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To solve the monotone equations with convex constraints, a novel multiparameterized conjugate gradient method (MPCGM) is
designed and analyzed. (is kind of conjugate gradient method is derivative-free and can be viewed as a modified version of the
famous Fletcher–Reeves (FR) conjugate gradient method. Under approximate conditions, we show that the proposed method has
global convergence property. Furthermore, we generalize the MPCGM to solve unconstrained optimization problem and offer
another novel conjugate gradient method (NCGM), which satisfies the sufficient descent property without any line search. Global
convergence of the NCGM is also proved. Finally, we report some numerical results to show the efficiency of two novel methods.
Specifically, their practical applications in compressive sensing and motion control of robot manipulator are also investigated.

1. Introduction

Let R,Rn, and Rm×n be the sets of real numbers, n di-
mensional real column vectors, and m× n dimensional real
matrices, respectively. (is paper is concerned with the
following two active subjects in numerical analysis.

(i) Monotone equations with convex constraints: finding
a vector x∗ ∈ X such that

F x
∗

( 􏼁 � 0, x
∗ ∈ X, (1)

where F: Rn⟶Rn is a continuous nonlinear
mapping (not necessarily smooth) and X ⊆ Rn is a
nonempty convex set.

(ii) Unconstrained optimization problem: finding a
vector x∗ ∈Rn such that

x
∗ ∈ argminx∈Rn f(x), (2)

where f: Rn⟶R is a continuously differentiable func-
tion whose gradient is denoted by g(x).

Problems (1) and (2) are interchangeable in some
sense. In fact, setting f(x) � (1/2)‖F(x)‖2, problem (1)
with X � Rn can be transformed into problem (2). Sim-
ilarly, the necessary condition of problem (2), i.e.,
g(x)∗ � 0, is a special case of problem (1). (erefore, the
design of numerical methods for the two problems often
inspires each other and gives each other inspiration. For
example, the first conjugate gradient method was devel-
oped by Hestenes and Stiefel to solve the system of linear
equations [1], and then this method was generalized to
solve the unconstrained optimization problem by Fletcher
and Reeves [2].

Problems (1) and (2) appear frequently in many areas of
applied mathematics and play important roles in many
applications, such as compressive sensing, image processing,
control theory, and motion control of robot manipulator
[3–8]. For example, in the numerical solution theory of
partial differential equations, the finite difference schemes of
elliptic equations can be transformed into the following
Sylvester equations:

AX + XB � C, (3)
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where A ∈Rp×m, B ∈Rn×q, andC ∈Rp×q are given ma-
trices and X ∈Rm×n is the unknown matrix. (en, using the
Kronecker product ⊗ and the vectorization operator vec(·),
we can transform the above Sylvester equations into a linear
system of equations as follows [9]:

In ⊗A + B
⊤ ⊗ Im( 􏼁vec(X) � vec(C), (4)

which is a special case of problem (1) with

x :� vec(X),

F(x) :� In ⊗A + B
⊤ ⊗ Im( 􏼁vec(X) − vec(C),

X � R
mn

.

(5)

Due to the numerous applications in diverse scientific
areas, problems (1) and (2) have been extensively studied
during the past few decades and many numerical methods
have been proposed. (e numerical methods for problem
(1) can be roughly divided into two categories: the iter-
ative methods for smooth case and the iterative methods
for nonsmooth case. More specifically, the methods in the
first category need to assume that the mapping F(x) is
smooth, which includes the Newton method, quasi-
Newton method, Levenberg–Marquardt method, and
their variants [10–13]. (e methods in this category often
need to solve a linear system of equations at each iteration,
which indicates that they are not suitable to solve large-
scale problem (1). (e methods in the second category
remove this restriction. For example, based on the spectral
gradient method for unconstrained optimization prob-
lem, Cruz et al. [14, 15], Zhang and Zhou [16], and Liu and
Duan [17] have successively proposed some spectral
gradient projection methods or spectral residual methods
for solving problem (1) with X � Rn. Motivated by the
studies in [14–16], Cheng [18] extended the
Polak–Ribiére–Polyak (PRP) method to solve problem (1)
with X � Rn. Other similar methods include the two-
term PRP-based method [19], the CG−DESCENTmethod
[3], the Hestenes–Stiefel projection method [20], and the
hybrid conjugate gradient projection method [21]. After
careful analysis and comparison, we find that the above
methods mainly consist of the following three steps at
each iteration: (i) a sufficient descent direction is first
generated, along which a step size is obtained by Armijo-
like line search; (ii) a temporal iterate zk is generated, and
then a hyperplane

Hk � x ∈Rn
|〈F(zk), x − zk〉 � 0􏼈 􏼉, (6)

is defined, which strictly separates the current iterate xk
and the solution setX∗ of problem (1); (iii) the next iterate
xk+1 is defined by the projection of xk onto the hyperplane
Hk.

