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In this paper, an active set smoothing function based on the plus function is constructed for the maximum function. The active set strategy
used in the smoothing function reduces the number of gradients and Hessians evaluations of the component functions in the optimization.
Combing the active set smoothing function, a simple adjustment rule for the smoothing parameters, and an unconstrained minimization
method, an active set smoothing method is proposed for solving unconstrained minimax problems. The active set smoothing function is
continuously differentiable, and its gradient is locally Lipschitz continuous and strongly semismooth. Under the boundedness assumption
on the level set of the objective function, the convergence of the proposed method is established. Numerical experiments show that the
proposed method is feasible and efficient, particularly for the minimax problems with very many component functions.

In [27], the following aggregate function (also called the
exponential penalty function) induced from Jaynes’ maxi-
mum entropy principle was introduced:

F,(x) = tln( Z exp(fjt(x))>, (2)

jeQ

1. Introduction

In this paper, we consider the following unconstrained
minimax problem:

I;E}QI}{F(X) = r?:g(fj(x)}) (1)

where the component functions f;: R"— R, jeQ=
{1,...,q}, are twice continuously differentiable. Minimax
problem (1) is a typical nonsmooth optimization problem
and arises in many fields, such as engineering design ([1]),
vehicle routing ([2, 3]), structural optimization ([4]), elec-
tronic circuit design ([5]), and game theory ([6, 7]).

Many methods have been proposed for solving minimax
problem (1), such as subgradient methods ([8]), bundle type
methods ([9, 10]), cutting plane methods ([11]), sequential
quadratic programming methods ([12-14]), interior point
methods ([15-17]), conjugate gradient methods ([18]), and
smoothing methods ([19-26]). The main advantage of
smoothing methods is that the minimax problem is trans-
formed into a sequence of simple, smooth, and uncon-
strained optimization problems, which can be solved by
standard unconstrained minimization solvers.

where ¢ > 0 is the smoothing parameter. It approaches F (x)
uniformly with respect to x € R" as the smoothing pa-
rameter goes to 0, and has been wildly used in the smoothing
methods for solving the minimax problems. Its gradient can
be written as follows:

VE, (x) = ) ul ()Vf;(x), (3)
j€Q
with
W) = - exp(fé (x)(/t))/t) c @1l
jEQeXp fj x (4)
Youl(x)=1,

jeQ
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which is a convex combination of the gradients of all the
component functions, and its Hessian

VE () = X OV (41 Y i GOV F (v (T
jeQ jeQ

- % 2 V() Y ] (OVF (0,
jeQ jeQ

(5)

is a complicated combination of the gradients and Hessians
of all component functions. Therefore, for the maximum
function with very many nonlinear component functions,
the evaluations for the gradient and Hessian of the aggregate
function always consume a large amount of computation.

For the minimax problems with very many component
functions, several active set strategies have been developed
for the smoothing methods to reduce the number of gra-
dients or Hessians evaluations of the component functions at
each iteration. In [18], the following active set smoothing
function for F(x,a)=a+ ZjeQmax (fj (x) —a,0) was
presented:

F,(x,a) =a+ Z ‘P(fj (%) =& t)’ (6)
jeQ

where t >0 is the smoothing parameter,

(0, z< —t,
z+1)?
(6t2)’ —-1t<z<0,
¢(z;t) =1 (7)
(z-1t)°
Z+7, 0<z<t,
| z, z>t.

The active set used in F, (x, &) at (x, @) € R" X R can be
written as follows:

Q (x,a) ={j € Ql f;(x)—a+t>0}. (8)

In [28], a cubic spline smoothing function for F (x) was
presented. For any smoothing parameter ¢ > 0, the active set
used in the cubic spline smoothing function at x € R" can be
represented as follows:

Q (%) ={j € QIF(x) - f;(x)<t}. ©

In [25], an active set strategy for the aggregate function
was introduced. For a given € >0, let

Q.(x) ={j € QIF(x) - f;(x)<e}. (10)

Then, the active set QF used for the aggregate function at
xF € R" is updated as
0 0
Q" =Q.(x"),

11
Q =" uQ(x), k=1 (1

In [26], another active set strategy for the aggregate
function was presented. For any smoothing parameter t > 0,
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the active set used for the aggregate function at x € R" is
defined as follows:

Q (%9 ={j € QIF(x) - f;(x)<e(t,9)}, (12)

where €(t,g) >0 is a complicated combination of several
parameters.

In this paper, based on the plus function, an active set
smoothing function for the maximum function is proposed,
and the smoothing function only relates to a part of com-
ponent functions, whose function values are close to F (x). It
is continuously differentiable, and its gradient is locally
Lipschitz continuous and strongly semismooth. Combing
the active set smoothing function, a geometric reduction rule
for the smoothing parameters, the Armijo line search
strategy, the steepest decent direction, and the Newton
direction, an active set smoothing method is proposed for
solving unconstrained minimax problems. Under the
boundedness assumption on the level set of F(x), the
convergence of the active set smoothing method is estab-
lished. Numerical experiments show that the resulting
method is stable and efficient, especially for the minimax
problems with very many component functions.

The following assumptions and results will be used in
this paper:

Assumption 1: the component functions f.: R" — R,
j€Q, are twice continuously differentiable, and
Vfj R" — R", j € Q, is strongly semismooth
Assumption 2: for any M >0, the level set
Q= {x € R"| F(x) < M} is bounded

Definition 1 (see [29]). Suppose that @: R* — R™ islocally
Lipschitz continuous, if for any V €0® (x + h), h — 0,

Vh-®' (x;h) = O(||l*), (13)

where 0O (x) is the generalized Jacobian of @ at x, CD} (x; h)
is the directional derivative of @ at x in the direction & for
j=1,...,m,and then @ is said to be strongly semismooth at
X.

Lemma 1 (see [29]). Suppose that ¢: R— R and
y: R — R are strongly semismooth, then

(i) For any a, be R, a¢+by: R—> R is strongly
semismooth
(ii) ¢ - y: R — R is strongly semismooth

(iii) If ly (x)| = ¢ for the constant ¢ >0, ¢/y: R —> R is
strongly semismooth

(iv) ¢"y: R — R is strongly semismooth

Lemma 2 (see [29]). Suppose that ®: R" — R™ is locally
Lipschitz continuous, if all ®;: R" — R, i=1,...,m, are
strongly semismooth, then @ is strongly semismooth.

Lemma 3 (see [30]). For the function ®: R" — R™, if ®' is
locally Lipschitz continuous, then @ is strongly semismooth.
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Theorem 1 (see [24]). Suppose that the component functions
fjt R" — R, j € Q are continuously differentiable. If x™ is a
local minimizer of problem (1), then

0 €3F (x") = conve; oy {V £ (x7)}, (14)
where
I(x")={jeQlf;(x") = F(x")}, (15)
and conv {A} denotes the convex hull of A.
2. An Active Set Smoothing Function for the
Maximum Function

In this section, based on the plus function z,: R — R,:

z, z>0,
z, = (16)
0, z<0,

we construct the following function Ff: R* x R — R:
(x) - ca\?
Fi(x,a) = ca+ = Z( f5 (0 - ca , (17)
JEQ g +

where t>0 is the smoothing parameter and ¢ >0 is the
scaling parameter. By the definition of the plus function,
Assumption 1, and t >0, we have the following result.

Lemma 4. For any t>0 and ¢>0, F;: R"XR — R is
continuously differentiable.

For any t >0, ¢>0, and (x,a) € R" xR, let
Q (x,0) ={j € Q| f;(x) - ca+t>0}, (18)

t (x) - ca\?
IR OUE: .
jeQs (x,a)

then we know that

F; (x,a) = ca+ = Z

only relates to the component functions f ; for j € Q; (x, a),
whose function values are close to F (x). Therefore, F{ (x, &)
is called an active set smoothing function for the maximum
function in this paper. By direct calculation, we can obtain
the gradient of Fy (x, a):

fi(x)—ca
> (1 ) V()
jeQ +

VF, (x,q) = , o (20)

x
c—c Z ( f]( ) )
jeQ +

which can be also written as follows:

Z (1 +M)ij(x)
)

jeQs (xa
VF; (x,q) = . (2D

c—c Z <1+fj(x:—coc)
)

jeQ (xa

3
Lemma 5. For any t >0, ¢>0, and (x,a) € R* xR,
F; (x,a) > F(x). (22)
Proof. If ca > F(x), by t >0, we have
x
Fj(x,a) = ca+— Z( 7 ) ) >ca> F(x).
JEQ +
(23)

If ca<F(x), we know (1+ ((F(x)- coc)/t))i =
(1+ ((F(x) = ca)lt))? by t >0, then we have

— 2
Fow - s 3 (1,075

jeQ

t( F(x)—coc)2
>ca+—| 1+—F——
2 t

t < 2(F (x) - COC) (F (x) - COC)2> (24)
=ca+—-|1+ +
2 t t2

(F(x) - ca)?

t
=—+F(x)+
(x) o

> F(x).

By (23) and (24), the conclusion holds. O
Lemma 6. For any t>0, ¢>0, 7>0, and (x,a) € R"xR
satisfying |V, F¢ (x, ®)| <1<,

(i) F(x) — (t/o)t <ca<F(x)+ (1 - ((c — 1)/cq)t

(ii) F¢ (x,0)<F (x)+ (1= ((c=1)/cq)+ (((c+7))/2M)t,
where g=1(Q¢ (x,a)).

