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We investigate the exact solutions of multidimensional time-fractional nonlinear PDEs (fnPDEs) in this paper. In terms of the
fractional calculus properties and the separate variable method, we present a new homogenous balance principle (HBP) on the
basis of the (1 + 1)-dimensional time fnPDEs. Taking advantage of the new types of HBP together with fractional calculus formulas
that subtly avoid the chain rule, the fnPDEs can be reduced to spatial PDEs, and then we solve these PDEs by the fractional calculus
method and the separate variable approach. In this way, some new type exact solutions of the certain time-fractional (2 + 1)-
dimensional KP equation, (3 + 1)-dimensional Zakharov–Kuznetsov (ZK) equation, and Jimbo–Miwa (JM) equation are explicitly
obtained under both Riemann–Liouville derivatives and Caputo derivatives. -e dynamical analysis of solutions is shown by
numerical simulations of taking property parameters as well.

1. Introduction

-e fractional PDEs (fPDEs) have been more and more
widely followed with interest up to now since they can be
used to accurately describe many nonlinear stochastic
phenomena which depend on both time instant and the
previous time history in the real-time problem [1–4]. Models
set up from the fPDEs play very important roles in a range of
scientific fields, such as viscoelastic flow [5, 6], signal pro-
cessing [7, 8], control systems [9, 10], material diffusion
including normal diffusion and anomalous dif-
fusion(superdiffusion, subdiffusion, fast diffusion, and slow
diffusion) [11–15], biological mathematics [16, 17], and
magnetohydrodynamics (MHD) [18, 19]. Similarly, as some
time-fractional PDEs, the space fractional models are also
very frequently used in some elastic materials (see [20–24])
in the field of mechanical engineering. -erefore,

investigating their solutions also draws much attention from
the mathematical and physical points of view, and it can help
to concisely characterize and well understand the qualitative
features of the concerned phenomena and nonlinear pro-
cesses in various areas of natural science and engineering,
which involved the ubiquitous time memory effects [20, 21]
(including some short memories) and space viscoelastic
effects (see [22–26]), in particular many complex random
walks and material motions in the microscopic space, such
as dynamical behaviors of fractional diffusion, particles
spread in heat bath, and soft matter interaction with
viscoelasticity.

In the past few years, there were excessive studies on the
(1 + 1)-dimensional fractional nonlinear PDEs(fnPDEs), and
a lot of excellent tools were used for solving them, which
include Adomian decomposition method [27, 28], homo-
topy analysis method (HAM) [29, 30], fractional variational
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method [31, 32], Lie symmetry method [33–40], invariant
subspace method [40–44], and homogenous balance prin-
ciple (HBP) [45, 46]. Recently, a few of the above methods
were also applied to solve several (2 + 1)-dimensional
fnPDEs [47–50]. Although approximate analytic solutions
or exact solutions of some (1 + 1)-dimensional fnPDEs and
(2 + 1)-dimensional fnPDEs can be successfully obtained by
using the above methods, this is far from enough, and these
methods still have many limitations in solving more com-
plex multidimensional fnPDEs. In this paper, we suggest a
new technique to solve the following type of fnPDEs with
certain time-fractional derivatives:

z
α
t u � F x, t, u, zxu, . . . , z

m
x u( 􏼁, (1)

where x � (x1, . . . , xN), zk
xu � (zi1+···+iN u/zx

i1
1 . . . zx

iN
N ),

(1≤ k≤m, 1≤ i1 + iN ≤ k), and the index 0< α≤ 1. -e α-th
order time derivative (α ∈ (0, 1]) is well defined as an ab-
normal derivative in the real applications for explaining
short memories of evolutional physical systems; there are
several kinds of definitions of fractional derivatives, and the
two frequently used, classical, and very widely influential
definitions are still Riemann–Liouville definition and
Caputo definition (see Definitions 1 and 2). Indeed, with the
help of Riemann–Liouville derivative and Caputo derivative,
the results derived from the time-fractional PDE models are
more precise and more general in nature than those of the
integer-order ones, while the smaller the α is, the faster
effective time memory enjoys [20, 21]. When α � 1, ex-
pressions (3) and (4) are exactly in accordance with the
classical derivatives (zu/zt); however, compared with the
Riemann–Liouville type of derivative, the Caputo type of
derivative possesses weaker singularity for handling some
fractional initial problems.

Moreover, it is necessary to point out that the two
travelling wave transformations u � U(ξ)(ξ � 􏽐

N
i�1 kixi−

ω(tα/Γ(1 + α))) and u � U(ξ)(ξ � 􏽐
N
i�1 kixi − ωt), which

were often used to reduce the integer-order PDE to ODE, are
actually not valid for the fractional-order one since it had
been successfully verified that the compound fractional
derivatives disagree with the following chain rule (refer to
[45, 46, 51, 52]):

D
α
xf(g(x)) � f′(g(x))D

α
xg(x) � D

α
g(x)f(g(x)) g′(x)( 􏼁

α
,

(2)

thus, we hardly take the fractional derivative of compound
function straightly in accordance with the classical chain
rule, and the normal chain rule (see [51]) of fractional
derivatives was ineffectively applied to solve equation (1)
since it contains infinite series. -at is to say, the exact
solutions of the compound function type of equation (1)
were impossible to be obtained by the invalid chain rule (2),
and we hardly find the travelling wave solutions (even the
exact soliton solutions) of fnPDEs via the two

transformations mentioned above or some other complex
transformations such as Darboux transformation [53], bi-
linear method [54], and F-expansion method [55].

To the best of our knowledge, avoiding the invalid
fractional chain rule (2), there is no more direct and effective
method to obtain the exact solutions for equation (1). -e
exact solutions of higher-dimensional nonlinear PDEs with
time-fractional derivatives were not well obtained. -e main
difficulty is how to construct solutions to reduce the mul-
tidimensional fnPDEs to the classical spatial PDEs. Inspired
by the previous homogenous balance principle (HBP)
[45–47] including fractional calculus method [40–44, 56]
and separate variable approach, we improve the way [45–47]
and introduce a new type of HBPs for (1) so that the so-
lutions can be assumed as a general separated variable form
and (1) can be reduced to spatial PDEs, and then new type
exact solutions of some multidimensional fnPDEs will be
successfully obtained by solving these reduced PDEs in the
variable separate way under both Riemann–Liouville de-
rivatives and Caputo derivatives.

-e main contents of this paper are organized as follows.
-e definitions and properties of the fractional calculus and
fractional Laplace transformation are briefly described in
Section 2. In Section 3, based on the fractional derivative
formulas and the method of separate variable, the new
homogenous balance principle (HBP) is suggested for (1),
and in this way, the certain time-fractional (2 + 1)-dimen-
sional KP equation, (3 + 1)-dimension Zakharov–Kuznetsov
(ZK) equation, and (3 + 1)-dimension Jimbo–Miwa (JM)
equation are reduced to the spatial PDEs and explicitly
solved in general separated variable forms; we can see that
some of these solutions possess new types including some
arbitrary functions which were never attained before by
other way, which means more general solutions are ob-
tained. Furthermore, there are real differences between the
Riemann–Liouville case and the Caputo case: the singularity
occurs in solutions under Riemann–Liouville derivatives but
no singularity appears in solutions under Caputo deriva-
tives. -e dynamical profiles of these solutions are displayed
as can be seen from Figures 1–13 with property parameters,
and we also analyze the long time behaviors for some of
them as well.-e last section is the conclusions of our works.

2. Preliminaries

In this section, we recall some useful definitions, properties,
and theorem.

2.1. Definitions and Properties of Two Type Fractional
Derivatives

Definition 1. -e Riemann–Liouville fractional derivative of
order α> 0 is defined by the following expression:
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RL
z
α
t u(x, t) �

1
Γ(n − α)

zn

ztn
􏽚

t

0
(t − τ)

n− α− 1
u(x, τ)dτ, (n � [α] + 1),

znu(x, t)

ztn
, (n � α).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

Definition 2. -e Caputo fractional derivative of order α> 0
is defined by the following expression:

C
z
α
t u(x, t) �

1
Γ(n − α)

􏽚
t

0
(t − τ)

n− α− 1z
nu(x, τ)

zτn
dτ, (n � [α] + 1),

znu(x, t)

ztn
, (n � α).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

Proposition 1. Some properties of the fractional derivative:

(i) RD
α
t c � c(t− α/Γ(1 − α)) (c is a constant)

(ii) CD
α
t c � 0 (c is a constant)

(iii) Dα
t (􏽐

n
k�1 ckfk(t)) � 􏽐

n
k�1 ckDα

t fk(t) (ck are
constants)

(iv) Dα
t tμ � (Γ(1+μ)/Γ(1+μ − α))tμ− α,(μ≠α − 1) holds

for μ> − 1 under the Riemann–Liouville case and
μ>0 under the Caputo case (5).