On the other hand, the conjugate gradient method is one
of the most efficient solvers for large-scale problem (2),
whose iteration sequence {xk} is generated by

xk+1 � xk + αkdk, k � 0, 1, . . . , (7)

where αk> 0 is the step size and dk is the search direction
defined by

dk �
−gk, if k � 0,

−gk + βkdk−1, if k≥ 1,
􏼨 (8)

in which βk is the so-called conjugate gradient formula
which is the main difference in conjugate gradient
methods. Since 1952, many conjugate gradient methods
have been offered, such as the Hestenes–Stiefel (HS)
method [1], the Fletcher–Reeves (FR) conjugate gradient
method [2], the Polak–Ribiére–Polyak (PRP) conjugate
gradient method [22], the Liu–Storey (LS) conjugate
gradient method [23], and the Dai–Yuan (DY) conjugate
gradient method [24]. During the last two decades, many
conjugate gradient methods with sufficient descent
property were proposed, and the first one is that proposed
by Shi and Shen [25], which has not aroused continuing
concern. Lately, the CG−DESCENT method designed by
Hager and Zhang [26] is another one with sufficient
descent property, which has inspired to benefit much
research and design in this direction, and many efficient
conjugate gradient methods have been developed, such as
the modified FR in [27], the modified PRP in [28], and the
descent memory gradient method in [29], in which the
modified FR in [27] accomplished a theoretical break-
through of great significance.

In this paper, based on the Fletcher–Reeves (FR) conjugate
gradient method, we firstly propose a multiparameterized
conjugate gradient method (MPCGM) for problem (1), which
is derivative-free and thus only needs to compute the value of
mapping F(x) at each iteration.(en, themethod is generalized
to solve problem (2), and a novel conjugate gradient method
(NCGM) is obtained. Both methods’ convergence property is
analyzed under traditional conditions and their practical ap-
plication in compressive sensing and motion control of robot
manipulator is investigated.

(e remainder of this paper is organized as follows. In
Section 2, we describe the MPCGM for nonsmooth problem
(1). Moreover, the proof of its global convergence is also
presented. In Section 3, we generalize MPCGM to solve
nonconvex problem (2) and analyze the convergence
property of the generalized method. In Section 4, some
numerical results and comparisons are presented, and finally
a brief conclusion is drawn in Section 5. Before ending this
section, it is worth pointing out the main contributions of
this paper as below.

(i) A multiparameterized conjugate gradient method is
proposed for nonsmooth problem (1), which is used
to solve compressive sensing.

(ii) A novel conjugate gradient method is proposed for
nonconvex problem (2), which is used to solve
motion control of robot manipulator.

(iii) Global convergence property of two novel methods
is proved under mild conditions.
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2. Multiparameterized Conjugate
Gradient Method

Projection operator PΩ[x] is defined as a mapping from the n
dimensional Euclidean space Rn to a nonempty closed
convex subset Ω ⊆ Rn:

PΩ[x] :� argmin ‖y − x‖ | y ∈ Ω􏼈 􏼉, ∀x ∈Rn
, (9)

which satisfies the following property [30].

Lemma 1. Let Ω be a closed convex subset of Rn. For any
x, y ∈Rn, we have

PΩ[x] − PΩ[y]
����

����≤ ‖x − y‖. (10)

Assumption 1

(1) (e solution set of problem (1), denoted by X∗, is
nonempty.

(2) (e mapping F(x) is monotone on Rn, i.e.,

〈x − y, F(x) − F(y)〉≥ 0, ∀x, y ∈Rn
. (11)

(3) (e mapping F(x) is Lipschitz continuous onX, i.e.,
there exists a constant L> 0 such that

‖F(x) − F(y)‖≤L‖x − y‖, ∀x, y ∈ X. (12)

Based on the research in [27, 29], we present a multi-
parameterized conjugate gradient method for nonsmooth
problem (1) as follows.

Algorithm 1. Multiparameterized conjugate gradient
method (MPCGM).

Step 0: choose constants 0< ρ< 1, c> 0, σ > 0, v≥ 0,
β> 0, 0< c< 2, and tolerance error ε> 0. Set an initial
point x0 ∈ X, and let k� 0.
Step 1: if ‖F(xk)‖< ε, then stop; otherwise, go to step 2.
Step 2: compute dk by

dk �
−F xk( 􏼁, if k � 0,

−θkF xk( 􏼁 + βkdk−1, if k≥ 1,
􏼨 (13)

where θk and βk are two parameters defined by

θk � c +
F xk( 􏼁

⊤
dk−1

dk−1
����

����
2 , ∀k≥ 1,

βk �
F xk( 􏼁

����
����
2

dk−1
����

����
2 , ∀k≥ 1.