Proof. By (10) and |V,F{ (x, @)| < 7, we know
f]- (x) —ca
_T<C—C‘ Cz <1+t <T. (25)
jeQs (x,a)

Then, by ¢>7>0, we have Qf (x, a) # I,
(x) - ca
(1+L)<1+1, (26)
t c

and hence, MaX;eqe (x, o (1+ ((f;(x) = ca)/t)) > 0. Therefore,
by t>0 and Qc(x, )CQ we have

1+ Fx) ~ ca = max(l + 7fj (=) - coc) > 0. (27)
t jeQ t

T
0<1--<
jeQs (xa)

(i) By (26) and (27), we have

q<1+F(x)—coc>2 z <1+fj(x)—ax>>l_1,
t . t c
jeQ (x,a)

F(x)— i(x) —ca
LRIy <1+f1_><1+:
t . t c
jeQS (x,a)

(28)



Then, by t >0, we have

F(x)—gt<coc<F(x)+(l—%)t. (29)

(ii) By (26), (29) and ¢ >0, we have

_ 2
F?(x,oc)=coc+% Z <1+M)

JeQs (x,a) t

2
< > (1+ff(x)‘“")>
jEQf(x,a) t
<F(x)+(1 —%)t+%<1 +g>2

=F(x)+(1—__+
cq

<co+

N |~

(30)

According to Lemmas 5 and 6 and (c+ 7)? <4c? for
c¢>71>0, we have the following approximation of F{ (x, &)
for F(x). O

Lemma 7. Foranyt>0,c>0, and (x,a) € R* x R satisfying
[V Ff (x,a)| <,

(i) F(x)—t<ca<F(x)+t
(ii) F(x) < F{(x,a) <F(x) + 3t

For convenience of discussion, for any t>0, ¢>0, and
(x,) € R" X R, let

zi(x,rx)=(1+w) , jeq, (31)

then the gradient of F{(x,«) in (20) can be rewritten as
follows:

Y 2] (x, )V £ (x)
c jQ
VEF{ (x,a) = | : 32
() c—cZzi(x,(x) (2
jeQ

Lemma 8. Suppose that Assumption 1 holds, then for any
t>0 and ¢>0, z,(x,a): R"xR— R, j€Q, is locally
Lipschitz continuous.

Proof. By Assumption 1, we know that 1+ ((fj (x)—
ca)/t): R"x R — R, j € Q, is locally Lipschitz continuous
with respect to the variables (x, &) for any t >0 and ¢ > 0. By
the definition of the plus function, for any z!, z* € R, we
know that

(i) If z'<0, z22<0, then we have z! =22 =0, and
hence, |z} = Z%| =0

(ii) If 2! <0, 22> 0, then we have z! =0, z2 = 22, and
hence, |z} - 22| =10 - 2% < |z! — 27
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(iii) If z' >0, 2% > 0, then we have z! = z', 22 = 2%, and
hence, |z} - 22| = |z - 27|

Therefore, the plus function is Lipschitz continuous.
Hence, z} (x,a): R" xR — R, j € Q, is locally Lipschitz
continuous. O

Lemma 9. Suppose that Assumption 1 holds, then for any
t>0 and ¢>0, VF(x,a): R* x R — R™! is locally Lip-
schitz continuous.

Proof. By Assumption 1, Vf;(x): R" — R", j € Q, is lo-
cally Lipschitz continuous. Then, by Lemma 8§,
Z]-ein (x, (x)ij (x): R"xR— R" and ¢ —czjein (x,a):
R*x R — R, arelocally Lipschitz continuous, which implies
that VF:(x,a): R"xR— R™ is locally Lipschitz
continuous. O

Lemma 10. Suppose that Assumption 1 holds, then for any
t>0 and c¢>0, z}(x,a): R"xR — R, j€Q, is strongly
semismooth.

Proof. By the proof of Lemma 8, the plus function is Lip-
schitz continuous. For any 4 >0 and & >0, we know £h >0

and h+&h>0, and hence, h,=h, (&h), =¢h,
(h+&h), = h + &h; then, we have
0(0+h), ={1},
33)
, _(Eh), 0 (
0; ]’l = 1 —_— = h
(0 =l ==

For any h<0 and & >0, we know £h< 0 and h + Eh <0,
and hence, h, = (§h), = (h+ &h), = 0; then, we have

0(0+h), ={0},

B (34)
z,(0;h) = lim @h), -0 =0.
£l §
Therefore, for any V €0(0 + h), and h — 0, we have
Vh—2z/!(x;h) = O(III), (35)

which implies that the plus function is strongly semismooth
atz = 0 by Definition 1. Since the plus function is sufficiently
smooth on R\{0}, we know that the plus function is strongly
semismooth on R.

By Assumption 1, Vf;(x): R* — R", j € Q, is locally
Lipschitz continuous. Then, by Lemma 3, the component
functions f;(x): R" — R, j € Q, are strongly semismooth,
and hence, 1+ ((fj(x) —ca)/t): R"XR— R, jeQ, is
strongly semismooth with respect to (x, «) for any ¢ >0 and
¢ > 0. Therefore, by (iv) of Lemma 1, z} (x, «): R* x R — R,
j € Q, is strongly semismooth. O

Lemma 11. Suppose that Assumption 1 holds, then for any
t>0 and ¢>0, VF:(x,a): R"xR— R™! s strongly
semismooth.
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Proof. By Lemma 9, VF¢(x,a): R” x R — R™! is locally
Lipschitz continuous. By Assumption 1, V f i (x): R* — R",
j 'e Q, is strongly semismooth. By Lemma 10,
Zi(x,a): R"XR— R, j€Q, is strongly semismooth.
Then, by (i) and (ii) of Lemma 1, } ; eQz+ (2, )V f;(x): R" x

R— R'andc- Cz,eQZ+ (x, a): R” X R — R, are strongly

H, (x, H, (x,
woram={ 2 )
3 >

H,(x,a)"

where

H,(x,q) = Z Zi(x,a)szj(x)Jr%

C
H2 (X, 06) = —;

jeaf (x,) jeQf (x.a)

H3(x,oc)—( Z (+q)
]GQt(xa)

For efficient numerlcal evaluation of 0(VF; (x,a)), we
can set ( =0 for je Qt (x, a); then, we know

VE () = H,(x,a) H,(x,a) AV (x.a). (38)
C(xa _(Hz(x,(x)T H3(x’a))e (VF; (x,a)),
where

Hi(xa)= Y (zi(x,oc)szj(x)+%ij(x)ij(x)T>,

JEQS (x,a)

Hy(xa)=— Y Vfi(,

jeQs (x,0)

BN

H,(x,a) =

H‘N

(39)
O

3. An Active Set Smoothing Method and
Its Convergence

In this section, based on the active set smoothing function
F¢ (x, a) for F (x) and the smoothing methods introduced in
[24], an active set smoothing method is proposed to solve
problem (1). For a starting point (x°,a’) € R” x R and an
initial smoothing parameter t° >0, the initial scaling pa-
rameter ¢’ >0 is chosen from a bounded region in Sub-
routlne 1, which reduces the ill-conditioning of

(x a/c°) caused by the scaling problem of the variable

semismooth. Therefore, VF¢(x,a): R*x R — R™! s
strongly semismooth by Lemma 2.

For any (x,a) € R" xR, let Qt(x,oc) = {] € QIf (x)—
ca+t=0},q=1(Qf(x,a)). By (32) and the deﬁmtlon of
the plus function, the Clarke generalized Jacobian of
VF¢ (x,a) at (x,«) can be represented as follows:

Q; (x, a)}, (36)

Y V@Y VYT,

jeQs (x,a) jeéf (x,a)

JeQs (x,a)

Y OVf+ ) Vi) ), (37)

a € R; then, a®° is set to be a’/c’. The Armijo line search
strategy, the steepest decent direction, and the Newton
direction, in which the selection of the search direction
depends on the condition number of V;g (x%0, a*9) and two
convergence conditions for k>0, are used to compute an
k%0

approximate solution (x*, a¥"?) of the smoothing problem

0
Pfgz
min  F, (x,«a
(x,0)€R"XR tO( ) (40)
Then, the smoothing parameter t" geometrically reduces
to t!, the scaling parameter c! is chosen from a bounded
region in Subroutine 1, ¥ is updated to a***! in two
ways to balance the efficiency and convergence of the
resulting al{gonthm in Subroutine 1, and the smoothing
problem P%,
min F, (x,«a
(x,a)€R"XR tl( ) (41)
is solved with the starting point (x*, «%"*1'1). By repeating
this process, a sequence of smooth, unconstrained optimi-
zation problems is solved. As the smoothing parameters t* go

to 0, a solution of problem (1) can be obtained by the so-
lutions of the smoothing problems P%.

Algorithm 1. An active set smoothing algorithm.

Data. Input f,y€ (0,1); C,€(0,1), C,>1, t€ (0,1);
K> 1, Kf, Kf, Ki> Kyy k3> 05 wp,w. € (0,1); 7(f): (0,00) —
(0,00) satisfying lim,_,7(t)=0; x° € R", a’ € R, t°>0.



Step 0:seti =0, k=0, x*0 =x% a®® =a% and & = 1,
and go to Subroutine 1.

Step 1: (compute the search dlrectlon) compute the
condition number C* of Vf (xk’ k’). If CH <y,
compute the Newton direction d¢ (x*/, ') by solving

Vf:(xk’i,ock’i)d?(xk’i,oc )+VFt,( o k’) =0. (42)

If VC (xk’ o) is positive and the Newton direction
(x i k) satisfies

Lk ki p i
dyi (=™, o) 'SKI “VFE,-(x

ki (xk,i)“’ (43)

(= VE; (M, o), dit (4, ) 2 5 |V EG (5 “

(44)

go to Step 2.
If VC (%, &k is not positive and the Newton direc-
tion dC (xki, o) satisfies

d?(xk’i, ock’i)” <K "VFf(x

k,i’ak,i)“) (45)

; . . ; . . ; . 2
(- VF; (xk”, ock”), dy: (xk", (xk")> > KZHVF; (xk”, ock”)" ,

(- VF; (xk’l, ock’l), d;; (xk", ock")> > K5 “VF; (xk’l, ock”)"
Do
e (=, ock’l)",

(46)
go to Step 2.
Else, compute the steepest decent direction
dii(«, o) = —VE (M, o), (47)

go to Step 2.

Step 2: (compute the stepsize) let A5 (x*/, ak') = B!,
where [ is the smallest nonnegative integer satisfying
FC

i ki ki I ot ki ki (ki ki
ti((x O )+ﬁdt,-(x o ))—Fti(x Lo )

< Vﬂl (VFf: (xk,i’ (xk,i)’ df, (xk,i’ ak,i)>’

(48)

go to Step 3.

Step 3 set (xk+1,i’ ‘xk+1,i) — (xk,i’ “k,i) + Af: (xk,i’ “k,i)
ds; (x4, o), replace k by k + 1, and go to Step 4.
Step 4: if IIVFf; (xM ob)|| < 7 (), go to Step 5; else, go
to Step 1.

