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Olver–Rosenau equations presented by Olver and Rosenau can be rewritten to the dynamic system by the wave transformation.
+e system is a Hamiltonian systemwith the first integral, and its phase-space and equilibrium point analysis are given in different
parameter spaces in detail. On this basis, we can derive various solutions of the original equation relating these orbits in different
phase-space planes, and the theoretical basis of the numerical solution is provided for engineering application and
production practice.

1. Introduction

In recent years, nonlinear partial differential equations
(NLPDEs) are more and more extensively used to engi-
neering application and production practice. Because of the
difficulty of solving these equations, so many methods have
been presented in the last decades. +e Camassa–Holm
(CH) equation including the cubic term, that is, the
Fokas–Olver–Rosenau–Qiao (FORQ) equation,

σt +
1
2

v
2 ± vx( 

2
 σ 

x
� 0, σ � v ± vxx( , (1)

has been studied for a long time and achieved so many
results, such as the solution of Cauchy initial value problem
[1], Holder continuous [2], the algebro-geometric solutions
[3], the Cauchy problem of the generalized equation [4], and
the nonuniqueness for the equation [5]. A lot of solving
methods for the nonlinear partial differential equation are
discussed to be applied in engineering and practice areas,
such as the sine-Gordon expansion method [6] and the
travelling wave method and its conservation laws [7], and so
many examples are in this regard. In this paper, the
Olver–Rosenau equation

σt � bvx +
1
2

v
2 ± vx( 

2
 σ 

x
, σ � v ± vxx( , (2)

was discussed by Olver and Rosenau through a reshuffling
procedure of the Hamiltonian operators in 1996, and they
found that the equation was changed into the Hamiltonian
system by the bitransformation structure of the mKdV
equation [8]. Rosenau believed the nonanalytic solitary
waves of the equation in 1997 [9]. Later, the equation was
derived in 2013 [10]. +e resulting Hamiltonian equations
are considered by the dynamical system theory and a phase-
space analysis of their singular points. +ose results of the
study proved that the equations can support double com-
pacton solutions. +ey found that the new Olver–Rosenau
compactons are different from the well-known Rose-
nau–Hyman compacton and Cooper–Shepard–Sodano
compacton.

It was recently introduced by Li in [11], but Li did not
give the solution because of the complexity of the integral.
We will give more detailed discussion in this paper. In the
second section, we discuss bifurcations and phase por-
traits of the system in all parameters. In the third section,
smooth (or bright) solitary wave solutions of the system
and their parametric representations are obtained in
detail.

Let v � ϕ(x − ct) � ϕ(ζ); equation (2) follows from

− c ϕζ ± ϕζζζ  � bϕζ +
1
2

ϕ2 ± ϕ2ζ  ϕ ± ϕζζ  ζ.
(3)

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 9071587, 7 pages
https://doi.org/10.1155/2020/9071587

mailto:zz1237@ynufe.edu.cn
https://orcid.org/0000-0002-3357-0726
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/9071587


Integrating once with respect to ζ and letting dϕ/dζ � ω,
equation (3) can be rewritten as

dω
dζ

� −
ϕ ϕ2 ± ω2 + 2(b + c)(  + k

ω2 ± ϕ2 ± 2c
, (4)

which has the first integral

h(ϕ,ω) �
1
4
ϕ2 ± ω2

 
2

+(b + c)ϕ2 ± cω2
+ kϕ, (5)

where k is an integral constant.
Without loss of generality, we consider the case + instead

of “± .” Equation (5) is simplified as the dynamic system
dϕ
dζ

� ω,

dω
dζ

� −
ϕ ϕ2 + ω2 + 2(b + c)(  + k

ω2 + ϕ2 + 2c
,

(6)

with the Hamiltonian

h(ϕ,ω) �
1
4
ϕ2 + ω2

 
2

+(b + c)ϕ2 + cω2
+ kϕ. (7)

Obviously, system (6) is a planar dynamical system with
three parameters depended on the parameter group (b, c,
and k). All possible phase portraits of (6) in the (ϕ,ω) phase
are discussed under the conditions of the different parameter
group (b, c, and k).

We notice that the right-hand side of the second
equation in (6) is not continuous, while ω2 + ϕ2 + 2c � 0. On
the circle line, ω2 + ϕ2 � − 2c, in the phase plane (ϕ,ω), ϕζζ is
not well defined. +is implies that differential system (6)
could have traveling wave solutions with nonsmoothness.