(14)

Step 3: compute a temporal iterate zk � xk+ αkdk, where
αk � βρmk with mk being the smallest nonnegative in-
teger m such that

−〈F xk + βρm
dk( 􏼁, dk〉 ≥ σβρ

m
vF xk( 􏼁 + F xk + βρm

dk( 􏼁
����

���� dk

����
����
2
.

(15)

Step 4: if zk ∈ X and ‖F(zk)‖< ε, then stop; otherwise,
compute the new iterate xk+1 by

xk+1 � PX xk − cξk vF xk( 􏼁 + F zk( 􏼁( 􏼁􏼂 􏼃, (16)

where

ξk �
〈F zk( 􏼁, xk − zk〉
vF xk( 􏼁 + F zk( 􏼁

����
����
2. (17)

Set k� k+ 1 and go to Step 1.

Remark 1. Parameter βk is obtained by replacing the de-
nominator ‖F(xk− 1)‖

2 of βk in the classical FR conjugate
gradient method by ‖dk− 1‖

2, and parameter θk makes the
generated direction dk satisfy sufficient descent property,
which is proved in the next lemma.

Lemma 2. For c> 0 and any k≥ 0, the direction dk defined by
(13) satisfies

F xk( 􏼁
⊤

dk ≤ − C F xk( 􏼁
����

����
2
, (18)

where C�min{1, c}> 0.

Proof. If k� 0, from (13), it holds that

F x0( 􏼁
⊤

d0 � − F x0( 􏼁
����

����
2 ≤ − C F xk( 􏼁

����
����
2
. (19)

If k≥ 1, from (13) again, we have

F xk( 􏼁
⊤

dk � F xk( 􏼁
⊤

−θkF xk( 􏼁 + βkdk−1( 􏼁

� − c +
F xk( 􏼁

⊤
dk−1

dk−1
����

����
2

⎛⎝ ⎞⎠ F xk( 􏼁
����

����
2

+
F xk( 􏼁

����
����
2

dk−1
����

����
2 F xk( 􏼁

⊤
dk−1

� −c F xk( 􏼁
����

����
2 ≤ − C F xk( 􏼁

����
����
2
.

(20)

(erefore, for all k≥ 0, inequality (18) always holds. (is
completes the proof. □

Remark 2. By Cauchy–Schwarz inequality, it holds that

dk

����
����≥C F xk( 􏼁

����
����. (21)

Remark 3. Parameter ξk in Step 4 of MPCGM is well de-
fined, which is analyzed as follows.

(i) For v � 0: if ‖F(zk)‖ � 0, from the line search (15),
we have ‖dk‖ � 0, which together with (21) implies
‖F(xk)‖ � 0. (is indicates that ‖vF(xk) + F(zk) �

‖F(zk)‖‖≠ 0 if ‖F(xk)‖≠ 0.
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(ii) For v> 0: if ‖vF(xk) + F(zk)‖ � 0, we have F(zk)� −

vF(xk). (is together with the line search (15) gives
〈vF(xk), dk〉≥ σαk‖dk‖2. From this inequality and
(18), we have

− Cv F xk( 􏼁
����

����
2 ≥ σαk dk

����
����
2
, (22)

i.e.,

F xk( 􏼁
����

����
2 ≤ −

σαk

Cv
dk

����
����
2
, (23)

which indicates ‖F(xk)‖ � 0. (erefore, we again get
‖vF(xk) + F(zk)‖≠ 0 if ‖F(xk)‖≠ 0.

(e following lemma indicates that the Armijo-type line
search (15) is well defined.

Lemma 3. For each k≥ 0, there exists a nonnegative integer
mk satisfying inequality (15).

Proof. If the Armijo line search (15) is executed, then
‖F(xk)‖≥ ε> 0. Assume that there exists an integer k0≥ 0
such that inequality (15) does not hold for any nonnegative
integer m, i.e.,

−〈F xk0
+ βk0

ρm
dk0

􏼐 􏼑, dk0
〉 < σβk0

ρm
vF xk0

􏼐 􏼑
�����

+ F xk0
+ βρm

dk0
􏼐 􏼑

����� dk0

�����

�����
2
, ∀m≥ 1.

(24)

Setting m⟶+∞ and taking limits on both sides of the
above inequality, we get

−〈F xk0
􏼐 􏼑, dk0

〉≤ 0. (25)

(is together with inequality (18) gives ‖F(xk0
)‖2 ≤ 0, i.e.,

‖F(xk0
)‖ � 0 which contradicts ‖F(xk0

)‖≥ ε. (is completes
the proof. □

Lemma 4. Let {xk} be the sequence generated by MPCGM.
Ben, for any fixed k≥ 0, the step size αk is bigger than a
positive number, i.e., there exists ck> 0, such that

αk ≥ ck. (26)

Furthermore, we can deduce that

ck � min β,
ρC F xk( 􏼁

����
����
2

L + σ vF xk( 􏼁 + F xk + αkρ−1dk( 􏼁
����

����􏼐 􏼑 dk

����
����
2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(27)

Proof. If αk≠ β, then according to principle of the Armijo
line search (15), the positive number αk

′� αk/ρ does not
satisfy the following inequality:

−〈F xk + αk
′dk( 􏼁, dk〉 < σαk

′ vF xk( 􏼁 + F xk + αk
′dk( 􏼁

����
���� dk

����
����
2
.