Step 5: (adjustment of the smoothing parameter) set

K=k xk+1,i+1 — xk,i ak+1,i+1 — (Xk’i 1 — ot and
. - . - > - > - th o

¢ =¢ replace i by i + 1 and k by k + 1, and go to

Subroutine 1.

Subroutine 1: adjustment of the scaling parameter.

Substep 0: set x = xki t=t,c =wc, and ¢* = ¢'/w..
Ifi=0ort<? set @ = c'abi:
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(49)

else, set & = c'a® — (1/w, — l)t

ki _
OCI =7

Ock’i = — (50)

Compute the condition numbers CH of V¢ (x, ki, Ok

of V¢ '(x, oc;”) and Ck’ of V¢ (x, ock’) If ¢=C and

Ck’ Ck’, go to Substep L; else, ifc* <C, and Ck < Ck’

go to Substep 2; else, go to Step 4 of A1g0r1thm 1 with ¢ ,

Cki, V¢ (x, k), and ok,

Substep 1: set ¢ = c Chi = C;”, VC (x, aFt) = VC (x,

) and & = (xl , and go to Substep 3.

Substep 2: set ¢! =" , Chi = Ck’ VC (x, ab) = V?u (x,
aki), and okl = ok and go to Substep 4.

Substep 3: set ¢! = w,c' and oc =0 /c and compute the

cond1t1on number Ck’ of VC (x o kiy If Ck‘ <Cki and

d> Cl, go to Substep 1 else, go to Step 4 of Algorlthm 1

with ¢, Cki, Vf (x, d®), and o

Substep 4: set ¢ = ¢*/w, and aki = Ri/c’f and compute

the condition number C¥ of V¢ (x, ak?). If Ck# < Cki

and ¢ <C,, go to Substep 2; else, go to Step 4 of Al-

gorithm 1 with ¢, Chi, Vf (x, o), and o,

Remark 1. In Subroutine 1 for adjusting the scaling pa-
rameter ¢, if ' >, a® is updated to satisfy

Ci+1ak‘+1,i+1 _ Ci(xk’,i _ (1 _ wt)ti. (51)

L . . .
Then, by x¥ 11 = xk and ¢! = w,t/, we have
t

K+ 1,i+1 i+1 k’+1,'+1 i+1 i ki i :
f](x 1 )_Cl o 1 1 f]( l)_cl(x l+tl, ] GQ,

i+l

+11+1 k+11+1 i ki
Qpin | x Q,,( o ),

ki+1, z+1 k‘+1 i+1

Z X

, jeQ

-

1-v oFE (294, a0 !
‘U: ?

(ol W R Y oX
(it (xk‘+1,i+1 ak'+1,i+1) B Vi (x » & )
, =—

tHl
Wy

i+l

C K'+1 +1 k+lz+1
\% thﬂ X !

VFC'”(xk+1z+1 k+11+1) V., :‘ : kl)
tH»l

(52)
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If ¢ <%, o® is updated to satisfy
Ci+1aki+1,i+1 _ Citxki’i, (53)

which keeps the monotonicity of {Ff, (o, ock’i)} with respect
to k in Lemma 13.

Theorem 2 (local convergence [31]). Foranyt>0andc >0,
suppose that (x*,a*) is a stationary point of the problem P.
If all V €0 (VF; (x*,a")) are nonsingular, then there exist a
neighborhood N (x*,a*) of (x*,a*) and a constant M such
that for any (x,«) € N(x*,«a*) and any V €0(VF{ (x,®)), V
is nonsingular and

V=Y <M. (54)

The sequence {(x*,a¥)} produced by any initial point
(x% a®) € N (x*,a*) and the semismooth Newton method
(xk+1’ak+l) — (xk)‘xk) _ (Vk)_1VF§ (xk’ ‘xk) (Vk %)

(VF; (x%, ak))) quadratically converges to (x*, a*).

Lemma 12. Suppose that Assumption 1 holds, then for any
bounded set S ¢ R" x R and parameters 3, y € (0,1), t >0,
and ¢ >0, there exists a Ay < 0o such that for any (x,a) € S,
A (x,a) 2 Ag and

Fi ((x,a) + A; (x, )d; (x, @) — F; (x,a) < — AS"VFf (x, a)“z,
(55)

where A7 (x,a) is the stepsize computed in Step 2 of

Algorithm 1.

Proof. Let x} = max{x’,x,,1} and «; = min{«}, x,, 1}. By

(43)-(47), the search direction df (x, «) satisfies

| (x| <

VF; (x, )], (56)

(= VF; (x,a),d; (x,a)) >, |VF; (x, oc)||2. (57)

By Lemma 9, VF!(x,a): R*xR — R™!' is locally
Lipschitz continuous, and then, there exists a Lipschitz
constant Lg >0 such that for any (x!,a!), (x% a?) €S,

"VFE(xl, ocl) - VF;(xz, (xz)“ < Ls”(xl, ocl) —(xz, (xz)“.
(58)

For any (x,a) € S and A € (0,1], by the mean value
theorem, there exists a & € (0, 1) such that

F; ((x, a) + Ay (x, @) — F; (x, a) — YA(VF; (x, &), d; (x, )
=(VF; ((x, &) + EAd; (x, a)), Ad; (x, )y — YA(VF, (x, a), d; (x, @)y
= A(1 = p)XVF; (x,a),d; (x,a)) +{VF; ((x, @) + €] (x, @) — VF; (x, @), Ad; (x, a))
<A(1 = )VES (x, @), dS (x, )Y + A|VFS ((x, @) + ENE (x, @) = VEE (x, @) € (x, )| (59)

<A(1 = P)CVF (x, @), dS (x, ) + A2EL|dE (x, )|

< = M (1= y) - 6] °ALg )<VF; (x, ))’,

where the second inequality comes from (58) and the last
inequality comes from (56), (57), and & € (0, 1). Let

A= min{l,K;(l_y)}, (60)

*2
Ki~Lg

then it follows from (59) that for any A € (0,1"],
F; ((x, &) + Ad; (x, &) = F; (x, @) — pA{VF; (x, &), d; (x,2)) <0,
(61)

and hence, A{ (x, ) > BA". Therefore, by (57), we have
Fi ((x, a) + A; (x, a)d; (x, @) — F; (x, )
<yA; (x, 0){VF, (x, a), d; (x, a)) (62)
< - By 16 ||VF; (x, a)"z.

Then, by y, x5 € (0, 1], the conclusion holds for

*\2
A = min{ﬁyxg,%}. (63)
1 S

Lemma 13. Suppose that Assumptions 1 and 2 hold and
7(t') < w,c', then for any (x°,a°) € R*x R, t*>0 and * >0,
the sequence {(x™, %)} generated by Algorithm 1 satisfies
the following:

(i) For anyi>0, {Ff (x4, ak’i)} is monotone decreasing
with respect to k

(ii) There exists an i such that the sequence {F§ (xi,
(xk”)}i; is monotone decreasing with respect to k

(iii) The sequence {x*i} is bounded
(iv) The sequence {a®™} is bounded

Proof.

(i) For any i>0 and' (xk of) € R x R satistying
||df,f (x%1, bl > 7 (1), by Lemma 12, there exists a
%> 0 such that

fr o k+li k+li ki ki
Fi,'(x + 1,06 + l)—F;,'(X l,OC 1)

N D R P (64)
<y (VF (xk”, (xk”), d;; (xk", ock")> <0,



then we know

Ff:(xkﬂ,i) ak+1,i) < F;f(xk,i, ‘xk,i)) (65)
which implies that the conclusion holds.

(i) By t*' = w;t' and w, € (0,1), for any t°>0 and
t € (0,1), there exists an i such that for any i>1,

t' <t (66)

For any i>i, if [VFS (xM, k)| <7 (), by the
definition of VF{ (x, «) in (20), we have

()< ¢ 3 (1 +M)< ().

jeQ
(67)

Then, by 7(t') < w,c’ <c' and t' >0, we have
F ki) _ i ki X xk,i _ Ci ak,i
1+7(x ) 4 max 1+7f]( ) > 0.
tt jeQ t N
(68)

Let t be the variable of the function F{(x,a) for
given (x,a) € R" x R and ¢ >0, which is redefined

as F¢ (), then by the mean value theorem, there
exists a f € (w,t', ") such that

chik,i’ak,x (ti) - F;k,i’ak,i(wttl) = (Fik,i,ak,x >/ (E)(tl - wtti)>

(69)
with
c i _1 fj(X)—C(X fj(x)—coc
(7. (t)—ij;)(1+ ) )+(1_ )
(70)
If F (x5 <o, by >0, we have
ki\ _ i ki
L) de e, D)

t

and hence (FC,H kl) (f) >0 by (68). IfF (xF) > clat,
by (67) and (68) and 7(t') < w,c’, we have

. ) ki) _ ik
a_a(HM)

i\ _ ik
Zci—ciZ(1+—fj(x 2" ca ) (72)

jeQ
> - T(l’i) > - w,c,

which implies
F(x*) — clai

r <w,. (73)

By > w,t' >0, we have
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F(xk,i)_ i kl F(xkz)_ iak,i
; w,ti
fj (xk,i) _ Ci“k,i <F(xk,z) _ Ctakz

= < = <1, j€eQ.
t t JQ

<1,
(74)

Then, we know that (71) also holds and hence
(Fck, k,) (t) >0 by (68). Therefore, for the case of
IIVF (x Lok < 1 (t), by (69), we have

ink,[’ak,[(ti) - ka,i’ak,[(wtt ) >0, (75)

which means

F?;(xk’i, ock’i) - Fw t,(xk ! ) >0. (76)
By xk+1,i+1 _ x and Cz+lak+1,i+l — Ciak,i according
to (53) and (66), we have
Fcf+1<xk+1,i+1 ak+1,i+1) _ Fc" (xkz (xk') (77)
ti+l b - ti+1

Then, by (76) and ! = w,t, we know
F?: (xk+1,i+1) Ock+1,i+1) < Ff;(xkl, ock') (78)

Therefore, the sequence {Ff (x, “k’i)}i;{ is
monotone decreasing with respect to k by (65) and
(78).

