data. )e
obtained characteristic data are the data under the robot
coordinate, which is transformed into the global coordinate.
For the feature points after a coordinate transformation, the
local data area selection and data set division batch pro-
cessing are carried out. At this time,M data sets are obtained.
Each data set is used to match the existing environment

feature data in the map to ensure the accuracy of data
matching and ensure real-time data matching. )e flow
chart is shown in Figure 7.

5. Simulation Experiment

5.1. AGVPositioning Error Analysis. In this paper, the SLAM
simulator developed by Jai Juneja of Oxford University is used
to build a simulation environment as shown in Figure 8, so
that the robot canmove at a constant speed in a square area of
120×120m2, with obstacles and environmental road signs in
the simulation environment. As shown in Figure 8, the black
“−” indicates obstacles, the green “+” indicates the features of
the environmental road signs, and the red “−” indicates the
theoretical path of the robot. In Figure 8, the preset robot has
an error of 0.1m on the x and y coordinates, the scanning
range of the laser rangefinder is 5.6m, the observation noise is
[0.02m; 1°], and the angle error is 1°. In Figure 9, the red “∗” is
the obstacle scanned by the robot, and the red “−” is the
theoretical path of the robot. Ten tests were performed to
determine the error comparison chart, as shown in Figure 10.

As shown in Figure 10, the robot positioning pose based
on the improved JCBB algorithm varies within 0.01
m–0.04m, and the angle floats within 0.04°. )e posture of
the robot before the improvement is within the range of 0.01
m–0.15m, and the angle is floating within 0.12°. Compared
with the change value of the robot’s pose and angle before
the improvement, the floating maximum value has been
improved by 275% in the change range and the angle by
200%. )e change trend of the positioning error of the
improved and extended Kalman filter algorithm is shown in
Figure 11. Figure 11 shows that the error is gradually larger
at the beginning of the robot walking process, but as the
robot continues to walk, the robot positioning error grad-
ually decreases and gradually is stabilised. )e experimental
results prove that the improved algorithm in this paper is
theoretically effective and has certain improvements in the
robot pose error and angle error. Compared with the robot’s
pose and angle error values before the improvement, the
maximum value of the float is improved by 275%, and the
angle is improved by 200%.

5.2. Data Processing of AGV Estimated Position. In the
simulation experiment, first let the robot walk in a preset
experimental environment without adding any improved
algorithm. At this time, the robot’s own pose is calculated
by dead reckoning through the internal sensor of the
encoder. Figure 12 shows the real walking path and en-
vironment feature data of the robot dead reckoning
through internal sensors. )e robot has a large deviation
during the walking process. As the robot walks, the cu-
mulative error becomes larger and larger. Figure 13 is the
extraction of the robot’s real walking trajectory and en-
vironmental feature data and the resulting dead reckoning
positioning data processing diagram. )e robot’s walking
trajectory is constantly shifting with the robot’s walking,
and the endpoint coordinates after walking a circle are
(0.0813, 0.2375), which does not coincide with the initial

R

x

y

d

o

Figure 5: Schematic diagram of local area selection.

θ k

θ j

x

x

y

d

o

Figure 6: Schematic diagram of data set division.
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Figure 7: Flow chart of the improved JCBB algorithm.
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point (0, 0) coordinates, and the robot has a major de-
viation during walking.

In this paper, the robot position and pose obtained by the
encoder and odometer at each time and environment
characteristic data point obtained by F4 lidar are used to
convert local coordinate data to global coordinate data, as
shown in Figure 14, tk. )e two-dimensional image of the
environmental characteristics collected by the lidar at this
time is the two-dimensional map under the robot coordinate
system. )rough the coordinate transformation, the two-
dimensional environment feature map under the robot
coordinate system is converted to the global coordinate
system. )e blue area in Figure 14 is the two-dimensional
map of the red area under the global coordinate tk.)e figure
shows that the two-dimensional image formed by the lidar
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data converted by encoder positioning information does not
coincide with the global system. In the same coordinate
system, the shortest distance is used as the standard to
measure the encoder error. )e error is measured by cal-
culating the distance between each point in the converted
2D-map and the corresponding point in the original global
map. In principle, the smaller the distance between the
corresponding points, the smaller the positioning error.
Figure 15 shows that the encoder positioning error increases
with the robot’s moving error, on average, from the original
0.228798 cm to the maximum error of 4.3932 cm.