(28)

So, by (15) and (18), we get

C F xk( 􏼁
����

����
2 ≤ − F xk( 􏼁

⊤
dk

�〈F xk + αk
′dk( 􏼁 − F xk( 􏼁, dk〉 −〈F xk + αk

′dk( 􏼁, dk〉

≤ Lαk
′ dk

����
����
2

+ σαk
′ vF xk( 􏼁 + F xk + αk

′dk( 􏼁
����

���� dk

����
����
2

� L + σ vF xk( 􏼁 + F xk + αkρ− 1dk( 􏼁
����

����􏼐 􏼑αkρ− 1 dk

����
����
2
,

(29)

from which we get inequality (26). (is completes the
proof. □

Lemma 5. Let {xk} and {zk} be two sequences generated by
MPCGM. Ben {xk} and {zk} are both bounded, and

lim
k⟶∞

αk dk

����
���� � 0. (30)

Proof. From inequality (15), we have
〈F zk( 􏼁, xk − zk〉 � −αk〈F zk( 􏼁, dk〉≥ σα

2
k vF xk( 􏼁
����

+ F zk( 􏼁
���� dk

����
����
2

� σ vF xk( 􏼁 + F zk( 􏼁
����

���� xk − zk

����
����
2
.

(31)

Choose x∗ ∈ X∗; from the monotonicity of F(x), we get

〈F zk( 􏼁, zk − x
∗〉 ≥ 〈F x

∗
( 􏼁, zk − x

∗〉 � 0, (32)

which together with (10) and (16) implies

xk+1 − x
∗����
����
2

≤ xk − cξk vF xk( 􏼁 + F zk( 􏼁( 􏼁 − x
∗����
����
2

� xk − x
∗����
����
2

− 2cξk〈vF xk( 􏼁 + F zk( 􏼁, xk − x
∗〉 + c

2ξ2k vF xk( 􏼁 + F zk( 􏼁
����

����
2

≤ xk − x
∗����
����
2

− 2cξk〈F zk( 􏼁, xk − x
∗〉 + c

2ξ2k vF xk( 􏼁 + F zk( 􏼁
����

����
2

≤ xk − x
∗����
����
2

− 2cξk〈F zk( 􏼁, xk − zk〉 + c
2ξ2k vF xk( 􏼁 + F zk( 􏼁

����
����
2

� xk − x
∗����
����
2

− c(2 − c)
〈F zk( 􏼁, xk − zk〉

2

vF xk( 􏼁 + F zk( 􏼁
����

����
2

≤ xk − x
∗����
����
2

− σ2c(2 − c) xk − zk

����
����
4
,

(33)
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where the last inequality follows from (31). (erefore, the
sequence ‖xk − x∗‖􏼈 􏼉 is decreasing and convergent, and thus
the sequence {xk} is bounded. From (33), we have

σ2c(2 − c) 􏽘
∞

k�0
xk − zk

����
����
4 ≤ 􏽘
∞

k�0
xk − x

∗����
����
2

− xk+1 − x
∗����
����
2

􏼒 􏼓

� x0 − x
∗����
����
2 <∞.

(34)

(en,

lim
k⟶∞

αk dk

����
���� � lim

k⟶∞
xk − zk

����
���� � 0. (35)

By the above inequality and the boundedness of the
sequence {xk}, it holds that the sequence {zk} is also bounded.
(e proof is completed.

Now, we are ready to establish the global convergence of
MPCGM. □

Theorem 1. Let {xk} be the sequence generated by MPCGM.
Ben, we have

lim
k⟶∞

F xk( 􏼁
����

���� � 0. (36)

Proof. We prove (36) by using reduction to absurdity.
Suppose that (36) is not true. (en, there is a constant ε0> 0
such that

F xk( 􏼁
����

����≥ ε0, ∀k≥ 0. (37)

By (21), we have

dk

����
����≥C F xk( 􏼁

����
����≥Cε0, ∀k≥ 0. (38)

Combining this with (30), it holds that

lim
k⟶∞

αk � 0. (39)

On the other hand, by the boundedness of {xk}, there
exists a constant M1> 0 such that

F xk( 􏼁
����

����≤M1, ∀k≥ 0. (40)

Furthermore, by (39) and the continuity of F(x), there
exists M2> 0, such that

vF xk( 􏼁 + F xk + αkρ
− 1

dk􏼐 􏼑
�����

�����≤ v F xk( 􏼁
����

���� + F xk + αkρ
− 1

dk􏼐 􏼑
�����

�����

≤ vM1 + M2, ∀k≥ 0.