(iii) By (i), for any 0 <k <k°, we have

F;‘: (xk,o, ak,O) < F§§ (xo,o’ “0,0)’ (79)

and for any 1<i<7, k! + 1 <k <k', we have

F:["(xk,i) (xk,i) < Ff:(xk”1+l,i) (xk"’lﬂ,i)‘ (80)
By (ii), for any i>7 and k' + 1 <k <K/,

; . . i T il
F;i(xk’l,ak’l)SF%<xk +1’l,0£k +1,1>' (81)

By the finiteness of i satisfying i<1, (79), (80), and

(81), there exists a constant F € R such that for any

(xk,i “k,i)
(x*,a") € Q" ={(x,@) € R"xR| F{ (x,) < F"}.

(82)

Suppose that for any M >0, there exists a point
Qc"_{, ki) e QF " satisfying  F(x)>M. If
caki > M - t', by the definition of the plus function
and 0<# <t° we have

Fci<xkl,(xk>>coc SM—t>M-1{" (83)
If caki < M — i, by F(xw) >M and t >0, we have
M_Cz(xkz (84)

F( xz,;) — ki
>1+ >2,

ti ti

1+
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and hence (1+ ((F (xw) - c;ocw)/t;))Jr =
((F (xR — cta®?)/t') and (1 + (M - cab)/th),
1+ (M = c'a&)/t"). Then, we know
— oo 2
ki i ki
oA f](x ) -
Fc<x ,ock )—cock +— z 1+—7
2 ti
JjeQ
.
. 2
" F(xk”) — cigki
>+ 2| 1+ -
tl
o ¢ M — Cl“kl
>ca +—| 1+ -
tl
T M — ok
Scaf | 1+ C“)
tl
> M.
(85)

However, the arbitrariness of M, (83), and (85)
contradict x* € QF'; then, there must exist a
M* >0 such that F (x*) < M* for any F (x*') < M*
and i > 0. Therefore, we have that {x*/} cQ,,., and
hence, the sequence {x*/} is bounded by As-
sumption 2.
(iv) For any (xM,aF) with k>0 and i>0, if
(xk’, abl) = @ by the definition of QY (x, «), we
know (1+ ((f](xk’) k’)/t))+—0forany] €eQ
by ¢ > 0. Then, by (x, a*) € OF, we have

F; (xk",ock") = o <P (86)

Hence, by ¢’ >C; >0, we know

o< (87)

If Qf (x5, o) + @, by F(x*) < M* from (iii), we have
M=o st + F(xk’ ) cok > 0. (88)
Then, by 0<t' <t° and ¢’ >C, >0, we know
i t+M 0+ M0+ M*
o < - < - < .
c c o

(89)

Therefore, the sequence {a*'} is bounded by (87) and
(89). O

Lemma 14. Suppose that Assumptions 1 and 2 hold, then for
any (x°,a%) € R"x R and t° >0, the sequences {(x*', ")}
and {t'} generated by Algorithm 1 satisfy the following:

(i) For any i>0, there exists a k'€ N such that
IVFg (x4, &) < 7(£)

(ii) The sequence {t'} is infinite and strictly monotone
decreasing, t' — 0 as k — oo

Proof.
(i) If there exists an i>0 such that the sequence
{(xk’i, ock’i)} is infinite, then we have IIVFS (x4,

ockj)ll ZT(t;) and k — 00. By Lemma 12 and the
boundedness of {({k”,ak”)} from Lemma 13, there
exists a constant C’' >0 such that

H < < H < <
Ff; <xk+1,z’ 06k+1’l> _ F:; (xk,z’ ‘xk,z>

i < < 2 = -\ 2 (90)
:; <xk,1) ak,z)" < C1T<t1> <0.
Then, by k — oo, we have
lim F% ( ,ock’;> = —00, (91)
k—00

which contradicts that {(xk’ k’)} is bounded and

Ff (x, @) is continuous on R" x R. Therefore, for any
i>0, there exists a k' € N such that [|VF (x
a Nl <z (8.

(ii) By (1) for any i >0, there exists a k' € N such that
IVES F(xK, ok < 7 (t1), then ¢ is updated to ¢! =
w,t'. Therefore, by w, € (0, 1), we know thati — oo
as k — 00, and hence, the sequence {t'} is infinite
and strictly monotone decreasing, t — 0 as
k — oo. O

Theorem 3. Suppose that Assumptions 1 and 2 hold,
{(*?, ak)} s the sequence generated by Algorithm 1, then for
any accumulutzon point (x*,a*) € R* xR of {(xk i ok ’)}
0 €0F (x*), i.e, x* is a stationary point of problem (1).

Proof. By Lemmas 13 and 14, the sequence {(xki’i,
o)} € {(xM, %)} is infinite and bounded; then, there exists
at least one accumulation point of {(xk’ K, ’)} For any
accumulation point (x*,a*) of {(x , ok ’)}, there exists a
subsequence of {(xki’i, ocki’i)} (denoted also by {(xki A ocki’i)} for
convenience) converging to (x*,a"). By Lemma 14,
IVFS (K, %) < 7(¢) and lim,__,7(t) = 0, we have

Y A
It follows from (32) and (92) that

. g Ko K Ki\ _
ih;%02z+<x )0 )ij<x )—0, (93)

jeQ

lim Z zi(xki’i,ocki’i> =1 (94)

1—00

jeQ

By Lemma 7, (x k’)—> (x*,a*), i —> 00, and

t — 0, we have

i—00

lim F(xki’i) = hm o =F(x"). (95)

Then, by Assumption 1, we have
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iang()(fj(xki’i) —ciocki’i> =fij(x")=F(x")<0, j¢I(x").
(96)

Hence, by the finiteness of indexes in Q~I(x*), there
exists an iy >0 such that for any i > i,

fj<xki”'> —dde —d e I(x), (97)
which implies
il_il}go zi(xki’i, ocki’i) =0, j¢I(x"). (98)

By (94), zi (xki’i,ocki’i) >0 for j € I(x*), and by the fi-
niteness of indexes in I (x*), there exists a subsequence of
{(xkl”', ock"i)} (denoted also by {(xk”i, akl’i)} for convenience)
and zj* € [0,1] for j € I(x*), such that

Yz =L
jel ()
lim zi(xki’i, ocki’i> =z’ e[0,1], (99)
i—00 J
jelI(x").

Therefore, by x¥ — x*, (93), (98), (99), and As-

sumption 1, we have

Y ZVfi(x") =0,
jel (x*)

Y oz =1z 20,jel(x"),
jeTG)

(100)

which implies that x* is a stationary point of problem
D). O

4. Numerical Experiments

In this section, we present the numerical results of Algo-
rithm 1 and several related algorithms for solving uncon-
strained minimax problems. Algorithm 1 is recorded as
ASSF. Fminimax is the MATLAB algorithm “fminimax”.
Fmincon is the MATLAB algorithm “fmincon” applied to

min {(xlfj(x)—ocSO,j € Q},

(x,0)€Rn*1

(101)

which is equivalent to problem (1). To show the efficiency of
the proposed active set smoothing function, we replace it by
some other smoothing techniques in Algorithm 1 to obtain
several smoothing methods. AF, SSF, and SPF are con-
structed by Algorithm 1 with aggregate function (2), cubic
spline smoothing function introduced in [28], and exact
penalty function technique introduced in [18], respectively.
TAF and ASAF are constructed by Algorithm 1 and the
aggregate function with the active set strategies introduced
in [25, 26], respectively.
The parameters in Algorithm 1 are set as follows:
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B=08,y=05C=107>C,=10,7T=10"7;
k=10, Kl; =K = 10°, ;cg =K, = 10719, k3 = 0.25;
w, =0.1, w, = 0.1, T(ti) =10"".
(102)

For the moderately sized test problems, t° and a° are set
as follows:

t° = Z fj(xo) —qminfj(xo) +1,

icQ jeQ
(103)
0_ Zjlej(x ) ﬁ_i
'q @
and then, we have
Qo (x% ") =Q,
(104)

Z(HM) =1,

jeQ +

which implies that V, S (x°, a°) is a convex combination of
the gradients of all the component functions. For the test
problems with very many component functions, t° is set as

to _ max{ l,q(F (xO) - minjlej (xO)) }

10

(105)

a’ € (F(x°) —t% F(x%) +t°) is computed by the bisec-
tion method according to

-y (1 JIiE)-cd (xOZO— CO“O>+

jeQ

<0.1. (106)

For the algorithm ASAF, the parameter € in (10) is set as

€= O.S(F(x) — min fj (x)), (107)
JjeQ
for the moderately sized test problems, and
€= 0.4(F(x) — min fj (x)), (108)
JjeQ

for the test examples with very many component functions.
For the algorithm TAF, the parameter € (t, q) in (12) is set as

e(tq) = tln<max{1, (2¢, - &) (g - 1), (263 + 6ef) (q- 1)}))

[ L—¢€y €4

(109)

with €, =0.1, €, =0.01, €5 =0.01, and ¢, =0.1. For the
algorithms AF, ASAF, TAF, SSF, and SPF, the initial
smoothing parameters are set to t° = 1. The termination
criterion for the algorithm AF is set as

t< 10’3,

110
|[VF, ()] <107°. o
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TaBLE 1: The CPU time for Examples 1-10.

Ex. q ASSF SSE SPF TAF ASAF AF Fminimax Fmincon
10° 0.1035 0.7598 1.2153 0.3283 0.2872 0.2924 34.7621 226.4573

1 10° 0.8800 7.5375 7.3612 3.2775 2.8821 3.0391 2204.3730 fail®
107 10.7318 75.3454 75.8656 32.6120 28.2999 31.4882 fail® fail®
10° 0.0862 0.0965 0.1222 0.0954 0.2447 0.0909 7.1100 116.8411

2 10° 0.5647 0.9765 2.8985 0.9576 3.1395 0.9704 116.5674 1491.4805
107 9.1149 10.7622 26.5794 9.7821 32.9736 9.4956 1487.9868 fail®
10° 1.4902 4.4586 27.7835 4.4605 4.0761 7.7392 122.9883 fail?