Proposition 2. ;e rules of the partial fractional derivative
of a separate variable form:

(i) For φ(t)≠Const, Dα
t f(x)φ(t) � f(x)Dα

t φ(t).
(ii) For φ(t) � 1,

D
α
t f(x) �

f(x)
t− α

Γ(1 − α)
, (under Riemann–Liouville derivative),

0, (under Caputo derivative).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

2.2.DefinitionsofMittag-LefflerFunctionandSomeProperties

Definition 3. -e Mittag-Leffler function is defined by the
infinity series expression:

Eα,β(z) � 􏽘

∞

k�0

zk

Γ(αk + β)
􏼠 􏼡, (6)

with α> 0 and β> 0.
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Figure 1: Dynamical profiles of solution (28) on the (x, t, u)-plane when (a) α � (1/3) and (b) α � (2/3).
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Proposition 3. ;e properties of the Mittag-Leffler function:

(i) E1,1(z) � ez,
(ii) D

c
t (t(αk+β− 1)E

(k)
α,β(λtα)) � t(αk+β− c− 1)E

(k)
α,β− c(λtα),

(iii) CD
α
t Eα,1(λtα) � λEα,1(λtα),

(iv) RD
α
t Eα,1(λtα) � (t− α/Γ(1 − α)) + λEα,1(λtα),

(v) ;e Mittag-Leffler function Eα,1(λtα) is increasing as
λ> 0while decreasing as λ< 0whenα> 0 (Definition 3).

;e brief proof of (iii) and (iv) is given as follows.
For the Caputo derivatives, we have

C
D

α
t Eα,1 λt

α
( 􏼁 �

C
D

α
t 􏽘

∞

k�0

λtα( )
k

Γ(αk +1)
� 􏽘
∞

k�0

λk CD
α
t tkα􏼐 􏼑

Γ(αk +1)

� λ􏽘
∞

k�1

λk− 1(Γ(αk +1)/Γ(αk +1 − α))t(k− 1)α

Γ(αk +1)

� λ􏽘
∞

n�0

λtα( )
n

Γ(αn +1)

� λEα,1 λt
α

( 􏼁.

(7)

For the Riemann–Liouville derivatives, we obtain

R
D

α
t Eα,1 λt

α
( 􏼁 �

R
D

α
t 􏽘
∞

k�0

λtα( )
k

Γ(αk + 1)
� 􏽘
∞

k�0

λk RD
α
t tkα( 􏼁

Γ(αk + 1)

�
t− α

Γ(1 − α)
+ λ 􏽘
∞

k�1

λk− 1(Γ(αk + 1)/Γ(αk + 1 − α))t(k− 1)α

Γ(αk + 1)

�
t− α

Γ(1 − α)
+ λ 􏽘
∞

n�0

λtα( )
n

Γ(αn + 1)
�

t− α

Γ(1 − α)
+ λEα,1 λt

α
( 􏼁.

(8)

These achieve (iii) and (iv) in Proposition 3.

3. HBP for Some Multidimensional Time-
Fractional PDEs

In the beginning of this section, we improve the previous
way to construct exact solutions to some multidimensional
time-fractional nonlinear PDEs (1) according to ideas of
homogenous balance and the fractional properties (5).

-e main procedures are stated as follows:

Step 1. As can be seen from the properties of power
function and Mittag-Leffler function in Section 2 and
motivated by the HBP of (1 + 1)-dimensional time-
fractional nonlinear PDE, for equation (1), we suppose
the exact solutions as the following two types:

(1) For the Riemann–Liouville case:

u � a0t
μ1 + a1v x1, . . . , xN( 􏼁t

μ2 , μ1, μ2 ≠ α − 1. (9)

(2) For the Caputo case:

u � a0 + a1v x1, . . . , xN( 􏼁Eα,1 λt
α

( 􏼁. (10)

Here μ1, μ2, and λ are undetermined parameters and
v(x1, . . . , xN) is a undetermined function.
Step 2. Substituting (9) or (10) into equation (1) by
comparing the powers of t or the coefficients of
Eα,1(λtα), we have parameters μ1, μ2, or λ and the re-
duced spatial PDE system for v(x1, . . . , xN):

v x1, . . . , xN( 􏼁 � Φ x, t, v, zxv, . . . , z
m
x v( 􏼁, (11)

where

x � x1, . . . , xN( 􏼁, z
k
xv �

zi1+···+iN v

zx
i1
1 . . . zx

iN
N

, 1≤ k≤m, 1≤ i1 + iN ≤ k.

(12)

Step 3. Solving the reduced PDE system (10) by using
complex transformation ξ � c0 + 􏽐

N
i�1 cixi or a separate

variable approach (in product or summary form) leads
to the exact solutions.

Remark 1. When μ1, μ2 � α − 1, singular solutions will ap-
pear under the Riemann–Liouville derivative and while
solutions appear, no singularity will be obtained in the
Caputo sense. t should involve minus power, thereby the
assumption (9) fits for the Riemann–Liouville derivative,
and since the fractional derivative of Mittag-Leffler function
includes an additional term (t− α/Γ(1 − α)) under the Rie-
mann–Liouville derivative, this will complicate the calcu-
lation of solutions, and the assumption (10) fits for the
Caputo derivative.

We will study time-fractional (2 + 1)-dimensional KP
equation, (3 + 1)-dimensional ZK equation, and JM equation
in the following paragraphs.

3.1. HBP for the (2 + 1)-Dimensional Time-Fractional KP
Equation. We first begin with the (2 + 1)-dimensional
fractional KP equation:

z
α
t u − 6uux + uxxx( 􏼁x + 3uyy � 0, 0< α≤ 1, (13)

which developed from the classical KdV equation, describes
long dispersive wave propagating in two dimension in
shallow water.

3.1.1. Exact Solutions under Riemann–Liouville Derivatives.
According to (9), we suppose the exact solutions as

u � a0t
μ1 + a1v(x, y)t

μ2 , (14)

where a0, a1, μ1, and μ2 are the undetermined constants.
Balancing the coefficients of t-power yields the following

two subcases:

Subcase I

μ2 − α � μ1 + μ2 � 2μ2. (15)
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-us, μ1 � μ2 � − α.
Substituting (15) into (14) by comparing the coefficients
of t− α and t− 2α yields

Ω0vx � 6 a0 + a1v( 􏼁vxx + 6a1v
2
x, Ω0 �

Γ(1 − α)

Γ(1 − 2α)
􏼠 􏼡,

(16a)

vxxxx + 3vyy � 0. (16b)

-en, integrating (16a) corresponding to variable x

once by selecting an integrate constant 0 leads to

dv

dx
�
Ω0v

6 a0 + a1v( 􏼁
. (17)

-is gives rise to the implicit relation:

6 a0ln v + a1v( 􏼁 � Ω0(x + ϕ(y)), (18)

where ϕ(y) is an undetermined function.
Calculating the derivatives of implicit function (18)
reads that

vxxxx �
a0Ω40 6a2

1v
2 − 8a0a1v + a2

0( 􏼁v

1296 a7
1v

7 + 7a0a
6
1v

6 + 21a2
0a

5
1v

5 + 35a3
0a

4
1v

4 + 35a4
0a

3
1v

3 + 21a5
0a

2
1v

2 + 7a6
0a1v + a7

0( 􏼁
, (19a)

vyy �
Ω0 Ω0a0ϕ′(y)2 + 6 a0 + a1v( 􏼁

2ϕ′′(y)v2􏼐 􏼑v

36 a3
1v

3 + 3a0a
2
1v

2 + 3a2
0a1v + a3

0( 􏼁
. (19b)

Plugging (19a) and (19b) into (15), we have
a0 � 0,

ϕ′′(y) � 0,
(20)

which leads to the solution of (15)

v(x, y) �
Ω0
6a1

x + b1y + b2( 􏼁, (21)

with arbitrary constants a1, b1, and b2 and the exact
solution of (11)

u(t, x, y) � a0 +
Γ(1 − α)

6Γ(1 − 2α)
x + b1y + b2( 􏼁􏼢 􏼣t

− α
, α≠

1
2

􏼒 􏼓,

(22)

where c1 and c2 are the arbitrary constants.
Subcase II. μ2 − α � 2μ2 and μ1 + μ2 � μ2.
-us, μ1 � 0 and μ2 � − α.
Similarly as above, substituting (13) into (11) by
comparing the coefficients of t− α and t− 2α yields

Ω0vx � 6a1vvxx + 6a1v
2
x, Ω0 �

Γ(1 − α)

Γ(1 − 2α)
􏼠 􏼡, (23a)

vxxxx + 6a0vxx + 3vyy � 0. (23b)

-en, integrating (23a) corresponding to variable x by
choosing an integrate constant 0 once leads to

Ω0v � 6a1vvx. (24)

Since v≠ 0 (only nontrivial solutions are considered),
we have

dv

dx
�
Ω0
6a1

, (25)

which give rises to

v �
Ω0
6a1

x + ϕ(y). (26)

Plugging (26) into (23b) yields

ϕ(y) � c1y + c2. (27)

By rewriting b1 � a1c1 and b2 � a2c2, we have the exact
solution

u(t, x, y) � a0 +
Γ(1 − α)

6Γ(1 − 2α)
x + b1y + b2􏼠 􏼡t

− α
, α≠

1
2

􏼒 􏼓,

(28)

where a0, b1, and b2 are the arbitrary constants.