(41)

(en, by the definition of search direction dk defined by
(13), we have

dk

����
���� ≤ c F xk( 􏼁

����
���� +

d⊤k−1F xk( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

dk−1
����

����
2 F xk( 􏼁

����
���� +

F xk( 􏼁
����

����
2

dk−1
����

����
2 dk−1

����
����

≤ c +
2M1

dk−1
����

����
􏼠 􏼡 F xk( 􏼁

����
����

≤ c +
2M1

C F xk−1( 􏼁
����

����
􏼠 􏼡 F xk( 􏼁

����
����

≤ c +
2M1

Cε0
􏼠 􏼡 F xk( 􏼁

����
����.

(42)

(is together with (26) implies that

αk≥min β,
ρCε20

L + σ vM1 + M2( 􏼁􏼓 ε0 + 2M1( 􏼁
2

􏼒

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
>0, ∀k≥0,

(43)

which contradicts (39).(erefore, conclusion (36) holds and
the proof is completed. □

3. Novel Conjugate Gradient Method

In this section, we will generalized MPCGM to solve
problem (2) and prove its global convergence. Firstly, we
make the following standard assumption.

Assumption 2

(1) (e solution set of problem (2), denoted by X∗, is
nonempty.

(2) (e level set L0 � {x|f(x)≤ f(x0)} is bounded, where
x0 ∈R

n in an initial point.
(3) (e gradient g(x) is assumed to be Lipschitz con-

tinuous onRn, i.e., there exists a constant L> 0 such
that

‖g(x) − g(y)‖≤ L‖x − y‖, ∀x, y ∈Rn
. (44)

Algorithm 1. Novel conjugate gradient method (NCGM).

Step 0: given an initial point x0 ∈R
n, three constants

c> 0, 0< ρ, c< 1, and set k� 0.
Step 1: if ‖gk‖ � 0, then stop; otherwise, go to step 2.
Step 2: compute dk by

dk �
−gk, if k � 0,

−θkgk + βkdk−1, if k≥ 1,
􏼨 (45)

where θk and βk are two parameters defined by
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θk � c +
g⊤k dk−1

dk−1
����

����
2,∀k≥ 1,

βk �
gk

����
����
2

dk−1
����

����
2,∀k≥ 1.

(46)

Determine the step size αk � ρmk with mk being the
smallest nonnegative integer m such that

f xk + ρm
dk( 􏼁 − f xk( 􏼁≤ cρm

g
⊤
k dk. (47)

Step 3: set xk+1 � xk + αkdk and k� k + 1; go to Step 1.

Similar to Lemma 2, it holds that

g
⊤
k dk ≤ − C gk

����
����
2
, (48)

where C�min{1, c}. From inequality (48), it is easy to prove
that the Armijo line search (47) is well defined. Moreover,
from the Cauchy–Schwarz inequality and (48), it holds that

C gk

����
����≤ dk

����
����. (49)

(e next theorem indicates that NCGM is globally
convergent.

Theorem 2. If Assumption 2 holds and NCGM generates an
infinite sequence {xk}, we have

liminf
k⟶∞

gk

����
���� � 0. (50)

Proof. First, we prove that there exists a constant c1> 0 such
that the following inequality holds for all k:

αk ≥ c1
gk

����
����
2

dk

����
����
2. (51)

(e proof of (51) is divided into the following two cases.

Case (I): if αk � 1, then from (49), we have
αk � 1≥C2(‖gk‖2/‖dk‖2).
Case (II): if αk< 1, then by the Armijo line search
condition, ρ−1αk does not satisfy inequality (47).(at is,

f xk + ρ− 1αkdk􏼐 􏼑 − f xk( 􏼁> cρ− 1αkg
⊤
k dk. (52)

By the mean-value theorem of the continuous function,
there exists a constant tk ∈ (0, 1) such that

f xk + ρ− 1αkdk( 􏼁 − f xk( 􏼁

� ρ− 1αkg xk + tkρ− 1αkdk( 􏼁
⊤

dk

� ρ− 1αkg⊤k dk + ρ− 1αk g xk + tkρ− 1αkdk( 􏼁 − gk( 􏼁
⊤

dk

≤ ρ− 1αkg⊤k dk + Lρ− 2α2k dk

����
����
2
.