3 106 19.8937 59.5392 839.3762 68.2482 55.0242 103.4272 3044.0625 fail?
107 203.0458 514.4458 3569.5139 676.4006 501.4630 926.5762 fail® fail?
10° 0.3202 0.5836 4.5430 0.6396 21124 2.1355 69.3814 fail?

4 10° 3.4366 7.9853 44.6778 8.8451 27.3115 27.6770 1545.7716 fail?
107 36.0206 71.4938 645.1772 78.9203 230.0224 237.1365 fail® fail?
10° 0.9396 2.6478 9.6803 3.7163 3.2187 3.7483 230.2623 fail'

5 10° 16.4395 31.1775 92.1263 45.2874 43.4843 45.5968 fail® fail!
107 158.8988 307.4791 1002.5981 432.1560 401.5995 436.5213 fail® fail!
10° 0.6966 3.7246 3.1238 4.4810 3.4686 4.5208 42,9713 fail®

6 10° 7.2618 49,6754 46.5345 59.6989 46.1585 60.0291 2912.3607 fail®
107 74.8332 4788652 4557022 5612579 4254030  566.2980 fail® fail®
10° 1.1056 7.0048 13.4588 3.2790 9.3249 3.2450 169.5213 fail®

7 10° 26.3445 74.6292 177.1446 35.2551 99.2012 34.5205 fail® fail?
107 123.4221 749.7656 1834.9277 343.0618 984.0483 341.2569 fail® fail?
10° 0.9361 1.8597 8.1073 1.3515 2.6522 1.5489 157.1865 fail?

8 106 12.6151 25.1838 86.3288 19.5087 35.3458 20.1976 fail® fail?
107 108.6392 236.4630 949.2546 184.0629 328.1475 189.5273 fail® fail?
10° 0.4863 1.5641 10.0722 1.4539 0.7162 1.4945 21.4071 fail®

9 10° 8.0179 18.8813 174.8562 18.4460 9.4945 18.7385 283.0764 fail®
107 58.8060 177.5352 2275.1924 162.9317 101.1354 165.5642 3543.2556 fail®
103 0.9273 1.9002 1.1572 14.5336 28.9550 30.5158 1.3285 fail?

10 10* 0.6413 19.4758 10.9090 97.0372 177.8060 186.0173 14.5788 fail?
10° 1.6718 183.3566 129.7202 471.6195 792.5688 809.8969 131.9020 fail?

The termination criteria for the algorithms ASSF, SSF,
SPF, ASAF, and TAF are set as

t< 10’3,

(111)
[VZ, (x)] <1077,

or

F(x)<F(xp), (112)

where V&, (x) represents the gradient of the smoothing
function with respect to the variable x and x . is the ap-
proximation solution computed by the algorithm AF. The
numerical results were obtained by running MATLAB
R2014a on a laptop with Inter(R) Core(TM) i5-7300HQ
CPU 2.50GHZ and 4.00 GB memory.

We carry out a comparison on three categories of test
problems described in the Appendix. The first category of
problems, Examples 1-10, emanates from the discretized
semi-infinite minimax problems, and the number of the
component functions is at least 1000. The second category of
problems, Example 11, possesses many variables and many
component functions. The third category of problems, Ex-
amples 12-45, is composed by various moderately sized test

problems. Tables 1-3 list the CPU time; Tables 4-6 list the
number of function evaluations and iterations; Tables 7 and
8 list the average proportion of the component functions
used in the active set strategy; the word fail' means that the
stepsize cannot be computed in the region [1071°,1]; the
word fail*> means that the number of iterations in Fminimax
or Fmincon reaches the upper limit; the word fail® means
that the CPU time exceeds 3600 seconds. In order to make
the advantages of Algorithm 1 clearer and more explicit, the
corresponding Dolan-Morée performance profiles pro-
posed in [32] are shown in Figures 1-3 for three categories of
examples above.

For all the test problems with very many component
functions, we see that Algorithm 1 is predominantly faster
than other algorithms from Tables 1 and 2 and Figures 1 and
2, the proposed active set strategy results in more significant
reduction of gradient evaluations than the active set strat-
egies in [18, 25, 26, 28] from Tables 7 and 8, and Fminimax
and Fmincon have poor stability and low efficiency. For
most moderately sized test problems, we see from Tables 3
and 6 and Figure 3 that Algorithm 1 requires fewer iterations
and function evaluations and takes less CPU time than the
other algorithms considered.
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TaBLE 2: The CPU time for Example 11.
n q ASSF SSF SPF TAF ASAF AF Fminimax Fmincon
10 10 0.5275 0.7747 12.2677 0.7556 0.7715 0.7928 464.3152 fail®
10 10° 2.7369 15.8849 76.2165 14.4669 15.1963 15.2076 fail® fail®
102 10* 25.7550 587.5630 fail® 533.8570 615.3645 665.1596 fail® fail®
10 10° 0.2127 2.4103 2.8646 2.3061 2.3695 2.4319 2.8159 20.2106
10 10° 2.7141 12.0482 74.3301 10.7229 10.0013 11.2506 fail® fail®
10° 10° 806.9206 2286.4695 fail® 2186.7536 2098.2569 2304.5143 fail® fail®
TaBLE 3: The CPU time for Examples 12-45.
Ex. ASSF SSF SPF TAF ASAF AF Fminimax Fmincon
12 0.0018 0.0026 0.1070 0.0013 0.0023 0.0017 0.0636 0.0569
13 0.0011 0.0012 0.0167 0.0021 0.0037 0.0045 0.0931 0.0578
14 0.2468 0.4617 0.6172 0.2469 0.4213 0.0013 0.0959 fail?
15 0.0190 0.0132 0.1243 0.0087 0.0117 0.0125 1.4777 fail?
16 0.0437 0.0316 2.3675 0.0298 0.0353 0.0297 5.8776 fail?
17 0.0099 0.0193 0.3882 0.0129 0.0137 0.0193 0.8454 0.1955
18 0.0376 0.0417 0.8257 0.0839 0.0849 0.0702 1.8279 fail®
19 0.1895 0.7442 0.5214 0.8614 0.9749 0.8750 0.5122 0.6373
20 1.8828 3.6656 3.0255 3.5755 3.8257 3.5837 3.0208 3.0462
21 0.0054 0.4821 fail! 0.0178 0.0229 0.0198 0.0845 0.1491
22 0.0074 0.1384 3.0235 0.0169 0.0312 0.0228 0.0321 0.0607
23 0.0113 0.8615 0.3981 0.0432 0.0588 0.0481 0.0897 0.2281
24 0.0026 0.0881 0.0248 0.0073 0.0092 0.0077 0.0211 0.0360
25 1.7941 16.1289 6.0794 6.2755 11.2465 12.2501 6.1201 6.2704
26 0.0006 0.0057 0.0096 0.0190 0.0088 0.0051 0.1165 0.0926
27 0.0990 0.1668 1.7366 0.8320 1.1020 0.7201 0.4449 0.0894
28 0.0018 0.0055 0.0147 0.0038 0.0044 0.0032 0.0126 0.0179
29 0.0010 0.0022 0.0126 0.0011 0.0027 0.0007 0.0180 0.0247
30 0.0015 0.0036 0.0093 0.0016 0.0040 0.0025 0.0101 0.0170
31 0.0005 0.0010 0.0014 0.0009 0.0007 0.0006 0.0177 0.0185
32 0.0018 0.0055 0.1108 0.0041 0.0055 0.0038 0.0101 0.0193
33 0.0017 0.0089 0.0165 0.0038 0.0060 0.0040 0.0101 0.0174
34 0.0004 0.0017 0.0031 0.0016 0.0019 0.0015 0.0106 0.0184
35 0.0018 0.0061 0.0206 0.0051 0.0063 0.0047 0.0087 0.0184
36 0.0008 0.0026 0.0093 0.0018 0.0028 0.0018 0.0082 0.0148
37 0.0022 0.0060 0.0210 0.0076 0.0097 0.0073 0.0160 0.0310
38 0.0030 0.0053 0.5716 0.0027 0.0037 0.0018 0.0543 0.1928
39 0.0038 0.0090 0.0263 0.0106 0.0089 0.0064 0.0327 0.0910
40 0.0228 0.0291 0.1652 0.0611 0.1229 0.1114 0.0113 0.9211
41 0.0001 0.0053 0.0061 0.0047 0.0064 0.0051 0.0145 0.0203
42 0.0018 0.0093 0.0127 0.0064 0.0176 0.0094 0.0068 0.8627
43 0.0022 0.0046 0.0590 0.0050 0.0063 0.0047 0.0157 0.0216
44 0.0045 0.0107 0.0505 0.0117 0.0157 0.0122 0.0168 0.0572
45 0.0331 fail! 2.6303 0.5594 0.1648 21.6874 0.0681 fail®
TaBLE 4: The number of function evaluations and iterations for Examples 1-10.
Ex. q ASSF SSF SPE TAF ASAF AF
10° (34, 23) (67, 14) (188, 77) (93, 15) (79, 14) (84, 15)
1 10° (27, 20) (246, 22) (88, 34) (85, 15) (79, 14) (84, 15)
107 (33, 23) (343, 21) (97, 40) (83, 14) (79, 14) (84, 15)
10° (23, 18) (30, 13) 19, 19) (32, 10) (55, 13) (32, 10)
2 10° (23, 18) (34, 15) (60, 35) (32, 10) (55, 13) (32, 10)
107 (32, 22) (34, 13) (16, 16) (32, 10) (55, 13) (32, 10)
10° (242, 101) (564, 118) (1381, 928) (737, 219) (580, 109) (812, 262)
3 10° (238, 103) (761, 137) (4852, 4518) (798, 245) (583, 108) (1039, 266)
107 (239, 103) (765, 141) (4852, 4518) (804, 249) (583, 108) (819, 262)




Mathematical Problems in Engineering 13
TaBLE 4: Continued.