2. Phase Portraits of the System

Imposing the transformation dζ � (ω2 + ϕ2 + 2c)dτ, when
ω2 + ϕ2 + 2c≠ 0, equation (6) leads to associated regular
system

dϕ
dτ

� ω ω2
+ ϕ2 + 2c ,

dω
dτ

� − ϕ ϕ2 + ω2
+ 2(b + c)  − k.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

+is system has the same first integral as equation (6).
Apparently, the singular curve ω2 + ϕ2 + 2c � 0 is related to
the singular solution of equation (8). Near the circumfer-
ence, the variable τ is a fast variable, while the variable ζ is a
slow variable in the sense of the geometric singular per-
turbation theory.

In order to find the equilibrium points of system (8), let
f(ϕ) � ϕ(ϕ2 + 2c + 2b) + k and f′(ϕ) � 0; we obtain ϕ1 �

−
�����������
(− 2/3)(b + c)


and ϕ2 � −

�����������
(− 2/3)(b + c)


if (b + c)< 0.

+e zero points of f(ϕ) are estimated by themonotonicity of
the function ϕ based on zero points of the derivative
function f′(ϕ). Let A � − 6(b + c), B � − 9k, and
C � (2c + 2b)2; then, the discriminant S � B2 − 4AC of the

cubic polynomialf(ϕ) � 0 is just that S � 81g2 + 96(b + c)3.
It is easy to see that, for given b and c when
k2 < k2

1 � (− 32/27)(b + c)3, we have S< 0. It follows that
there exist three simple real roots ϕ31, ϕ32, and ϕ33 of f(ϕ)

satisfying ϕ31 <ϕ1 <ϕ32 < ϕ2 <ϕ33.

If k2 � k2
1, there exist two simple real roots ϕ21 and ϕ22

of f(ϕ) satisfying ϕ21 � ϕ1 < ϕ2 < ϕ22
If k2 > k2

1, there exists one simple real root ϕ11
If A � B, there exists one simple real root ϕ � 0

On the singular circle line, there exist two equilibrium
points S∓ � (− k/(2b),∓Ys) of system (8) with
Ys �

������������
− k2/(4b2) − 2c


if k2/(4b2) + 2c< 0.

Let M(ϕj, yj) be the Jacobi matrix of system (8) at an
equilibrium point Ej(ϕj, yj); we have

J ϕj,0  � detM ϕj,0  � 3ϕ4 +2(4c + b)ϕ2 +4bc +4c
2
,

J −
k

(2b)
,∓Ys  � detM −

k

(2b)
,∓Ys  � −

2k2

b2
+4b Y

2
s .

(9)

By the theory of planar dynamical systems, for an
equilibrium point of a planar integrable system, if J< 0,
then the equilibrium point is a saddle point; if J> 0 and
(traceM)2 − 4J< 0(> 0), then it is a center point (a node
point); and if J � 0 and the Poincare index of the equi-
librium point is 0, then this equilibrium point is cusped (see
[12]).

Let hi � H(ϕi, 0) and hs � H(− k/(2b),∓Ys), where H

comes from equation (5).

(1) If S � 0, there exist two simple real roots, and then
k2 � k2

1 � (− 32/27)(b + c)3,ϕ21 � (3k)/(2(b + c)),ϕ22
� − (3k)/(4(b + c)).

(i) When b> 0 and − 4b< c< − b, (ϕ21, 0) is a saddle
point. (ϕ22, 0) is the high-order singular point,
see Figure 1.

(ii) When c< − 4b< 0 or b< 0, c< − b, (ϕ21, 0) is a
center point. (ϕ22, 0) is the high-order singular
point, see Figures 2 and 3.

(2) If A � B, there exists only one simple real root ϕ � 0,
and then k � (2/3)(b + c).

(i) When b> 0, − b< c< 0 or b< 0, and 0< c< − b,
(0, 0) is a saddle point from the high-order
singular point, see Figures 4 and 5.

(ii) When b> 0, c> 0 (Figure 6) or b> 0, c< − b

(Figure 7) or b< 0, c> − b (Figure 8) or b< 0,
c< 0 (Figure 9), (0, 0) is a center point from the
high-order singular point.