(53)

Substituting the last inequality into the left-hand side of
(52), we get

αk ≥
(1 − c)ρC2

L

gk

����
����
2

dk

����
����
2. (54)

Setting c1 � min C2, ((1 − δ)ρC2)/L􏼈 􏼉, we can get in-
equality (51). From (47), (48), and Assumption 2, it is easy to
deduce that

􏽘

∞

k�0
αk gk

����
����
2 <∞. (55)

Substituting (51) into the left-hand side of (55), we can
derive the famous Zoutendijk condition

􏽘

∞

k�0

gk

����
����
4

dk

����
����
2 <∞. (56)

Suppose that conclusion (50) is not true, so there is a
constant ε0> 0 such that

gk

����
����≥ ε0,∀k≥ 0. (57)

By the definition of dk, we have

dk

����
����≤ c gk

����
���� +

g⊤k dk−1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

dk−1
����

����
2 gk

����
���� +

gk

����
����
2

dk−1
����

����
2 dk−1

����
����

≤ c +
2M2

dk−1
����

����
􏼠 􏼡 gk

����
����

≤ c +
2M2

C gk−1
����

����
􏼠 􏼡 gk

����
����

≤ c +
2M2

Cε0
􏼠 􏼡 gk

����
����,

(58)

where M2> 0 is the upper bound of f(x) in the level set L0.
From this inequality and (56), we get

dk

����
����
2

gk

����
����
4 ≤ c +

2M2

Cε0
􏼠 􏼡

2 1

gk

����
����
2 ≤ c +

2M2

Cε0
􏼠 􏼡

2 1
ε20

. (59)

(us,

􏽘

∞

k�0

gk

����
����
4

dk

����
����
2 ≥ 􏽘
∞

k�0
ε20 c +

2M2

Cε0
􏼠 􏼡

− 2

�∞, (60)

which contradicts (56). (erefore, conclusion (50) holds.
(e proof is completed. □

4. Numerical Results

In this section, to show the efficiency of MPCGM and
NCGM, we apply them to solve problems (1) and (2).
Furthermore, we compare the performance ofMPCGMwith
the spectral gradient projection method in [31] (SGPM) and
the conjugate gradient method in [3] (CGM). All codes were
written in MATLAB R2014a, and run on a notebook
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computer with Intel Core 2 CPU 2.10 GHZ and RAM
2.00GM.

4.1. Numerical Test of MPCGM. We consider two synthe-
sized problems and one practical problem, which are drawn
from [3, 32, 33].

Problem 1. Set F(x) � (f1(x), f2(x), . . . , fn(x))⊤, where

fi(x) � e
xi − 1, for i � 1, 2, . . . , n, (61)

and X � Rn
+. (is problem has a unique solution x∗ � (0, 0,

. . ., 0)⊤.

Problem 2. Set F(x) � (f1(x), f2(x), . . . , fn(x))⊤, where

fi(x) � xi − sin xi − 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑, for i � 1, 2, . . . , n, (62)

and X � x ∈Rn | 􏽐
n
i�1 xi ≤ n, xi ≥ 0, i � 1, 2, . . . , n􏼈 􏼉. (is

problem is nonsmooth at the point (1, 1, . . ., 1)⊤.
It is easy to prove that the above two mappings are

monotone. (e parameters in the three tested methods for
Problem 1 and Problem 2 are set as follows:

SGPM: r� 0.01, σ � 0.01, β� 0.5.
CGM: ρ� 0.39, σ � 10−4, β� 1.
MPCGM: ρ� 0.2, c� 1, σ � 0.01, β� 1, c � 1.7.

In the experiment, we use the following termination
condition:

F xk( 􏼁
����

����≤ 10− 6
. (63)

In MPCGM, we have introduced two new parameters c

and v. Now, we conduct some sensitivity tests on the two
parameters to determine their optimal choices. Here, we use
the tentative method and analyze the fluctuation of the
number of iterations with respect to different values of c and
v. Specifically, we set c or v as abscissa and we set the number
of iterations as ordinate.

(i) We use Problem 1 with x0 � (1, 1, . . ., 1) and
n� 10000 to analyze the influence of c on the
number of iterations. Moreover, we set v � 0 and
choose different values of c ∈ {0.5, 0.6, . . ., 1.9}.

(ii) We use Problem 2 with x0 � (1, 1, . . ., 1) and
n� 10000 to analyze the influence of v on the
number of iterations. Moreover, we set c � 1.7 and
choose different values of v ∈ 0, 0.01, . . . , 0.1{ }.

(e numerical results are graphically shown in
Figure 1, from which we can see that for Problem 1, larger
values of c can accelerate the convergence of MPCGM,
and for Problem 2, the positive values of v can also ac-
celerate the convergence of MPCGM. (erefore, the ad-
vantage of incorporating the parameters c and v into
MPCGM is verified. In the following, we set c � 1.7 and
v � 0.07.