Ex. q ASSF SSF SPF TAF ASAF AF
10° (60, 50) (242, 53) (808, 385) (503, 33) (466, 35) (610, 47)

4 106 (66, 58) (270, 59) (1008, 258) (657, 41) (550, 38) (614, 48)
107 (71, 63) (296, 68) (1408, 271) (632, 46) (634, 40) (599, 47)
10° (84, 58) (76, 45) (407, 233) (281, 65) (277, 63) (284, 67)

5 100 (93, 61) (87, 50) (407, 233) (280, 65) (276, 63) (284, 68)
107 (89, 59) (98, 55) (407, 233) (280, 65) (276, 63) (284, 68)
10° (53, 39) (293, 216) (274, 95) (296, 229) (231, 231) (299, 231)

6 106 (53, 39) (293, 216) (396, 124) (296, 229) (231, 231) (299, 231)
107 (53, 39) (293, 216) (426, 123) (296, 229) (231, 231) (299, 231)
10° (19, 16) (130, 28) (379, 111) (55, 17) (342, 68) (55, 17)

7 106 (67, 39) (128, 33) (498, 138) (55, 17) (362, 72) (55, 17)
107 (44, 19) (125, 31) (507, 137) (55, 17) (364, 74) (55, 17)
10° (66, 39) (145, 57) (606, 180) (214, 39) (550, 52) (215, 40)

8 106 (60, 38) (131, 61) (567, 180) (216, 40) (572, 54) (216, 40)
107 (54, 33) (137, 56) (801, 227) (215, 40) (593, 56) (215, 40)
10° (79, 14) (47, 21) (434, 152) (48, 18) (39, 15) (48, 18)

9 106 (79, 17) (59, 21) (677, 200) (48, 18) (39, 15) (48, 18)
107 (76, 11) (49, 20) (935, 270) (48, 18) (39, 15) (48, 18)
103 (745, 63) 1071, 103) (243, 107) (107139, 4270) (111873, 4454) (135709, 5096)

10 104 (74, 53) (1094, 105) (278, 120) (134725, 5136) (137748, 5240) (136931, 5213)
10° (69, 49) (2477, 495) (423, 140) (122067, 4649) (112489, 4968) (122803, 4677)

TaBLE 5: The number of function evaluations and iterations for Example 11.

n q ASSF SSF SPF TAF ASAF AF

102 10 (212, 41) (196, 38) (1110, 919) (180, 32) (174, 31) 175, 32)

10% 103 (245, 55) (561, 65) (1010, 378) (553, 62) (557, 64) (557, 64)

102 104 (318, 85) (1952, 143) fail® 1707, 114) (1888, 139) (2857, 166)

10 103 (208, 45) (392, 49) (5658, 249) (391, 49) (392, 49) (395, 48)

10% 103 (228, 47) (464, 59) (983, 381) (459, 56) (561, 62) (459, 56)

10° 10° (255, 59) (562, 63) fail® (563, 65) (559, 60) (559, 60)

TaBLE 6: The number of function evaluations and iterations for Examples 12-45.

Ex. ASSF SSF SPF TAF ASAF AF

12 (26, 19) (29, 13) (56, 41) (24, 11) (27, 12) (36, 16)

13 9, 5) (5,5) (93, 48) (7, 5) (6, 5) (7, 5)

14 (5054, 2352) (5024, 2342) (6058, 6052) (5195, 2341) (5027, 2335) (33, 9)

15 (12, 6) (5, 5) (135, 76) (7, 5) (6, 5) (7, 5)

16 (14, 6) (6, 6) (494, 264) (7, 5) (7, 6) (7, 5)

17 (13, 6) (4, 4) (316, 143) (10, 5) @10, 5) (11, 6)

18 (14, 6) (6, 6) (180, 92) (22, 9) (22, 7) 16, 6)

19 (5466, 213) (11827, 582) (664, 586) (23561, 649) (23700, 649) (24435, 671)

20 (41561, 2428) (46979, 2844) (3103, 3056) (88377, 2981) (87642, 2846) (89606, 3016)

21 (69, 36) (3296, 3186) fail' (618, 40) (655, 42) (649, 47)

22 (121, 40) (2508, 353) (22442, 21961) (695, 55) (844, 61) (740, 58)

23 (68, 41) (12151, 694) (4623, 1197) (1277, 55) (1339, 81) (1181, 82)

24 (21, 19) (638, 279) (203, 116) (121, 27) (111, 26) (119, 30)

25 (26994, 1525) (101048, 5186) (5215, 5126) (135661, 5598) (220821, 7685) (261684, 8977)

26 (9, 5) (22, 11) (65, 44) (151, 119) (145, 13) (145, 13)

27 (237, 237) (356, 239) (3691, 2763) (16060, 878) (15714, 852) (10800, 622)

28 (30, 18) (148, 21) (164, 135) (104, 19) (92, 19) (95, 19)

29 a3, 11) (26, 10) (105, 104) a1, 8) (12, 10) (8, 8)

30 (31, 15) (104, 14) (84, 71) (45, 10) (71, 16) (71, 16)

31 (8, 8) (8, 6) (7, 9) (7, 6) (6, 4) (10, 6)
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TaBLE 6: Continued.

Ex. ASSF SSE SPF TAF ASAF AF

32 (28, 18) (178, 18) (1145, 1053) (119, 22) (115, 20) (119, 22)
33 (27, 18) (270, 22) (256, 117) 112, 19) (118, 25) (118, 25)
34 (4, 4) (19, 10) (33, 22) (30, 11) (44, 7) (39, 13)
35 (30, 17) (209, 19) (259, 175) (171, 20) (150, 21) (153, 24)
36 12, 8) (42, 10) (39, 21) (56, 7) (56, 10) (53, 10)
37 (25, 21) (158, 18) (225, 163) (228, 26) (214, 25) (218, 29)
38 (21, 13) (64, 12) (2090, 2073) (38, 8) (33, 10) (20, 7)
39 (31, 22) (142, 22) (174, 114) (262, 17) (103, 22) (105, 24)
40 (966, 45) (592, 90) (4612, 232) (2341, 192) (4278, 214) (4549, 213)
41 (18, 18) (165, 39) (53, 38) (97, 37) (107, 26) (119, 38)
42 (26, 15) (236, 36) (180, 78) (158, 44) (469, 52) (306, 41)
43 (23, 21) (165, 46) (601, 502) (175, 49) (175, 28) (167, 42)
44 (36, 28) (228, 52) (360, 228) (307, 53) (339, 32) (304, 46)
45 (195, 26) fail" (6172, 3109) (1145, 35) (4754, 174) (225933, 4256)

TasLE 7: The proportion of the component functions used in the active set strategy for Examples 1-10.

Ex. q ASSF SSF SPF TAF ASAF
10° 0.4992 0.7292 0.6553 0.7582 0.9666
1 10° 0.4241 0.7280 0.6497 0.7666 0.9666
107 0.4987 0.7001 0.6178 0.8056 0.9666
10° 0.4264 0.7737 0.8901 0.7370 0.8956
2 106 0.4264 0.7528 0.8811 0.7497 0.8956
107 0.5306 0.7793 0.8820 0.7616 0.8956
10° 0.8052 0.9965 0.7298 0.9848 0.9948
3 109 0.8069 0.9204 0.5178 0.9870 0.9947
107 0.8069 0.9129 0.5178 0.9880 0.9946
10° 0.1952 0.3062 0.7900 0.6262 0.9549
4 106 0.1672 0.3020 0.7049 0.6334 0.9584
107 0.1540 0.3009 0.7037 0.6301 0.9543
10° 0.4633 0.8963 0.9309 0.8392 0.9843
5 10° 0.4878 0.8325 0.9309 0.8429 0.9843
107 0.4711 0.8022 0.9308 0.8468 0.9843
10° 0.6521 0.8693 0.9028 0.9917 0.9942
6 10° 0.6521 0.8356 0.9028 0.9919 0.9942
107 0.6520 0.8260 0.8627 0.9920 0.9942
10° 0.6635 0.8454 0.8604 0.9935 0.9693
7 106 0.6440 0.8830 0.8073 0.9932 0.9710
107 0.6440 0.8323 0.8376 0.9914 0.9691
10° 0.7163 0.9796 0.9090 0.8775 0.9975
8 10° 0.7088 0.8478 0.9092 0.8760 0.9977
107 0.3990 0.8084 0.8579 0.8850 0.9979
10° 0.4992 0.8745 0.8678 0.9997 0.5148
9 10° 0.4012 0.8803 0.8509 0.9995 0.5148
107 0.3903 0.8353 0.8345 0.9995 0.5148
10° 0.0382 0.5973 0.6395 0.0289 0.0335
10 10* 0.5612 0.6108 0.6191 0.0282 0.0337
10° 0.4125 0.6088 0.6091 0.0290 0.0329

TaBLE 8: The proportion of the component functions used in the active set strategy for Example 11.

n q ASSF SSF SPF TAF ASAF
10 10 0.2741 0.7344 0.5394 0.8765 0.9228
10? 10° 0.2212 0.7226 0.5087 0.8088 0.9227
10? 10* 0.3030 0.7951 fail® 0.8364 0.9227
10 10° 0.1969 0.8133 0.5097 0.8009 0.8998
10? 10° 0.2570 0.7975 0.5145 0.8371 0.8984

10° 10° 0.2477 0.7622 fail® 0.8584 0.8977
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The Dolan-Moré performance profile for comparing the CPU times
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FIGURE 1: The Dolan—Moréé performance profile of Examples 1-10.
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FiGure 2: The Dolan-Morée performance profile of Examples 11.
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5. Conclusion

We have proposed an active set smoothing function for the
maximum function by using the plus function and an active
set smoothing method with convergence analysis for solving
unconstrained minimax problems. The active smoothing
function can be simply implemented in the smoothing
methods. Compared with the similar smoothing algorithms
based on other smoothing techniques, and the algorithms in
the MATLAB environment, the proposed algorithm is
competitive for wide moderately sized problems and dra-
matically efficient for the problems with very many com-
ponent functions.