(3) If S< 0, there exist three simple real roots, and then
k2 < k2

1 � (− 32/27)(b + c)3, ϕ31 � (− 2/3)
��������
− 6(b + c)



cos(θ/3), ϕ32 � (1/3)
��������
− 6(b + c)


(cos(θ/3) +

�
3

√
sin

(θ/3)), and ϕ33 � (1/3)
��������
− 6(b + c)


(cos(θ/3) −

�
3

√

sin(θ/3)), where θ � arccosT, T � (27k)/(2(− 6
(b + c))3/2).
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Figure 5: (0, 0) is a saddle point from the high-order singular point
(b< 0, 0< c< − b).

Figure 6: (0, 0) is a center point from the high-order singular point
(b> 0, c> 0).

Figure 1: One is a saddle point, and another is a high-order
singular point (b> 0 and − 4b< c< − b).

Figure 2: One is a center point, and another is a high-order
singular point (c< − 4b< 0).

Figure 3: One is a center point, and another is a high-order
singular point (b< 0, c< − b).

Figure 4: (0, 0) is a saddle point from the high-order singular point
(b> 0, − b< c< 0).
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(i) When b + c< 0, b> 2c, (ϕ31, 0), (ϕ32, 0), and
(ϕ33, 0) are centers. (− k/(2b),∓Ys) are saddle
points, see Figure 10.

(ii) When b + c< 0, b< 2c, (ϕ31, 0), (ϕ32, 0), and
(ϕ33, 0) are centers. (− k/(2b),∓Ys) are saddle
points, see Figure 11.

(4) If S> 0, there exists one simple real root, and then
k2 > k2

1 � (− 32/27)(b + c)3 and ϕ11 � (− 1/3)(Y1/3
1

+ Y1/3
2 ), where Y1 � (3/2)(9k +

��������������

81k2 + 96(b + c)3


)

and Y2 � 3/2(9k −

��������������

81k2 + 96(b + c)3


).

(i) When b< 0, c< 0, (ϕ11, 0) is a center, see
Figure 12.

(ii) When b> 0, c> 0, (ϕ11, 0) is also a center, see
Figure 13.

We obtain four class figures totally including 13 phase
portraits under the conditions of different parameters. An
orbit in a figure is related to Hamiltonian h of equation (7).
An orbit derives a class solution of system (6), and at the
same time, it is appropriative to the original partial differ-
ential equation. In the next section, we mainly consider how
to solve system (6).

3. Smooth (Bright) SolitaryWave Solutions and
Their Parametric Representations

As we know, system (6) for a fixed integral constant h has an
explicit solution. However, the scope of value h is calculated
by different orbits corresponding to different parameter
conditions in the phase portraits from Figures 1 to 13.

ω2
� 2

��������������

h + c2 − bϕ2 − kϕ


− ϕ2 + 2c ,

dϕ
dζ

� ω �

��������������������������

2
��������������

h + c2 − bϕ2 − kϕ


− ϕ2 + 2c( 



.

(10)

To write this equation as integral form,


dϕ

��������������������������

2
��������������

h + c2 − bϕ2 − kϕ


− ϕ2 + 2c( 

 �  dζ .
(11)

As it is very difficult to solve the left integral directly, we
believe that square root F � h + c2 − bϕ2 − kϕ plays a critical
role in our discussion. If F is a perfect square of the function
ϕ, we can obtain analytical solution because of the simplicity
of the integral. If F is a complete square, then the algebraic
expression in the first root in the above formula becomes
rational, and the integration is relatively easy solution.

3.1. Analytical Solution. Supporting that

F � h + c
2

− bϕ2 − kϕ � − b ϕ +
k

2b
 

2

, (12)

If we want to remove the second root sign of equation (11), we
must make F to be complete square, and the necessary and
sufficient condition for F to be completely square is also given:

Figure 8: (0, 0) is a center point from the high-order singular point
(b< 0, − b< c).

Figure 9: (0, 0) is a center point from the high-order singular point
(b< 0, 0> c).