Now, we give more numerical results about Problem 1 and
Problem 2 with the number of variables n� 1000, 2000, 5000,
10000, 20000, 50000, 100000, 1000000, and the initial point is
set as x0� (1, 1, . . ., 1). (e numerical results are reported in
Tables 1 and 2, which contain the dimension of the problem
(Dim), the number of iterations (Iter), the CPU time required
in seconds (Time), and the final norm of equations (Fn) when
the termination condition is satisfied. It is well known that
when a set is a polyhedral, that is, all the constraint functions
defining the set are linear, then computing the projection on it
reduces to solving a quadratic problem. Here, we use the
quadratic program solver quadprog.m from the MATLAB
optimization toolbox to perform the projection operator.

(e numerical results in Tables 1 and 2 verify that the
gradient methods perform well on the large-scale constrained
monotone equations. For Problem 1, the performance of CGM
and MPCGM is obviously better than that of SGPM, and the
performance ofMPCGM is obviously better than that of CGM.
(at is, MPCGM performs the best among the three tested
methods. As the dimension increased, the advantage on the
required CPU time of MPCGM becomes prominent gradually.
For Problem 2, there seems to be not much difference among
the performance of the three testedmethods, andMPCGM still
performs a little better than the other twomethods because it is
the fastest for most scenarios. In a word, the numerical ex-
periments show that the proposedmethod provides an efficient
tool to solve nonlinear constrained equations.

Problem 3. Consider the compressive sensing (CS):

minx∈Rn

1
2
‖Ax − b‖

2
2 + μ‖x‖1, (64)

where A ∈Rm×n(m≪ n) is a linear operator, b ∈Rm is an
observation, is the unknown vector, ‖x‖1 � 􏽐

n
i�1 |xi| is the ℓ1-

norm of x, and parameter μ> 0 is used to trade off both terms
of the objective function of (64). Following the procedure of
Figueiredo et al. [33], we can set x � u − v, u≥ 0, v≥ 0, where
u ∈Rn, v ∈Rn, and ui � (xi)+, vi � (−xi)+ for all i� 1, 2,
. . ., n with (·)+ �max{0, ·}. (en, CS can be rewritten as

minu,v

1
2
‖b − A(u − v)‖

2
2 + μe

⊤
n u + μe

⊤
n v

s.t. u≥ 0, v≥ 0.

(65)

(at is,
minu,v

1
2
z
⊤

Hz + c
⊤

z

s.t. z≥ 0,

(66)

where

z �
u

v
􏼢 􏼣,

y � A
⊤

b,

c � μe2n +
−y

y
􏼢 􏼣,

H �
A⊤A −A⊤A

−A⊤A A⊤A
􏼢 􏼣.

(67)
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(en, Xiao et al. [3] further transformed the above
optimization problem as the constrained nonlinear
equations:

F(z) � min z, Hz + c{ } � 0, z≥ 0. (68)

(e following relative error (RelErr) to the original signal
􏽥x is used to measure the quality of restoration:

RelErr �
􏽥x − x∗‖ ‖2

‖􏽥x‖2
, (69)

where x∗ is the restored signal. In the experiment, our goal is
to reconstruct a length-n sparse signal from m observation.

Here, we set n� 2048 and m� 512, and the original signal
contains 64 randomly placed spikes. (e m× n matrix A is
obtained by first filling it with independent samples of a
standard Gaussian distribution and then orthonormalizing
the rows. (e observation b is generated by b � A􏽥x + ω,
where ω is the Gaussian noise distributed as N(0, δ2I) with
δ � 10−3. We set μ� 0.01‖A⊤b‖∞ and use f(x) � μ‖x‖1 +

‖Ax − b‖22/2 as the merit function and stop the tested
methods if ‖fk‖ ≤ 10−2. (e parameters in the three tested
methods for Problem 3 are listed as follows:

SGPM: r� 10, σ � 0.01, β� 0.3.
CGM: ρ� 0.39, σ � 10−4, β� 1.

Table 1: Numerical results of Problem 1.

Dim
SGPM CGM MPCGM

Iter Time Fn Iter Time Fn Iter Time Fn
1000 13 0.02 5.62314e− 07 13 0.01 4.76573e− 07 1 0.01 0.00000e+ 00
2000 13 0.03 7.95231e− 07 13 0.01 6.73977e− 07 1 0.01 0.00000e+ 00
5000 14 0.07 8.85789e− 08 14 0.02 4.36958e− 07 1 0.01 0.00000e+ 00
10000 14 0.13 1.25269e− 07 14 0.04 6.17952e− 07 2 0.02 0.00000e+ 00
20000 14 0.26 1.77161e− 07 14 0.08 8.73916e− 07 2 0.02 0.00000e+ 00
50000 14 0.68 2.80126e− 07 15 0.23 3.56664e− 07 2 0.03 0.00000e+ 00
100000 14 1.35 3.96172e− 07 15 0.44 5.04400e− 07 4 0.11 0.00000e+ 00
1000000 15 17.70 2.30082e− 07 16 5.97 8.61927e− 07 12 3.92 0.00000e+ 00

Table 2: Numerical results of Problem 2.