Remark 2. We have the same type solutions under the
complex transformation ξ � c1x + c2y + c0, so this case is
omitted here.

3.1.2. Exact Solutions under Caputo Derivatives.
According to (10), we assume the exact solutions formed
as

u � a0 + a1v(x, y)Eα,1 λt
α

( 􏼁. (29)

Substituting (29) into (11) by comparing the coefficients
of Eα,1(λtα) leads to
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λa1vx + a1vxxxx + a0vxx + 3a1vyy � 0, (30a)

vvxx � v
2
x. (30b)

We consider the following two cases:

Case I. By using the total differential rule, from (30b),
we have

vvxx − v2x
v2

�
vx

v
􏼒 􏼓

x
� 0. (31)

Integrating (31) leads to

vx � C(y)v. (32)

-us,

v � ϕ(y)e
C(y)x

, (33)

where ϕ(y) andC(y) are the undetermined functions.
Plugging (33) into (30a) yields

ϕ′′(y) +
cλ + c4 + a0c

2

3
ϕ(y) � 0. (34)

-en, we have following three type solutions:

(i) δ � cλ + c4 + a0c
2 < 0.

We obtain ϕ(y) � c1e
−

�����
− (δ/3)

√
y + c2e

�����
− (δ/3)

√
y and

the exact solution

u(t,x,y)�a0+ c1e
cx−

����
− (δ/3)

√
y

+c2e
cx+

����
− (δ/3)

√
y

􏼒 􏼓Eα,1 λt
α

( 􏼁,

(35)

where a0, c, c1, and c2 are the arbitrary constants.
(ii) δ � cλ + c4 + a0c

2 > 0.
We obtain the exact solution

u(t, x, y) � a0 + c1 cos

�

δ
3

􏽳

y⎛⎝ ⎞⎠⎛⎝

+ c2 sin

�

δ
3

􏽳

y⎛⎝ ⎞⎠⎞⎠e
cx

Eα,1 λt
α

( 􏼁,

(36)

where a0, c, c1, and c2 are the arbitrary constants.
(iii) δ � cλ + c4 + a0c

2 � 0.
We obtain ϕ(y) � c1y + c2 and the exact solution

u(t, x, y) � a0 + c1y + c2( 􏼁e
cx

Eα,1 λt
α

( 􏼁, (37)

where a0, c, c1, and c2 are the arbitrary constants.
Case II. Using the complex differential transformation
ξ � c1x + c2y + c0 on (30a) and (30b), we have

c
4
1v

(4)
(ξ) + a0c

2
1 + 3c

2
2􏼐 􏼑v′′(ξ) + λc1v′(ξ) � 0, (38a)

v(ξ)v′′(ξ) � v′
2
(ξ). (38b)

Solving (38b) similarly as (25) yields

v(ξ) � re
cξ

. (39)

Taking (39) into (38a), we obtain c41c
3 + (a0c

2
1 + 3c22)c +

λc1 � c0 and the exact solution by rewriting
a � a1recc0 , b1 � cc1, b2 � cc2

u(t, x, y) � a0 + ae
b1x+b2y( )Eα,1 λt

α
( 􏼁, (40)

where a0, a, b1, and b2 are the arbitrary constants.

Remark 3. (33) contains product forms of separate variable
v � f(x)g(y), and for omitting the trivial solution, we do
not consider the summary form of a separate variable
v � f(x)g(y).

Remark 4. -e singularity only appears when α � (1/2) in
solutions (22) and (28) in the Riemann–Liouville case.

3.1.3. Dynamical Analysis of Exact Solution for Fractional KP
Model. Under the Riemann–Liouville case:

As can be seen from Figure 1, taking parameters α �

(1/3) and α � (2), a0 � 1, b1 � 2, b2 � 1, y � 1, and interval
x ∈ [− 10, 10], t ∈ [0, 10], it is shown that solution (28) in-
creases with increase in the spatial variable and decreases
with increase in time. When x and y are fixed, the solution
tends to 0 at an α decay rate as t⟶∞, the larger the α is,
the faster the u decay is.

Under the Caputo case:

(i) As can be seen from Figure 2, choosing c1 � 1, c2 �

− 2, c � 1, λ � − 2, α � (1/2), δ � − 1, y � 2, x ∈
[− 10, 10], t ∈ [0, 10], and x � 2, y ∈ [− 10, 10], t ∈
[0, 10], it is shown that solution (35) decreases with
increase in time-space since slope (ux < 0) or
(uy < 0); however, it is unbounded as x or y tends to
∞.

(ii) As we see from Figure 3, selecting
c1 � 1, c2 � − 2, c � 2, λ � 12, α � (1/2), δ � − 1, y �

2, x ∈ [− 10, 10], t ∈ [0, 10], and x � 2, y ∈
[− 30, 10], t ∈ [0, 10], solution (36) decreases as time
increases, periodic bounded as y, t tends to∞ if x is
fixed while unbounded as x, and t tends to∞ if y is
fixed.

(iii) As we see from Figure 4, choosing c1 �1,c2 �− 2,c�

1,λ�− 1,α� (1/2),δ�0,y�3,x∈[− 10,10],t∈[0,10],
and x�2,y∈[− 10,10],t∈[0,10], solution (37) de-
creases as time increases and unbounded as time-
space tend to ∞.
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Figure 2: Dynamical profiles of solution (35) on (a) the (x, t, u)-plane and (b) the (y, t, u)-plane.

10
5 10

×108

8

x
0 6

t
4–5 2

–10 0

0

1

2

3

4

5

u

(a)

40
20 30

y
0 20

t–20 10
–40 0

–150

–100

–50

0

50

100

150

u

(b)

Figure 3: Dynamical profiles of solution (36) on (a) the (x, t, u)-plane and (b) the (y, t, u)-plane.
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Figure 4: Dynamical profiles of solution (37) on (a) the (x, t, u)-plane and (b) the (y, t, u)-plane.
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3.2. HBP for the (3 + 1)-Dimensional Fractional ZK Equation

3.2.1. Exact Solutions under Riemann–Liouville Derivatives.
-e (3 + 1)-dimensional fractional ZK equation is investi-
gated in this section.

z
α
t u + puux + quzzz + ruxxz + suyyz � 0, 0< α≤ 1,

(41)

which represented the acoustic dynamics in a magnetized
plasma in three-dimensional space with a low pressure.

-e exact solution can be assumed as

u � a0t
μ1 + a1v(x, y, z)t

μ2 . (42)

Balancing the coefficients of t-power by plugging (42)
into (41) yields the following two cases:

Cases I. μ1 − α � μ1 + μ2 � 2μ2
-at is,

μ1 � μ2 � − α. (43)

By comparing the coefficients of t− α and t− 2α, we have

Ω0 + pa1vx � 0, Ω0 �
Γ(1 − α)

Γ(1 − 2α)
, (44a)

qvzzz + rvxxz + svyyz � 0. (44b)

By solving (44a) directly, we obtain

v(x, y, z) � −
Ω0
pa1

x + ϕ(y, z). (45)

Substituting (45) into (44b) yields

qϕzzz + sϕyyz � 0. (46)

Subcase I. Assume η � b1y + b2z + b0, then we have

qb
2
2 + sb

2
1􏼐 􏼑ϕ′′′(η) � 0. (47)

Solving (47) leads to the following two solutions:
(i) When qb22 + sb21 � 0, (sq< 0), then

u(x, y, z, t) � a0 −
Γ(1 − α)

pΓ(1 − 2α)
x + ϕ b1y + b2z + b0( 􏼁􏼢 􏼣t

− α
, α≠

1
2
,

(48)

where a0 and b0 are the arbitrary constants and ϕ
is an arbitrary function.