Appendix

Example 1 (see [24])

F(x) = max f;(x),
1<j<q

f]-(x):sinyj—(x3y§+x2yj+x1), j=1,...,g,
. q
Fi(x¥) =~fign(x) J=5, 0
(Gj-1 . q
P T A v :1>-~~>_>
7 (gl2-1) 2
(A1)
n=3x"=(1,1,1).
Example 2 (see [24])
F(x) = max f;(x),
1<j<q
. q
fj(x)=(2y§—1)x+yj(1—yj)(l—x), ]=1,...,E,
_ .__4
fi(x) =—=fi g, jEoped
(j—1) . q
P T T A v =1)---)_)
Vi qn-1y 2
(A.2)
n=1x"=5.
Example 3 (see [24])
F(x) = max f;(x),
1<j<q
2 2 . q
fj(x)=\/y_j—<x4—(x1yj+x2yj+x3)), ]=1,...,£,
_ .__4
fj(x)——fij/z(x), J—ﬁ,...,q,
) G- . . q
¥ =025 4075w j= by
(A.3)

n=4,x"=(1,1,1,1).
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Example 4 (see [33])

F(x)= maxfj (x),
1<j<q

fj (x)= (x1 +X,); —exp(yj))2 +(x3 +x4sinyj —cosyj)z,

. q
]=1,...,E,
_ ._ 4
i) =—=f gn(x)s =5
(-1 . q
:4 > :1)~--)_)
Y (g/2-1) J 2
(A.4)
n=4,x"= (25,5,-5,-1).
Example 5 (see [34])
F(x) = g}?g;fj (x),
Fio = X+ X))+ X397 B \I(Syj - 1)2 + larctan(Syj)
] L+ X,y + X5y 8y; ’
. 4q
] = 1) -:E)
_ |
f](x) —_f]'_q/z(X), ]—m,...,q,
(-1 . q
=1+ 2—T =1...,5,
7 " (g/2-1) 2
(A.5)

n=5ux"=(0,-1,10,1,10).

Example 6 (see [34])

F(x) = max £ (),

3 1
fi(x) = i—zexp(—ijl)sin(ijz) —(% exp(—yj) + ﬁexp(—Syj)

1
—@exp(—Zyj)(?a sin(Zyj) +11 cos(2yj)), j=1,.. .,g,
- .__4
fj(x)—_fj—qlz(x)> J—m,...,q,
_loG-1n . q
yj_(q/z_l)) =1,..., 2,
(A.6)

n=3x"=(1,1,1).
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Example 7 (see [35]) n=4,x"=(1,1,-3,-1).
F(x) = max f;(x),
1<j<q
Example 9 (see [36])
fi(x) = Stk —exp(y;) =L g F(x) = max f; (x)
/ L+23); + X5 + X593 J 2 1j<q” 17
.__4
(x):_ — (x)7 =5 -9
f fian J T2 1 fix) = X2 exp(—xzyj)cosz(x3yj + x4) - cos(yj)
G- . q
y:—1+24, ]:1,...,_, .
! (gi2-1) 2 + X% exp(—xlyj)smz(xzyj) (A.9)
(A7)
n=>5x"=(0.5,0,0,0,0). +exp((1-x¢)’y;+x3), j=1...,4
Example 8 (see [13]) ) - 10(j-1) i .
F(x)zlrgja;;f](x)> j (q—l) > sy
_ 1 . q n=6x"=(1,1,1,1,1,1).
fj(x)—xlexp(x3yj)+xzexp(x4yj) I , j=L...,5,
+Y; 2
[ =—fjgn(x) j= 27:1_1 g Example 10 (see [36])
_ (-1 . q
Y= 0.5 + (q/2—1)’ j= 1,...,2,
(A.8)
F(x) = gja;;fj(x),
X .
fi(x) = x—jexp(—ijl)sm(ijz) +x, exp(—xzyj)cos(x3yj + x4) + X5 exp(—x6yj)
3 1 1 . 1
—<%exp(—yj) + 5—2exp(—5yj) - Eexp(—Zyj)(3 sm(Zyj) +11 cos(Zyj)) + zexp(—yj)
(A.10)
1 3 3 . 5 . . q
—exp(—Zyj) + Eexp(—?;yj) + Eexp(—iyj>sm(7yj) + exp(—iyj)sm(Syj)), j=1... '
Fi)=~fip ), j=51 g
j ]“1/2 > 2 + 1a > Y
100G -1 q
= T o = 1) >
ViT g -1 2
n==6x"=(2,2,70-21). generated  randomly  as  normal  distribution.
x" = ((1/n), (1/n),..., (1/n)).
Example 11 (see [18])
F(x) = max fj (x), Example 12 (see [24])
1<j<q Fx) = max £,00,
<j<
_Lr T (A.11)
1) =y A Bx e Gy £ =(n) + ()" (A12)

j=1...,9

where A; € R™", j =1,...,q, is symmetric positive definite,
and Bj €R", j=1,...,9, and Cj €R, j=1,...,q, are all

frlx)=(2~ x1)2 +(2- xz)z’
f3(x) =2exp(-x; +x,),
n=2x"=(0,0).
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Example 13 (see [24]).

F(x) = max fi(x),
fj (x) = x?, (A.13)
j=1,...,20.

n=20,x"=(0.1,0.2,...,1,-1.1,-1.2,...,-2).

Example 14 (see [24]).

F(x) = {Qj;aéfj(x),
2
filx) = (xl —\x? + x5 cos(x? + x%)) + 0.00S(xf + xi),
2
fa(x) = <x2 - \x} + 3 sin(x] + x%)) +0.005(x} +x3),
(A.14)
n=2,x"= (1.41831,-4.79462).
Example 15 (see [24]).
F(x) = ax; 1 (x),
fj (x) = x° (A.15)
j=1,...,100,
n=100,x"= (0.1,0.2,...,1,-1.1,-1.2,...,-2).
F(x) = rr}ax fj(x)
_ J
fi00 =5+ e T min (G, 16 = ),
fix)=-f5(x), j=16,...,30,
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Example 16 (see [24]).
F(x) = max f](x)

=(0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,0.37,0.58, 0.73, 0.96, 1.34, 2.10, 4.39),

n=3x"=(1,11).

Flx) = or?ngf(x)
xl(u +x2u1) '
e ——— A D =1,...,11,
f]() u+x3u]+x4 y] ]
fj(-x):_fj—ll(x); j=12,...,22,

1<j<200
fj (x) = e (A.16)
j=1,...,200,
n=200,x"= (0.1,0.2,...,1,-1.1,-1.2,...,-2).
Example 17 (see [24]).
B = ima /)
fj (x) = xz(j—1)+1 + ij’ (A.17)
j=1,...,50,
n=100,x" = (0.02,0.04,...,1,-1.02,-1.04, ..., -2).
Example 18 (see [24]).
Flx) = 12}2(0 £,
2 2 2 2
Fi () = X4y + X + X + X (A-18)
i=1,...,50,
n=1200,x° = (0.01,0.02,...,1,-1.01,-1.02, ..., -2).
Example 19. (see [33]).
~yp j=1...,15
(A.19)
Example 20 (see [33]).
(A.20)

=(0.1951,0.1947,0.1735, 0.1600, 0.0844, 0.0627, 0.0456, 0.0342, 0.0323, 0.0235, 0.0246),

u = (4.0000, 2.0000, 1.0000, 0.5000, 0.2500, 0.1670, 0.1250, 0.1000, 0.0833, 0.0714, 0.0625),

n=4,x" = (0.250,0.390,0.415, 0.390).
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Example 21 (see [37]).

F(x) = max £ (),

F1(x) = (3, = 10)7 +5(x, — 12)* + x5 + 3 (x, — 11)* + 10x% + 7x7 + x3 — 4x,x, — 10x4 — 8x;,

f2(x) = f1(x) +10(2x] + 3x; + x5 + 4x] + 5x5 — 127),

(A.21)
fi(x)=fi(x)+ 10(7x1 + 30, + 1055 + x4 — x5 — 282),
fa(x) = f1(x) +10(23x, + x5 + 6x — 8x; — 196),
fs(x)=fi(x)+ 10(4x§ + X5 = 3x,%, + 25 + 5% — 11x7).
n=7,x"=(1,2,0,4,0,1,1). Example 22 (see [37]).
F(x) = max fi(x),
F1(x) = X3+ 55+ x,x, — 14x; — 163, + (x5 — 10)” + 4 (%, — 5)° + (x5 - 3)°+
+2(xg = 1)7 +5x2 + 7 (x5 = 11)7 + 2 (%9 — 10)* + (3,0 — 7)” + 45,
f2(x) = f1(x) +10(3 (x; - 2)° +4(x, - 3)° +2x5 — 7x, — 120),
f3(x) = f1(x) +10(5x7 + 8x, + (x5 — 6)° — 2x, — 40),
(A.22)

fa(x) = f1(x) +10(0.5(x, - 8)° +2(x, - 4)* + 3x — x4 — 30),
fs(x)= f1(x)+ 10(xf +2(x, = 2)" = 2%, %, + 14x5 — 6x6),
fo(x) = f1(x)+10(4x; + 5x, — 3x, + 9xg — 105),

f7(x) = f1(x)+10(10x; — 8x, — 17x; + 2xg),

fs(x) = fi(x)+ 10(—3x1 +6x, +12(xy — 8)° — 7x10),

fo(x) = f1(x)+10(=8x; +2x, + 5x9 — 2x,( — 12),

n=10,x"= (2,3,5,5,1,2,7,3,6, 10). Example 23 (see [37]).
p

F(x) = max 1),

F1(x) = x4+ 55+ x,x, — 14x; — 163, + (x5 — 10)” + 4 (%, — 5)° + (x5 - 3)°+
+2(xg = 1)7 +5x2 + 7 (x5 = 11)7 + 2 (%9 — 10)* + (3,0 = 7) + (31, — 9)+
+10(x5 = 1)7 +5(x5 = 7)7 +4 (04 — 14)" +27 (x5 = 1)° + x5 + (5, — 2)°+
+13 (x5 — 2)° + (319 — 3)° + x5, + 95,

f2(x) = f1(x) +10(3(x; - 2)* + 4(x, - 3)° + 23 - 7x, — 120),

f3(x) = f1(x) +10(5x7 + 8x, + (x5 — 6)° — 2x, — 40),

fa(x) = £ (x) +10(0.5(x, = 8)* +2(x, - 4)* + 3x% - x4 — 30),

fs(x) = f1(x)+ IO(xf +2(x, = 2)" = 2x,%, + 14x5 — 6x6),

fo(x) = f1(x)+10(4x; + 5x, — 3x, + 9xg — 105),
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f7(x)

fs(x)

fo(x)
J10(x)
fux)
fr2(x)
f13(x)
Sra(x)
J15(x)
J16(x)
f17(x)
f1s(x)
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= f1(x) +10(10x, — 8x, — 17x; + 2x3),

= f1(x) +10(=3x, + 6x, + 12(xo = 8)* = 7x,),
= f1(x) +10(-8x, + 2x, + 5x4 — 2x,, — 12),

= f1(x) +10(x; + x, + 4x;; — 21xy,),

= f1(x) +10(x] + 15x,, - 8x,, - 28),

= fi(x)+ 10(4x1 +9x, + Sx13 9x 14 — 87),

= f1(x) +10(3x, +4x, + 3 (x5 — 6)° — 14x,, — 10),
= f1 (%) + 10(14x] + 35x,5 — 79x,5 — 92),

= f1 (%) +10(15x5 + 11x,5 — 61,5 — 54),

= f1 (%) +10(5x] + 2x, + 9x}; — x5 — 68),

= f1(x) + 10(x7 — x, + 19x39 — 20x,9 + 19),

= fi(x)+ 10(7x1 +5x5 + x19 30x20),

(A.23)

n=20,x"=(2,3,55,1,2,7,3,6,10,2,2,6,15,1,2,1,2,1,3). Example 24 (see [37]).

n=>5x"=(0,0,0,0,1).