Figure 7: (0, 0) is a center point from the high-order singular point
(b> 0, c< − b).
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dϕ

��������������

D − (ϕ −
���
− b

√
)2

 �  dζ , (13)

where D � b2 + 2c ± 2
�����
h + c2

√
≥ 0 and − D +

���
− b

√
< ϕ<D

+
���
− b

√
, b< 0. After integrating, we obtain (C is an integral

constant)

ϕ −
���
− b

√

��������������

D − (ϕ −
���
− b

√
)2

 � tan(x − c∗ t + C). (14)

3.2. Approximate Solution. If F �

��������������

h + c2 − bϕ2 − kϕ


is not
a rational function, the integral of equation (11) is
very difficult to be calculated directly. If F cannot be
expressed as a complete square, we can only carry out Taylor
expansion of F; otherwise, equation (13) cannot calculate the
integral, and the solution of the original equation cannot be
obtained.While we need to approximate nonlinear function,
our right choice is the Taylor display:

(1 + x)
α

� 1 + αx +
α(α − 1)

2!
x
2

+ · · ·

+
α(α − 1 · · · (α − n + 1))

n!
+ Rn(x),

(15)

where the remainder

Rn(x) �
α(α − 1) · · · (α − n)

(n + 1)!
(1 + θx)

α− n+1
(0< θ< 1),

F �

��������������

h + c2 − bϕ2 − kϕ


� h +
k2

4b
− b ϕ +

k

2b
 

2
⎛⎝ ⎞⎠

1/2

�
4b h + c2(  + k2

4b
− b ϕ +

k

2b
 

2
⎛⎝ ⎞⎠

1/2

�
1
2

�������������

4b h + c2(  + k2

b



1 −
4b2

4bh + 4bc2 + k2
ϕ +

k

2b
 

2
⎛⎝ ⎞⎠

1/2

.

(16)

Figure 10: +ree singular points are centers, and another is saddle
(b + c< 0, b> 2c).

Figure 11: +ree singular points are centers, and another is saddle
(b + c< 0, b< 2c).

Figure 12: b< 0, c< 0, and (ϕ11, 0) is a center.

Figure 13: b> 0, c> 0, and (ϕ11, 0) is also a center.
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Let 4b2/(4b(h + c2) + k2) � A; Taylor expansion is
��������������

h + c2 − bϕ2 − kϕ


�

��
b

A



1 − A ϕ +
k

2b
 

2
⎛⎝ ⎞⎠

1/2

�

��
b

A



1 −
1
2

A ϕ +
k

2b
 

2

+ R2(x)⎡⎣ ⎤⎦,

(17)

generally satisfying |A(ϕ + (k/2b))2|< 1,

R2(x) �
1/2(1/2 − t1)

2
1 + θA ϕ +

k

2b
 

2
⎛⎝ ⎞⎠

1/2

·

��������������

h + c2 − bϕ2 − kϕ


≈
��
b

A



1 −
1
2

A ϕ +
k

2b
 

2
⎡⎣ ⎤⎦.

(18)

Error |d|≤ (1/8)(1 + Aθ(ϕ + (k/2b)))1/2.

dϕ
dζ

�

����������������������������

2
��
b

A



−
���
bA

√
ϕ +

k

2b
 

2

− ϕ2 + 2c( 




, (19)

that is,


dϕ

�������������������������������������������������������

−
���
bA

√
k2/4b2) + 1( )ϕ2 −

���������������������������������
(A/b)kϕ − k2/4b2) + 2

�����
(b/A)


+ 2c � dζ.






(20)

Let A1 � − (
���
bA

√
(k2/4b2) + 1), B1 � −

�����
(A/k)


k, and

C1 � − (k2/4b2) + 2
���
b/A

√
+ 2c; then the above equation of

the integral becomes


dϕ

��������������

A1ϕ
2 + B1ϕ + C1

 � dζ. (21)

Approximation solution of system (6) is

ln
1
2
B1 + A1ϕ  +

��������������

A1ϕ
2 + B1ϕ + C1



�
���
A1


∗ (x − c∗ t).

(22)

v � ϕ(x − c∗ t) is the approximation solution of the
original equation.

If the order of Taylor expansion of F is higher, the ac-
curacy of the solution will be higher.

4. Conclusion

We obtain some exact solutions and some approximation
solutions of the Olver–Rosenau equation by the dynamic
systemmethod.+e original equation considered by the first
integral method and its phase-space analysis and equilib-
rium points are calculated under different parameter con-
ditions. We can derive various solutions of the original
equation relating these orbits in different phase-space
planes. Nevertheless, as there are some troubles in the course
of the calculation of these solutions because of the integral
complexity, we need to find some numerical methods for the

equation. +e precision differs from the variable order of
Taylor expansion.
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