(ii) When ϕ � c2(η2/2) + c1η + c0, then

u(x, y, z, t) � a −
Γ(1 − α)

pΓ(1 − 2α)
x + c2

b1y + b2z + b0( 􏼁
2

2
+ c1 b1y + b2z( 􏼁􏼢 􏼣t

− α
, α≠

1
2
, (49)

where a � a0 + c0 + c1b0, c1, and c2 are the arbitrary
constants.
Subcase II. Note that (46) is a linear equation, and if
sq< 0, by the linear PDE method, we have

ϕ(y, z) � f1(y) −
2 ���

− sq
√

s
f1

y

2
−

sz

2 ���
− sq

√􏼠 􏼡

+ f2

���
− sq

√

s
y + z􏼒 􏼓,

(50)

which gives rise to exact solution when sq< 0:

u(x, y, z, t) � a0 −
Γ(1 − α)

pΓ(1 − 2α)
x + a1 f1(y) −

2 ���
− sq

√

s
f1

y

2
−

sz

2 ���
− sq

√􏼠 􏼡 + f2

���
− sq

√

s
y + z􏼒 􏼓􏼠 􏼡􏼢 􏼣t

− α
, α≠

1
2
, (51)

where a0 and a1 are the arbitrary constants and
f1andf2 are the two arbitrary functions.
Subcase III. According to the linear PDE method, we
assume the solution of (46) as a product form of a
separate variable ϕ(y, z) � f(y)g(z), thus

qg′′′(z) � c0g′(z), sf′′(y) + c0f(y) � 0, (52)

where c0 is an arbitrary constant.
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By solving them directly, we obtain the following four
solutions (67)–(70) where a0, a1, c1, c2, c3, c4, and c5
are the arbitrary constants and α≠ (1/2):

(i) ϕ � (c1 sin(
�����
(c0/s)

􏽰
y)) + (c2 cos(

�����
(c0/s)

􏽰
y)

(c3 + c4 sin(
�������
− (c0/q)

􏽰
z) + c5 cos(

�������
− (c0/q)

􏽰
z))),

u(x, y, z, t) � a0 −
Γ(1 − α)

pΓ(1 − 2α)
x + a1 c1 sin

��
c0
s

􏽲

y􏼠 􏼡 + c2 cos
��
c0
s

􏽲

y􏼠 􏼡􏼠 􏼡 c3 + c4 sin −

��
c0
q

􏽲

z􏼠 􏼡 + c5 cos −

��
c0
q

􏽲

z􏼠 􏼡􏼠 􏼡􏼢 􏼣t
− α

.

(53)

(ii) ϕ � (c1 sin(
�����
(c0/s)

􏽰
y) + c2 cos(

�����
(c0/s)

􏽰
y)

(c3 + c4e
����
(c0/q)

√
z + c5e

−
����
(c0/q)

√
z)),

u(x, y, z, t) � a0 −
Γ(1 − α)

pΓ(1 − 2α)
x + a1 c1 sin

��
c0

s

􏽲

y􏼠 􏼡 + c2 cos
��
c0

s

􏽲

y􏼠 􏼡􏼠 􏼡 c3 + c4e

����
c0/q( )

􏽰
z

+ c5e
−

����
c0/q( )

􏽰
z

􏼒 􏼓􏼢 􏼣t
− α

. (54)

(iii) ϕ � (c1e
�����
− (c0/s)

√
y + c2e

−
�����
− (c0/s)

√
y)

(c3 + c4 sin(
�������
− (c0/q)

􏽰
z) + c5 cos(

�������
− (c0/q)

􏽰
z)),

u(x, y, z, t) � a0 −
Γ(1 − α)

pΓ(1 − 2α)
x + a1 c1e

�����
− c0/s( )

􏽰
y

+ c2e
−

�����
− c0/s( )

􏽰
y

􏼒 􏼓 c3 + c4 sin
���

−
c0
q

􏽲

z􏼠 􏼡􏼠 􏼡 + c5 cos
���

−
c0
q

􏽲

z􏼠 􏼡􏼢 􏼣t
− α

.

(55)

(iv) ϕ � (c1e
�����
− (c0/q)

√
y + c2e

−
�����
− (c0/q)

√
y)(c3 +

c4e
����
(c0/q)

√
z + c5e

−
����
(c0/q)

√
z),

u(x, y, z, t) � a0 −
Γ(1 − α)

pΓ(1 − 2α)
x + a1 c1e

�����
− c0/s( )

􏽰
y

+ c2e
−

�����
− c0/s( )

􏽰
y

􏼒 􏼓 c3 + c4e

����
c0/q( )

􏽰
z

+ c5e
−

����
c0/q( )

􏽰
z

􏼒 􏼓􏼢 􏼣t
− α

. (56)

Subcase IV. We can also assume the solution of (47) as a
summary form of a separate variable
ϕ(y, z) � f(y) + g(z), then

g′′′(z) � 0. (57)

-us,

g(z) �
c22z

2

2
+ c1z + c0, (58)

which leads to the exact solution by rewriting
b2 � a1c

2
2, b1 � a1c1 and a � a0 + a1c0:

u(x, y, z, t) � a −
Γ(1 − α)

pΓ(1 − 2α)
x + a1f(y) +

b2z
2

2
+ b1z􏼠 􏼡t

− α
, α≠

1
2
,

(59)

where a, a1, b2, and b1 are the arbitrary constants and
f(y) is an arbitrary function.

Cases II. μ2 − α � 2μ2 and μ1 − α � μ1 + μ2.
By balancing equation (41), we have

μ1 � 0,

μ2 � − α.
(60)

Comparing the coefficients of t− α and t− 2α yields

a0ω0 + pa0a1vx + qa1vzzz + ra1vxxz + sa1vyyz � 0,

ω0 �
1
Γ(1 − α)

,

(61a)

Ω0v + pa1vvx � 0, Ω0 �
Γ(1 − α)

Γ(1 − 2α)
. (61b)

Solving (61b) leads to the following form:
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v � −
Ω0
pa1

x + ϕ(y, z). (62)

Substituting (62) into (61a) leads to

qa1ϕzzz + sa1ϕyyz � a0 Ω0 − ω0( 􏼁. (63)

(i) Considering the complex transformation
η � b1y + b2z + b0, we obtain

a1b2 qb
2
2 + sb

2
1􏼐 􏼑ϕ′′′(η) � a0 Ω0 − ω0( 􏼁. (64)

Solving (81a) and (81b) leads to

ϕ(η) �
a0 Ω0 − ω0( 􏼁

6a1b2 qb22 + sb21( 􏼁
η3 +

c2

2
η2 + c1η + c0. (65)

-en, we obtain the exact solution

u(t, x, y, z) � a0 + −
Γ(1 − α)

pΓ(1 − 2α)
x +

a0((Γ(1 − α)/Γ(1 − 2α)) − (1/Γ(1 − α)))

6b2 qb22 + sb21( 􏼁
b1y + b2z + b0( 􏼁

3
+

a1c2
2

b1y + b2z + b0( 􏼁
2

􏼢

+ a1c1 b1y + b2z + b0( 􏼁 + a1c0􏼃t
− α

, α≠
1
2
,

(66)

where a0, b1, b2, a1, c0, c1, and c2 are the arbitrary
constants.

(ii) Note that (63) is a linear equation, and by the linear
PDE method, we have

ϕ(y, z) � f1(y) +
12f2((

���
− sq

√ /s)y + z)sqa1 − 24f1((y/2) − (sz/2 ���
− sq

√
))

���
− sq

√
qa1 + a0 Ω0 − ω0( 􏼁sz3 + 3qa0 Ω0 − ω0( 􏼁zy2

12sqa1
,

(67)

which leads to the exact solution

u(t, x, y, z) � a0 + −
Ω0
p

x + a1f1(y) +
12f2((

���
− sq

√ /s)y + z)sqa1 − 24f1((y/2) − (sz/2 ���
− sq

√
))

������
− sqqa1

√
+ a0 Ω0 − ω0( 􏼁sz3 + 3qa0 Ω0 − ω0( 􏼁zy2

12sq
􏼠 􏼡t

− α
, α≠

1
2
,

(68)

where a0 and a1 are constants and f1 andf2 are the
two arbitrary functions.