Dim
SGPM CGM MPCGM

Iter Time Fn Iter Time Fn Iter Time Fn
1000 11 0.01 1.53710e− 08 13 0.01 2.36758e− 07 8 0.01 4.29514e− 07
2000 11 0.01 2.17380e− 08 13 0.01 3.34826e− 07 8 0.01 6.07424e− 07
5000 11 0.02 3.43707e− 08 13 0.01 5.29406e− 07 8 0.01 9.60422e− 07
10000 11 0.03 4.86070e− 08 13 0.02 7.48694e− 07 9 0.01 7.05926e− 07
20000 11 0.05 6.87439e− 08 14 0.04 4.65956e− 07 9 0.02 9.98330e− 07
50000 11 0.11 1.08699e− 07 14 0.09 7.36741e− 07 14 0.07 8.57326e− 08
100000 11 0.24 1.53719e− 07 15 0.19 5.16018e− 07 14 0.12 1.21244e− 07
1000000 11 3.23 4.85879e− 07 16 2.36 8.99942e− 07 21 2.35 6.98408e− 07
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Figure 1: Sensitivity test on c and v. (a) Sensitivity test on the parameter c. (b) Sensitivity test on the parameter v.
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MPCGM: ρ� 0.4, c� 1, σ � 0, β� 1, c � 1.9.

(e numerical results generated by the three tested
methods are given in Figure 2.

From Figures 2(c)–2(e), we can see that the three tested
methods recover the original signal with high precision, and
MPCGM still performs the best among the three methods
because it takes the least number of iterations and CPU time.

4.2. Numerical Test of NCGM. In this section, the motion
control of a two-joint planar robotic manipulator is solved
by NCGM. As stated in [34], the discrete-time kinematics
equation of two-joint planar robot manipulator at the po-
sition level is given as

f θk( 􏼁 � rk, (70)

where f(·) is the kinematics mapping function with known
structure and defined as

f(θ) �
l1c1 + l2c2

l1s1 + l2s2
􏼢 􏼣, (71)

in which li is the length of the i-th rod, c1 � cos(θ1),
s1 � sin(θ1), c2 � cos(θ1 + θ2), and s2 � sin(θ1 + θ2). Besides,
θk ∈R

2 is the joint angle vector and rk ∈R
2 is the end

effector position vector. (en, we need to solve a series of
optimization problem defined at each time instant tk ∈ [0, tf]
as follows:

minrk∈R
2
1
2

rk − rdk

����
����
2
. (72)

In this experiment, we set li � 1(i� 1, 2) and the end
effector is controlled to track a Lissajous curve, which is
expressed as [34]

rdk �

1.5 + 0.2 sin
πtk

5

�
3

√
/2 + 0.2 sin

2πtk

5
+

π
3

􏼒 􏼓􏼒 􏼓

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (73)
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Figure 2: (e original signal, noisy measurement, and recovered results. (a) Original signal. (b) Noisy measurement. (c) SGPM (Rel-
Err� 3.91%, Iter� 347, Time� 3.04 s). (d) CGM (RelErr� 4.40%, Iter� 287, Time� 3.71 s). (e) MPCGM (RelErr� 3.81%, Iter� 156,
Time� 1.48 s).

Mathematical Problems in Engineering 9



For NCGM, we set c� 0.01, ρ� 0.2, and c � 0.08. (e
initial point is set as θ0 � [0, π/3]⊤, the length of rod
li � 1(i� 1, 2), the end of task duration tf � 10s, and the task
duration [0, 10] is divided into 200 equal parts. (e nu-
merical results generated by NCGM are plotted in Figure 3.
Specifically, Figure 3(a) shows robot trajectories synthesized
by NCGM. Figure 3(b) plots end effector trajectory and
desired path. Figures 3(c) and 3(d) show the error of NCGM
on x-axis and y-axis, respectively. From Figures 3(a) and
3(b), it is clear that NCGM successfully completes the given
task. Furthermore, Figures 3(c) and 3(d) indicate that the
generated error is about 10−3.

5. Conclusion

In this paper, we have proposed a multiparameterized
conjugate gradient method for nonlinear equations with
convex constraints. Under the condition that the underlying

mapping is monotone and Lipschitz continuous, we have
established its global convergence. Furthermore, we have
generalized this method to solve unconstrained optimization
and get a new conjugate gradient method, whose global
convergence is analyzed under mild conditions. Preliminary
numerical results are reported which indicate that the
proposed methods perform better than some well-developed
methods.
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Figure 3: Numerical results generated by NCGM. (a) Manipulator trajectories. (b) End effector trajectory and desired path. (c) Tracking
errors on the horizontal x-axis. (d) Tracking errors on the vertical y-axis.
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