5.3. AGV Autonomous Positioning Simulation Experiment.
)rough EKF localisation of the improved joint compatible
branch and bound algorithm (JCBB), the optimal pose es-
timation of the robot is finally obtained by fusing the sensor
data of the robot. As shown in Figure 16, the path map of the
robot walking in the real environment is shown, and the red
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Figure 12: Result of dead reckoning and positioning of the robot.
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line emitted is the laser beam scanning the environment by
the lidar at that time. From the figure, we can see that,
compared with Figure 12, the path of the robot is more
regular, and the initial point almost coincides with the
endpoint. When the robot positioning is accurate, the lidar
carried by the robot can accurately scan the indoor envi-
ronment, instead of obtaining numerous noise points.
Figure 17 is the two-dimensional coordinate map of the data
extracted by the MATLAB code in Figure 18. )e figure
clearly shows that the robot walking path is more accurate
than that in Figure 12.

To improve the accuracy of localisation, an improved
joint fusion branch and bound algorithm is proposed in the
process of data matching. )is algorithm can improve the
accuracy of robot data matching and ensure the real-time
positioning of the robot. Figures 16 and 17 show that the
path of the robot is much more regular than that in Fig-
ure 12. However, if we want to measure the accuracy of
robot positioning, we can see that the path of the robot is
much more regular than the path of the robot in Figure 12.
)e robot localisation accuracy is measured by using the
minimum position sensor of the laser radar each time. As
shown in Figure 18, the black 2D coordinate is tk. )e two-
dimensional image of environmental characteristics is the
two-dimensional map under the robot coordinate system,
and the red area map is the global coordinate tk. )e
position of the robot is estimated by the global coordinate
transformation of the environment tk. Time F4 lidar scan
data is placed into the global coordinates, as shown in the
green two-dimensional figure.

Similar to the encoder error analysis, the shortest
distance method is also used, in principle. )e error is
measured by calculating the distance between the laser

scanning data converted by the improved EKF optimal
estimation and the corresponding points in the current
global map. )is error is used to represent the error of the
improved EKF positioning algorithm.

)rough calculation, we can see that the improved
EKF positioning error is between 0.2 cm and 0.45 cm in
Figure 19, and the encoder error is between 0.2 cm and
4.5 cm in Figure 20. Moreover, the error change in the
improved EKF positioning method is stable and small.
However, when positioning only by the internal sensor of
the robot, the error changes greatly, and the position
changes greatly. )e robot positioning error tends to
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decrease slightly, and there is no cumulative error such as
that generated by the internal sensors of the robot.
)erefore, it is proved that the EKF localisation algorithm
based on the improved JCBB has a good effect on the
precise positioning of the robot.

6. Summary

In this paper, the extended Kalman filter algorithm was used
tomatch the sensor observations with the existing features in
the map, to realise the accurate positioning of the AGV,
including the initialisation of the AGV pose and the pre-
diction of the AGV state, and the data association algorithm
is used tomatch the existing features and the observed values
in the environment. In this paper, the model of the AGV
state vector and the state transition vector is established.)e
state vector model is an extended vector composed of the
pose vector of the robot at a certain time and the state vector
of the environmental feature points at the same time point.

)e state transition vector is based on the position and
posture of the robot at a certain time, including the value of
X and Y coordinate points, and the angle between the robot
and the positive half-axis of the global coordinate system.
)e observation model connects the global coordinate
system with the AGV coordinate system. According to the
position and attitude of the AGV at a certain time and the
position and attitude of an environmental feature observed
at this moment, an improved joint fusion branch and bound
algorithm is proposed to match the feature points in the
AGV environment with the observation features to achieve
the accurate positioning of the AGV.
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