(iii) Using summary form of the separate variable ϕ �

f(y) + g(z) yields

qa1g′′′(z) � a0 Ω0 − ω0( 􏼁. (69)

Solving (69) directly, we arrive at

g(z) �
a0 Ω0 − ω0( 􏼁

6qa1
z
3

+
b2

2
z
2

+ b1z + b0, (70)

which gives rise to the exact solution

u(t, x, y, z) � a0 + −
Γ(1 − α)

pΓ(1 − 2α)
x + a1f(y) +

a0

6q

Γ(1 − α)

Γ(1 − 2α)
−

1
Γ(1 − α)

􏼠 􏼡z
3

+ a1
b2

2
z
2

+ a1b1z + a1b0􏼠 􏼡t
− α

, α≠
1
2
,

(71)

where a0, a1, b2, b1, and b0 are the arbitrary con-
stants and f(y) is an arbitrary function.

(iv) When a0 � 0, using the product form of the separate
variable ϕ � f(y)g(z) yields

qf(y)g′′′(z) + sf′′′(y)g(z) � 0, (72)

which give rises to

f′′(y) � c0f(y), qg′′′(z) + sc0g(z) � 0. (73)

From (73), we have
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g(z) � c1e

����
− sc0q23

√
/q( )z

+ e

����
− sc0q23

√
/2q( )z

c2 cos
�
3

√ ������
− sc0q

23
􏽰

2q
z􏼠 􏼡 + c3 sin

�
3

√ ������
− sc0q

23
􏽰

2q
z􏼠 􏼡􏼠 􏼡, (74)

and following three solutions (75)–(77) where
a1, b1, b2, c1, c2, and c3 are constants and α≠ (1/2):

(i) If c0 > 0, then

u(t, x, y, z) � −
Γ(1 − α)

pa1Γ(1 − 2α)
x + b1e

−
��
c0

√
y

+ b2e
��
c0

√
y

􏼐 􏼑c1e

����
− sc0q23

√
/q( )z

+ e

����
− sc0q23

√
/2q( )z

c2 cos
�
3

√ ������
− sc0q

23
􏽰

2q
z􏼠 􏼡􏼠􏼨

+ c3 sin
�
3

√ ������
− sc0q

23
􏽰

2q
z􏼠 􏼡􏼡􏼩t

− α
.

(75)

(ii) If c0 < 0, then

u(t, x, y, z) � −
Γ(1 − α)

pa1Γ(1 − 2α)
x + b1 cos

����
− c0y

√
( 􏼁 + b2 sin

����
− c0y

√
( 􏼁 c1e

����
− sc0q23

√
/q( )z

+ e

����
− sc0q23

√
/2q( )z

c2 cos
�
3

√ ������
− sc0q

23
􏽰

2q
z􏼠 􏼡􏼠􏼢􏼠􏼨

+ c3 sin
�
3

√ ������
− sc0q

23
􏽰

2q
z􏼠 􏼡􏼡􏼣􏼩t

− α
.

(76)

(iii) If c0 � 0, then

u(t, x, y, z) � −
Γ(1 − α)

pa1Γ(1 − 2α)
x + b1y + b2( 􏼁 c1z

2
+ c2z + c3􏼐 􏼑􏼠 􏼡t

− α
. (77)

Remark 5. In case I, we do not concern the complex transform
ξ � ax + by + cz + d for (48) contains solutions of this type.

Remark 6. In case II, we do not consider the complex transform
ξ � ax + by + cz + d for omitting the trivial solution.

Remark 7. -e singularity only appears when α � (1/2) in
solutions (53)–(56), (66), (68), (71), and (76)–(78) in the
Riemann–Liouville case.

Remark 8. If taking form (10) into the fractional ZK model
(41), we see that the nonlinear term uux will lead to trivial
solutions, thus the Caputo derivative is not considered.

3.2.2. Dynamical Analysis of Exact Solution for Fractional ZK
Model

(i) As can be seen from Figure 5, taking α � (3/5), a �

3, a0 � c0 � 1, c1 � (1/2), b0 � 2, b1 � 1, b2 � − 2,

c2 � 2, t ∈ [0, 10], y � 1.5, z � 2.5, x ∈ [− 10, 10],
x � − 2.5, z � 2.5, y ∈ [− 10, 10], and x � − 2.5, y �

1.5, z ∈ [− 10, 10], it is shown that solution (49)
increases with increase in spatial variables and
decreases as time increases. When x, y, and z are
fixed, solution (49) tends to 0 at α decay rate as
t⟶∞, the larger the α is, the faster the u decay is.

(ii) From Figure 6, by taking α � (2/5), a0 � (1/2), a1 �

2, c1 � 1.5, c2 � − 2, c3 � − 3, c4 � − 2.5, c5 � 1, c0 �

2, p � 3, s � q � 1/2, t ∈ [0, 30], x � − 2.5, z � 2.5,

y ∈ [− 30, 30] and t ∈ [0, 10], and x � − 2.5, y �

1.5, z ∈ [− 10, 10], we see solution (54) is periodic
bounded and tends to 0 at α decay rate as y and t
tend to∞ if x and z are fixed.-e larger the α is, the
faster the u decay is. When x and y are fixed, so-
lution (54) decreases to − ∞ as z increases to +∞.

(iii) As can be seen from Figure 7, selecting
α � (2/3), p � 3, a0 � 2, a1 � 1, b1 � 2, b2 � − 1, b0 �

3, c0 � 1, c1 � (1/2), c2 � 2, q � s � (1/2), t ∈
[0, 10], y � 1.5, z � 2.5, x ∈ [− 10, 10] , x � − 2.5, z �

2.5, y ∈ [− 10, 10], and x � − 2.5, y � 1.5, z ∈
[− 10, 10], while from Figure 8 by choosing
α � (2/3), p � 3, a1 � 1, b1 � 1, b2 � − 1.5, c1 � 1.5,
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c2 � 2, c3 � − 2.5, c0 � 2, s � 8, q � 2, t ∈ [0, 10],

y � 1.5, z � 2.5, x ∈ [− 10, 10], x � − 2.5, z � 2.5,

y ∈ [− 10, 10], and x � − 2.5, y � 1.5, z ∈ [− 10, 10],
it is shown that solutions (66) and (75) increase to

∞ or decrease to − ∞ as x, y, or z increases to ∞,
and ones also tends to 0 at α decay rate as t⟶∞ if
x, y, and z are fixed.-e larger the α is, the faster the
u decay is.
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Figure 5: Dynamical profiles of solution (49) on (a) the (x, t, u)-plane, (b) the (y, t, u)-plane, and (c) the (z, t, u)-plane.
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Figure 6: Dynamical profiles of solution (54) on (a) the (y, t, u)-plane and (b) the (z, t, u)-plane.
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Figure 7: Dynamical profiles of solution (66) on (a) the (x, t, u)-plane, (b) the (y, t, u)-plane, and (c) the (z, t, u)-plane.
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Figure 8: Continued.
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(iv) From Figure 9, as we choose α � (2/3), p � 1, a1 �

3, b1 � 1, b2 � − 1.5, c0 � 2, c1 � 1, c2 � 2, c3 � − 2.5,

s � 8, q � 2, x � z � − 2.5, y ∈ [− 30, 30], t ∈ [0, 30],
the solution (76) is periodic bounded and has α
decay rate as t⟶∞ if x and z are fixed, and one
has the same dynamical properties as (54) if else.

3.3. HBP for the (3 + 1)-Dimensional Fractional JM Equation.
-e (3 + 1)-dimensional fractional JM equation will be
researched in the following contents:

uxxxy + puyuxx + quxuxy + rz
α
t uy − suxz � 0, 0< α≤ 1,

(78)

which is developed from the second members of integrable
systems of the classical KP hierarchy.