F(x) = max f] (%),

fi(x) =b; Z (xi - “ﬁ)z’
i=1

-
I
—
—

=)

_ O = = O W = = N O
— O O = NN RN = O
N N = = = = = O

1

(A.24)

S = N = O O N = = O
O O = = = =N NN WO

1
%NSUW»—A
)

1.7
2.5

[ 3.5 ]
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Example 25 (see [34]).

F(x) = max 1 (x),

21

filo)=t;—x exp(—xsyj) X exP("%()’j - x9)2) X3 exp(—x7(yj - xm)z)

- Xy exp(—xs(yj - x11)2>, j=1,...,65

j=66,...,130,
j=1,...,65,

fj (x) = —fj_65 (x),
»;=01(-1),

t =(1.366,1.191,1.112,1.013,0.991, 0.885, 0.831, 0.847, 0.786, 0.725, 0.746, 0.679, 0.608, 0.655,
0.616, 0.606, 0.602, 0.626, 0.651, 0.724, 0.649, 0.649, 0.694, 0.644, 0.624, 0.661, 0.612, 0.558,
0.533,0.495,0.500, 0.423,0.395,0.375,0.372,0.391, 0.396, 0.405, 0.428, 0.429, 0.523, 0.562,
0.607,0.653,0.672,0.708,0.633, 0.668, 0.645, 0.632, 0.591, 0.559, 0.597, 0.625, 0.739, 0.710,
0.729,0.720, 0.636, 0.581, 0.428,0.292,0.162, 0.098, 0.054).

n=11,x"= (1.3,0.65,0.65,0.7,0.6,3, 5,7,2,4.5,5.5).

Example 26 (see [38]).

F(x) = max fi(x),

fix)=x; j=1,...,20, (A.26)
fj(x):_fj_zo(x)> j=21,...,40,
n=20,x"=(1,2,...,10,-11,-12,...,-20).
Example 27 (see [38]).
PO = a1,
3 A.27
i=1,...,50,
n=>50,x"=(1-255,...,i—255,...,50 —25.5).
Example 28 (see [38]).
F(x) = max 1 (x),
fix) = (x1)2 +(x; - 1)2 +x,-1, (A.28)
fa(x) = _(x1)2 —(xy - 1)2 +x,+1,
n=2,x"=(-15,2).
Example 29 (see [38]).
F(x) = g];aéfj (x),
f1(x) = exf/1000+(x2—1)2’ (A.29)

£, (x) = ex$/1000+(x2+1)2’

n=2,x"=(50,0.05).

(A.25)
Example 30 (see [38]).
F(x) = {gjgfj (%),
f1(x) ==x; — x,, (A.30)
fo(x) =—x; —x, +(x% + x% - 1),
n=2,x"=(-0.5-0.5).
Example 31 (see [38]).
F(x) = max fix),
f1(x) = —x,, (A.31)

fz(x):—x1+xf+x§—l,

n=2x"=(-1,-1).

Example 32 (see [38]).

F(x) = max f; (x),

<j
£ = 5 42 1) 0 175( 1),

0= x4 2 1) L75(o 1),

(A.32)
n=2x"=(-1,-1).
Example 33 (see [38]).
F(x) = max f;(),
fi(0=x+x, (A.33)

frlx)=(2~ xl)z +(2- xz)z’
filx)= e e,

n=2x"=(2,2).
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Example 34 (see [38]). n=2x"=(-1,5).

F(x) = max f; (x),
1<j< Example 36 (see [38]).
fl (X) = 5X1 + Xy»

(A.34) F(x) = max f;(x),
fa(x) = =5x; + x,, lsjsd
f3(x) = %0+ x5 + 4x,, fi1(x) = IO(x2 - x%),
n=2,x"=(1,1). fr(x) = —f, (x), (A.36)
Example 35 (see [38]). f3(x)=1-xy,
F(x):{n?‘)gfj(x)) fa(x) =—f;5(x),
<j<

2 2 n=2x"=(121).
frlx) =2+ x5 (A.35)

_ L2 2 _ _
fo () =20+ 25 +10(~4x, - x; +4), Example 37 (see [38]).

f3(x) = X7 + x5 +10(~x; - 2x, +6),

F(x) = max f; (x),

<j
fi(x) = x%+x§+2x§+xi—5xl - 5x, — 21x5 + 7xy,
F2(0) = f1(x) +10(x] + x5 + x5 + X3 + X, — X, + X3 — x4 — 8), (A.37)
f3(x)=f(x)+ IO(xf + 200+ X+ 2K - x - Xy - 10),

f4(x) :fl(x)+10(xf+x§+x§+2x1 —xz—x4—5),

F(x) = max f,(x),
n=4,x"=(0,0,0,0). 1<j<3°

Example 38 (see [38]). f1(x) :;<x1 + (xlix(; 1) + 2x§>,
_ ‘ 1 +H0.
F(x) = max f; (x), 1 , (A.41)
X
£1(x) = f(x +2a), (A.38) fo(x) :E<—x1+7(x1+6.1)+2x§>,
f2(x) = f(x-2a), (x) 1 10x, 2x2
where filx 2\ (x, +0.1) el
f(x) = e(0.0001x1)2+x§+x§+2xi+x§+x§+u.+xf0, (A39) n=2x"= (31).
a=(0,1,0,0,0,0,0,0,0,0), '
n = 10,59 = (100,0.1 o1 Example 41 (see [38]).
=10,x° = ,0.1,...,0.1). F(x):{l;jag)éfj(x))
Exampllj(jj (_86;2518?.(,6) f1(x) = %3+ 55+ x,%,,
T i<j<i0” 17 fr(x)=—f,(x),
. (A40) f2(0) =sin(x) (A2
fj (x) = Z : _;+ le[ (x;=sin (j-1+2(i-1))) ]’ f4 (x) = _f3 (x),
. - f5(x) = cos(x,),
n=11,x"=(1,...,1). fo(x) = —F5 (),

Example 40 (see [38]). n=2x"=(31).
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Example 42 (see [38]). n=2x"=(0.1,0.1).

F(x) = max 1),
== ) Example 43 (see [39]).
fi(x) = SO(x1 + x5 - 1) +3x3, (A.43)

fa(x) = SO(x1 - X5+ 1)2 +3x7,

F(x)= max fi(x),

frx)=x +x5+x5 -1,

fr(x) = x? + xé + (x5 — 2)2,

f3(x) = x; +x, +x; - 1, (A.44)
fa(x)=x+x,—x5+1,
fs(x) =2x] +6x% +2(5x; — x; + 1),
fo(x) = x% - 9x3,
n=3x"=(1,1,1). Example 44 (see [40]).
F(x) = gjgfj(x),
fr(x) =(x, = (x, + 1)4)2 +<x2 —(xl — (5y + 1)4)4>2 + 255 + X
- S(x1 —(x, + 1)4) - 5<x2 —(x1 — (x4 + 1)4)4> - 21x5 + 7xy,
fr(x)=f,(x)+ 1o<(x1 — (x4 + 1)‘*)2 +<x2 = (o0, = (g + 1)4)4)2 + X+ X
+(xl — (x4 + 1)4) —<x2 —(x1 — (x4 + 1)4)4> +Xy— Xy — 8), (A.45)

f3(x) = f1(x)+ 10((x1 — (x4 + 1)4)2 + 2<x2 —(x1 — (x4 + 1)4)4>2 + X5+ 25—
—(x1 — (x4 + 1)4) - Xy - 10),
fa(x) = f(x)+ 10((361 — (x4 + 1)4)2 +<x2 —(xl — (x4 + 1)4)4>2 + X0+

+2(x1 — (x4 + 1)4) —<x2 —(x1 — (x4 + 1)4)4) —x, - 5),
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n=4,x"=(0,0,0,0).

Example 45 (see [41]).

F(x) = 1122%(2 fj (%),

fi(x) = ((xl + (1 +x,)cos Sj)z +((1 _ xz)sinSj)z >1/2
() =

(x3 + (1 + x4)cos \9]-)2 +((1 - x4)sin 9j)2

(('xS + (1 + x6)COS 19])2 +((1 _ x())sin 9])2 >1/2 .
| X9 = Vi

(x7 + (1 + xg)cos 9]-)2 +((1 - xg)sin 91)2

yp=1-2t;, 1<j<d4l,

yj=-1+2t;, 42<;j<82,

9, =mt;, 1<j<4l,
t;=001(j-1), 1<j<6,
t;=0.07+0.03(j-7), 7<j<20,
t,, = 0.50,

t;=054+0.03(j-22), 22<j<35,
£;=0.95+0.01(j -36), 36<;j<4l,
ti=t; 4, 42<j<82

(A.46)
n=29x"=(0,1,0,-0.15,0,-0.68,0,-0.72,0.37).
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