3.3.1. Exact Solutions under Caputo Derivatives. Assume

u � a0 + a1v(x, y, z)Eα,1 λt
α

( 􏼁. (79)

Injecting (79) into (78), we arrive at

vxxxy + rλvy − svxz � 0, (80a)

pvyvxx + qvxvxy � 0. (80b)

(i) We assume that v � v(ξ), ξ � ax + by + cz + d, then
(80a) and (80b) becomes the following ODEs:

a
3
bv

(4)
(ξ) + rλbv′(ξ) − sacv′′(ξ) � 0, (81a)

(p + q)v′(ξ)v′′(ξ) � 0. (81b)

When q � − p, (81b) is a free equation, and then solving
(81a), we have following solutions by noting

Δ �

�����������������������������

(
�
3

√
(

���������������
27r2λ2b3 − 4s3c3/b

􏽰
) − 9rλb)

3
􏽱

b2,

v(ξ) �
c0

bλr
+ c1e

12(1/3)Δ2+12(2/3)scb/6abΔ( )ξ + e
− 12(1/3)Δ2+12(2/3)scb/12abΔ( )ξ c2 cos

�
3

√
12(1/3)Δ2 − 12(2/3)scb( 􏼁

12abΔ
ξ􏼠 􏼡􏼢

+ c3 sin
�
3

√
12(1/3)Δ2 − 12(2/3)scb( 􏼁

12abΔ
ξ􏼠 􏼡􏼣,

(82)

which leads to the exact solution:

u(t, x, y, z) � a0 + a1
c0

bλr
+ c1e

12(1/3)Δ2+12(2/3)scb/6abΔ( )(ax+by+cz+d)
+ e

− 12(1/3)Δ2+12(2/3)scb/12abΔ( )(ax+by+cz+d)
􏼚

· c2 cos
�
3

√
12(1/3)Δ2 − 12(2/3)scb( 􏼁

12abΔ
􏼠􏼢

·(ax + by + cz + d)) + c3 sin
�
3

√
12(1/3)Δ2 − 12(2/3)scb( 􏼁

12abΔ
(ax + by + cz + d)􏼠 􏼡􏼣􏼩Eα,1 λt

α
( 􏼁,

(83)
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Figure 8: Dynamical profiles of solution (75) on (a) the (x, t, u)-plane, (b) the (y, t, u)-plane, and (c) the (z, t, u)-plane.
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where a0, a1, c0, a, b, c, andd are the arbitrary
constants.

Remark 9. In case of q≠ − p, from v′′(ξ) � 0, we obtain
v′(ξ) � 0 which only leads to a trivial solution, thus we do
not consider this case.

(ii) Assume v(x, y, z) � v(η, z), (η � ax + by + c), and
from (80a) and (80b), we have

a
3
bvηηηη + rλbvη − savηz � 0, (84a)

(p + q)vηvηη � 0. (84b)

-en (84a) and (84b) yields the following two subcases

(1) If q � − p, we only consider (84a).
(i) Note that it is a linear equation, and we suppose

v(η, z) � f(η)g(z), which arrives at

a
3
bf

(4)
(η)g(z) + rλbf′(η)g(z) − saf′(η)g′(z) � 0.

(85)

Using the separate variable method, we have

g′(z) � cg(z), (86a)

a
3
bf′′′(η) +(rλb − sac)f(η) � c0. (86b)

Solving (86a) reads that

g(z) � b0e
cz

, (87)

and the solution of (86b) and the exact solution of
(78) is described as the following two cases:

If rλb≠ sac, then

f(η) �
c0

rbλ − sac
+ c1e

��������
(sac− rbλ)b2

3
√

/ab( 􏼁η
+ e

−
����������
(sac− rbλ)b2/2ab

3
√

( 􏼁η
c2 cos

�
3

√ �����������
(sac − rbλ)b23

􏽰

2ab
η􏼠 􏼡 + c3 sin

�
3

√ �����������
(sac − rbλ)b23

􏽰

2ab
η􏼠 􏼡􏼢 􏼣,

(88)

and the exact solution is

u(t, x, y, z) � a0 + a1b0
c0

rbλ − sac
+ c1e

��������
(sac− rbλ)b23

√
/ab( 􏼁(ax+by+c)

+ e
−

��������
(sac− rbλ)b23

√
/2ab( 􏼁(ax+by+c)

􏼚

· c2 cos
�
3

√ �����������
(sac − rbλ)b23

􏽰

2ab
x + by + c􏼠 􏼡􏼠 􏼡􏼢

· a + c3 sin
�
3

√ �����������
(sac − rbλ)b23

􏽰

2ab
(ax + by + c)􏼠 􏼡􏼠 􏼡e

cz
􏼩Eα,1 λt

α
( 􏼁,

(89)

where a0, a1, b0, c0, a, b, c, c1, c2, and c3 are the arbi-
trary constants.

If c � (rbλ/sa), then

f(η) �
c0
6
η3 +

c2
2
η2 + c1η + c3, (90)

and the exact solution is

u(t, x, y, z) � a0 + a
c0

6
ax + by +

rbλ
sa

􏼠 􏼡

3

+
c2

2
ax + by +

rbλ
sa

􏼠 􏼡

2

+ c1 ax + by +
rbλ
sa

􏼠 􏼡 + c3
⎛⎝ ⎞⎠e

(rbλ/sa)z
Eα,1 λt

α
( 􏼁, (91)
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Figure 9: Dynamical profiles of solution (76) on the (y, t, u)-plane.
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where a0, c0, a, b, c1, c2, and c3 are the arbitrary
constants.

(ii) Solving (84a) directly by the linear PDE method
reads that

v(η, z) � c
− (1/3)

c1e
c(1/3)η+ ba2c/s( )+(brλ/sa)( )z

+ 4e
− (1/2)c(1/3)η+ ba2c/s( )+(brλ/sa)( )z

c2 sin
�
3

√
c(1/3)

2
η􏼠 􏼡 + c3 cos

�
3

√
c(1/3)

2
η􏼠 􏼡􏼠 􏼡􏼢 􏼣 + f(z),

u(t, x, y, z) � a0 + a1 c
− (1/3)

c1e
c(1/3)(ax+by+c)+ ba2c/s( )+(brλ/sa)( )z

+ 4e
− (1/2)c(1/3)(ax+by+c)+ ba2c/s( )+(brλ/sa)( )z

􏼔􏼚

· c2 sin
�
3

√
c(1/3)

2
(ax + by + c)􏼠 􏼡 + c3 cos

�
3

√
c(1/3)

2
(ax + by + c)􏼠 􏼡􏼠 􏼡􏼣 + f(z)􏼩Eα,1 λt

α
( 􏼁,

(92)

where a0, a1, a, b, c, c1, c2, and c3 are the arbitrary
constants and f(z) is an arbitrary function.

(iii) Assume v(η, z) � f(η) + g(z), and from (84a),
we have

a
3
f

(4)
(η) + rλf′(η) � 0, (93)

and then

a
3
f′′′(η) + rλf(η) � c0. (94)

By solving (94), we have

f(η) �
c0

rλ
+ c1e

−
��
rλ3√ /a( )η + e

��
rλ3√ /2a( )η c2 cos

�
3

√ ��
rλ3

√

2a
η􏼠 􏼡􏼠

+ c3 sin
�
3

√ ��
rλ3

√

2a
η􏼠 􏼡􏼡,

(95)

and the exact solution

u(t, x, y, z) � a0 + a1
c0
rλ

+ c1e
−

��
rλ3√ /a( )(ax+by+c)

+ e
��
rλ3√ /2a( )(ax+by+c)

c2 cos
�
3

√ ��
rλ3

√

2a
(ax + by + c)􏼠 􏼡􏼠􏼢

+ c3 sin
�
3

√ ��
rλ3

√

2a
(ax + by + c)􏼠 􏼡 + g(z)􏼡􏼣Eα,1 λt

α
( 􏼁,

(96)

where a0, a1, a, b, c, c1, c2, and c3 are the arbitrary
constants and g(z) is an arbitrary function.

(2) If q≠ − p, then for the nontrivial case, we have
vηη � 0, and this leads to

v � f1(z)η + f2(z). (97)

-en, substituting (97) into (84a), we have

rλbf1(z) − saf1′ (z) � 0, (98)

which yields

f1(z) � c0e
(rλb/sa)z

. (99)

-is gives rise to the exact solution

u(t, x, y, z) � a0 + a1 c0e
(rλb/sa)z

(ax + by + c)􏼐

+ f2(z)􏼁Eα,1 λt
α

( 􏼁,
(100)

where a0, a1, c0, a, b, and c are the arbitrary con-
stants and f2(z) is an arbitrary function.

(III) Assume v � f(x, z) + g(y, z).
-en, from (84a) and (84b), we arrive at

gyfxx � 0, (101a)

rλgy − sfxz � 0. (101b)

For the nontrivial case, we obtain

fxx � 0⇒f � f1(z)x + f2(z). (102)

Injecting (102) into (101b) yields

g �
s

rλ
f1′ (z)y + g0(z), (103)

which leads to the exact solution

u(t, x, y, z) � a0 + a1 f1(z)x +
s

rλ
f1′(z)y + ψ(z)􏼒 􏼓Eα,1 λt

α
( 􏼁,

(104)

where a0 and a1 are the arbitrary constants and
f1(z) andψ(z) are the two arbitrary functions.
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3.3.2. Exact Solutions under Riemann–Liouville Derivatives.
We assume

u � a0t
μ1 + a1v(x, y, z)t

μ2 , (105)

leads to μ2 − α � 2μ2 and μ2 � − α.
Substituting (105) into (78) by comparing the coefficients

of t− α and t− 2α, we have

a1 pvyvxx + qvxvxy􏼐 􏼑 + rΩ0vy � 0, Ω0 �
Γ(1 − α)

Γ(1 − 2α)
,

(106a)

vxxxy − svxz � 0. (106b)

(I) Note that (106b) is a linear equation, and we assume
the summary type of a separate variable v � f(x, z) +

g(y, z) which yields

pa1fxx + rΩ0 � 0, (107a)

fxz � 0. (107b)

-en, from (107b), we have

f(x, z) � f1(x) + f2(z). (108)

Plugging (108) into (107a), we arrive at

f1(x) � −
rΩ0
2pa1

x
2

+ c1x + c0. (109)

-is gives rise to the exact solution

u(t, x, y, z) � a0t
μ1 + −

rΓ(1 − α)

2pΓ(1 − 2α)
x
2

+ b1x + a1f2(z) + a1g(y, z) + b0􏼢 􏼣t
− α

, α≠
1
2
, μ1 ≠ α − 1, (110)

where μ1, a0, a1, b1 � a1c1 and b0 � a1c0 are the ar-
bitrary constants and f2(z) andg(y, z) are the two
arbitrary functions.

(II) Noticing equation (106a), we assume that
v � v(ξ, z), (ξ � ax + by + c), then (106a) and
(106b) become

a1a
2
(p + q)vξξ + rΩ0 � 0, Ω0 �

Γ(1 − α)

Γ(1 − 2α)
, (111a)

vz � −
ψ(z)

sa
. (111b)

Solving (111a) leads to

v � −
rΩ0

2a1a
2(p + q)

ξ2 + ϕ1(z)ξ + ϕ0(z). (112)

Substituting (112) into (111b) yields

ϕ1′ (z)ξ + ϕ0′ (z) � −
ψ(z)

sa
. (113)

By comparing the coefficients, we have

ϕ1(z) � c1,

ϕ0(z) � −
1
sa

􏽚
z
ψ(z)dz � −

1
sa

ϕ(z),

(114)

which gives rise to the exact solution

u(t, x, y, z) � a0t
μ1 + −

rΓ(1 − α)

2a2(p + q)Γ(1 − 2α)
(ax + by + c)

2
+ a1c1(ax + by + c) −

a1

sa
ϕ(z)􏼢 􏼣t

− α
, α≠

1
2
, μ1 ≠ α − 1,

(115)

where a0, a1, c1, a, b, and c are the arbitrary constants
and ϕ(z) is an arbitrary function.

Remark 10. We do not consider the transformation
ξ � ax + by + cz + d for omitting the trivial solution.

Remark 11. -e singularity only appears when
α � (1/2) and μ1 � α − 1 in solutions (110) and (115) in the
Riemann–Liouville case.

3.3.3. Dynamical Analysis of Exact Solutions for Fractional
JM Equation. Under the Caputo case:

(i) As can be seen from Figure 10, taking α � (1/2), μ1 �

α − 1, a0 � 1, a1 � 1, c0 � 1, c1 �

2, c2 � 1, c3 � − 3, a � 2, r � b � s � c � 1, λ �

− 1, d � − 3y � 1.5, z � 2, t ∈ [0, 10], x ∈ [− 10, 10], it
is shown that solution (83) increases with increase in
the spatial variable and decreases as time increases
on all (u, t, x), (u, t, y), and (u, t, z)-planes.

(ii) As Figures 11 and 12 show, we see that by choosing
a�b�1,s�(7/2),c�2,r�2,α�(1/2),λ�− (1/2),a0 �

Mathematical Problems in Engineering 17



10
5 10

×106

8

x
0 6

t4–5 2
–10 0

–1
–0.5

0

0.5

1

1.5

2

u

Figure 10: Dynamical profiles of solution (83) on the (x, t, u)-plane.
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Figure 11: Dynamical profiles of solution (89) on (a) the (x, t, u)-plane and (b) the (z, t, u)-plane.
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Figure 12: Dynamical profiles of solution (91) on (a) the (x, t, u)-plane and (b) the (z, t, u)-plane.
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c0 �1,a1 �− 2,b0 �1,c1 �2,c2 �1,c3 �− 1.5,y�2,z�2,

t∈ [0,10],x∈[− 10,10], and x�2.5,y�2,z∈
[− 10,10], the solutions (89) and (91) increase as x
and y increases and decrease as time increases on
both (u, t, x) and (u, t, y)-planes; however, ones have
exponential decay as z⟶∞when x and y are fixed.
Under the Riemann–Liouville case:
As Figure 13 shows, taking α�(2/3),μ1� ±(3/2),a0�

2,p�r�1,b1�− 3,a1f(z)+ a1g(y,z)+b0�10,x∈
[− 100,100],t∈ [0,100], we see that

(i) If μ1 > 0, solutions (110) and (115) will blow up as
time-space tends to infinity.

(ii) If μ1 < � 0, solutions (110) and (115) increase as x
increases if y and z are fixed and decay at max μ1, α􏼈 􏼉

rate as t⟶∞ if the spatial variables are fixed.

4. Conclusions

In this paper, by taking advantage of the fractional calculus
methods, we avoid the invalid chain rule and suggest the new
types of HBPs to solve some multidimensional time-frac-
tional PDEs whose exact solutions were hardly obtained
before. We get some explicit solutions of the (2 + 1)-di-
mensional KP equation, (3 + 1)-dimensional ZK equation,
and JM equation by solving the reduced PDE system in both
Riemann–Liouville and Caputo cases. -ese solutions are all
in the general separated variable forms of new type which
even include arbitrary functions, and the singularity solu-
tions only appear in the Riemann–Liouville case. Further-
more, the dynamical analysis and long-time behaviors of
these solutions are also performed.

However, to the best of our knowledge, that is far from
enough, the HBP is only applicable to solve some special
fractional nonlinear PDEs which satisfy the balance con-
ditions (see Section 3.1) and get a few special exact solutions
but not more general solutions. For even more multidi-
mensional fractional nonlinear partial differential systems,
there is still no better way to acquire their exact solutions
generally at present. Nevertheless, finding more effective

methods for constructing more exact solutions of more
general (N+ 1)-dimensional fnPDEs will be quite a mean-
ingful and challenging task in the future.
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[12] R. Metzler, W. G. Glöckle, and T. F. Nonnenmacher,
“Fractional model equation for anomalous diffusion,” Physica
A: Statistical Mechanics and Its Applications, vol. 211, no. 1,
pp. 13–24, 1994.

[13] B. I. Henry, T. A. M. Langlands, and S. L. Wearne,
“Anomalous diffusion with linear reaction dynamics: from
continous time random walks to fractional reaction-diffusion
equations,” Physical Review E, vol. 74, no. 3, Article ID
031116, 2006.

[14] V. V. Anh and N. N. Leonenko, “Scaling laws for fractional
diffusion-wave equations with singular data,” Statistics &
Probability Letters, vol. 48, no. 3, pp. 239–252, 2000.

[15] S. Zhai, Z. Weng, D. Gui, and X. Feng, “High-order compact
operator splitting method for three-dimensional fractional
equation with subdiffusion,” International Journal of Heat
and Mass Transfer, vol. 84, pp. 440–447, 2015.

[16] E. Ahmed and A. S. Elgazzar, “On fractional order differential
equations model for nonlocal epidemics,” Physica A: Statis-
tical Mechanics and Its Applications, vol. 379, no. 2,
pp. 607–614, 2007.

[17] F. Liu and K. Burrage, “Novel techniques in parameter es-
timation for fractional dynamical models arising from bio-
logical systems,” Computers &Mathematics with Applications,
vol. 62, no. 3, pp. 822–833, 2011.

[18] M. EL-Shahed, “MHD of a fractional viscoelastic fluid in a
circular tube,” Mechanics Research Communications, vol. 33,
no. 2, pp. 261–268, 2006.

[19] A. A. Zafar, D. Vieru, and S. Akhtar, “Magnetohydrody-
namics of rotating fractional second grade fluid in porous
medium,” Journal of Prime Research in Mathematics, vol. 10,
pp. 45–58, 2015.

[20] I. Podlubny, “Fractional differential equations,” in Mathe-
matics in Science and Engineering, Academic Press, Cam-
bridge, MA, USA, 1999.

[21] S. Wojciech and Z. V. George, “A hyperelastic fractional
damage material model with memory,” International Journal
of Solids and Structures, vol. 124, pp. 151–160, 2017.

[22] C. S. Drapaca and S. Sivaloganathan, “A fractional model of
continuum mechanics,” Journal of Elasticity, vol. 107,
pp. 107–123, 2012.

[23] W. Sumelka, “Non-local Kirchhoff-Love plates in terms of
fractional calculus,” Archives of Civil and Mechanical Engi-
neering, vol. 15, no. 1, pp. 231–242, 2015.

[24] K. A. Lazopoulos and A. K. Lazopoulos, “Fractional vector
calculus and fluid mechanics,” Journal of the Mechanical
Behavior of Materials, vol. 26, no. 1-2, pp. 43–54, 2017.

[25] Z. Rahimi, G. Rezazadeh, andW. Sumelka, “A study of critical
point instability of micro and nano beams under a distributed
variable-pressure force in the framework of the

inhomogeneous non-linear nonlocal theory,” Archives of
Mechanics, vol. 69, no. 6, pp. 413–433, 2017.

[26] B. B. Peter, “Dynamical systems approach of internal length in
fractional calculus,” Engineering Transactions, vol. 65, no. 1,
pp. 209–215, 2017.

[27] V. Daftardar-Gejji and H. Jafari, “Adomian decomposition: a
tool for solving a system of fractional differential equations,”
Journal of Mathematical Analysis and Applications, vol. 301,
no. 2, pp. 508–518, 2005.

[28] T. Bakkyaraj and R. Sahadevan, “An approximate solution to
some classes of fractional nonlinear partial differential
equation using adomain decomposition method,” Journal of
Fractional Calculus and Applications, vol. 5, no. 1, pp. 37–52,
2014.

[29] T. Bakkyaraj and R. Sahadevan, “Approximate analytical
solution of two coupled time fractional nonlinear schrödinger
equations,” International Journal of Applied and Computa-
tional Mathematics, vol. 2, no. 1, pp. 113–135, 2016.

[30] T. Bakkyaraj and R. Sahadevan, “On solutions of two coupled
fractional time derivative Hirota equations,” Nonlinear Dy-
namics, vol. 77, no. 4, pp. 1309–1322, 2014.

[31] Z. Odibat and S. Momani, “-e variational iteration method:
an efficient scheme for handling fractional partial differential
equations in fluid mechanics,” Computers & Mathematics
with Applications, vol. 58, no. 11-12, pp. 2199–2208, 2009.

[32] G.-C. Wu and E. W. M. Lee, “Fractional variational iteration
method and its application,” Physics Letters A, vol. 374, no. 25,
pp. 2506–2509, 2010.

[33] R. K. Gazizov, A. A. Kasatkin, and S. Y. Lukashchuk,
“Continuous transformation groups of fractional differential
equation,” Vestnik USATU, vol. 93, no. 21, pp. 125–135, 2007.

[34] R. K. Gazizov and A. A. Kasatkin, “Symmetry properties of
fractional diffusion equations,” Physica Scripta, vol. T136,
Article ID 014016, 2009.

[35] R. K. Gazizov, A. A. Kasatkin, and S. Y. Lukashchuk, “Group
invariant solutions of fractional differential equations,” in
Nonlinear Science and Complexity, J. Machado, A. Luo,
R. Barbosa et al., Eds., pp. 51–58, Springer, Berlin, Germany,
2011.

[36] A. A. Kasatkin, “Symmetry properties for systems of two
ordinary fractional differential equations,” Ufa Mathematical
Journal, vol. 4, pp. 65–75, 2012.

[37] T. Bakkyaraj and R. Sahadevan, “Invariant analysis of non-
linear fractional ordinary differential equations with Rie-
mann-Liouville fractional derivative,” Nonlinear Dynamics,
vol. 80, no. 1-2, pp. 447–455, 2015.

[38] R. Sahadevan and T. Bakkyaraj, “Invariant analysis of time
fractional generalized Burgers and Korteweg-de vries equa-
tions,” Journal of Mathematical Analysis and Applications,
vol. 393, no. 2, pp. 341–347, 2012.

[39] Q. Huang and R. Zhdanov, “Symmetries and exact solutions
of the time fractional Harry-Dym equation with Riemann-
Liouville derivative,” Physica A: Statistical Mechanics and Its
Applications, vol. 409, pp. 110–118, 2014.

[40] R. Sahadevan and P. Prakash, “On Lie symmetry analysis and
invariant subspace methods of coupled time fractional partial
differential equations,” Chaos, Solitons & Fractals, vol. 104,
pp. 107–120, 2017.

[41] R. K. Gazizov and A. A. Kasatkin, “Construction of exact
solutions for fractional order differential equations by the
invariant subspace method,” Computers & Mathematics with
Applications, vol. 66, no. 5, pp. 576–584, 2013.

[42] R. Sahadevan and T. Bakkyaraj, “Invariant subspace method
and exact solutions of certain nonlinear time fractional partial

20 Mathematical Problems in Engineering



differential equations,” Fractional Calculus and Applied
Analysis, vol. 18, pp. 146–162, 2015.

[43] R. Sahadevan and P. Prakash, “Exact solution of certain time
fractional nonlinear partial differential equations,” Nonlinear
Dynamics, vol. 85, no. 1, pp. 659–673, 2016.

[44] R. Sahadevan and P. Prakash, “Exact solutions and maximal
dimension of invariant subspaces of time fractional coupled
nonlinear partial differential equations,” Communications in
Nonlinear Science and Numerical Simulation, vol. 42,
pp. 158–177, 2017.

[45] W. Rui, “Applications of homogenous balanced principle on
investigating exact solutions to a series of time fractional
nonlinear PDEs,” Communications in Nonlinear Science and
Numerical Simulation, vol. 47, pp. 253–266, 2017.

[46] W. Rui, “Applications of integral bifurcation method together
with homogeneous balanced principle on investigating exact
solutions of time fractional nonlinear PDEs,” Nonlinear
Dynamics, vol. 91, no. 1, pp. 697–712, 2018.

[47] C.Wu andW. Rui, “Method of separation variables combined
with homogenous balanced principle for searching exact
solutions of nonlinear time-fractional biological population
model,” Communications in Nonlinear Science and Numerical
Simulation, vol. 63, pp. 88–100, 2018.

[48] Y. R. Molliq, M. S. M. Noorani, I. Hashim, and R. R. Ahmad,
“Approximate solutions of fractional Zakharov-Kuznetsov
equations by VIM,” Journal of Computational and Applied
Mathematics, vol. 233, no. 2, pp. 103–108, 2009.

[49] H. Jafari and S. Seifi, “Solving a system of nonlinear fractional
partial differential equations using homotopy analysis
method,” Communications in Nonlinear Science and Nu-
merical Simulation, vol. 14, no. 5, pp. 1962–1969, 2009.

[50] S. S. Ray and S. Sahoo, “Invariant analysis and conservation
laws of (2 + 1) dimensional time-fractional ZK-BBM equation
in gravity water waves,” Computers & Mathematics with
Applications, vol. 75, pp. 2271–2279, 2018.

[51] J.-H. He, S. K. Elagan, and Z. B. Li, “Geometrical explanation
of the fractional complex transform and derivative chain rule
for fractional calculus,” Physics Letters A, vol. 376, no. 4,
pp. 257–259, 2012.

[52] V. E. Tarasov, “On chain rule for fractional derivatives,”
Communications in Nonlinear Science and Numerical Simu-
lation, vol. 30, no. 1–3, pp. 1–4, 2016.

[53] X. Wang and Y. Chen, “Darboux transformations and N
-soliton solutions of two (2 + 1)-dimensional nonlinear
equations,” Communications in ;eoretical Physics, vol. 61,
no. 4, pp. 423–430, 2014.

[54] W.-X. Ma, “Lump-type solutions to the (3 + 1)-dimensional
jimbo-miwa equation,” International Journal of Nonlinear
Sciences and Numerical Simulation, vol. 17, no. 7-8, 2016.

[55] M. Wang and X. Li, “Extended F-expansion method and
periodic wave solutions for the generalized Zakharov equa-
tions,” Physics Letters A, vol. 343, no. 1–3, pp. 48–54, 2005.

[56] C. Zhu and C. Qu, “Maximal dimension of invariant sub-
spaces admitted by nonlinear vector differential operators,”
Journal of Mathematical Physics, vol. 52, Article ID 043507,
2011.

Mathematical Problems in Engineering 21


