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Sparsity-driven methods are commonly applied to reconstruct targets in radar coincidence imaging (RCI), where the reference
matrix needs to be computed precisely and the prior knowledge of the accurate imaging model is essential. Unfortunately, the
existence of model errors in practical RCI applications is common, which defocuses the reconstructed image considerably.
Accordingly, this paper aims to formulate a unified framework for sparsity-driven RCI with model errors based on the sparse
Bayesian approach. Firstly, a parametric joint sparse reconstruction model is built to describe the RCI when perturbed by model
errors. *e structured sparse Bayesian prior is then assigned to this model, after which the structured sparse Bayesian autofocus
(SSBA) algorithm is proposed in the variational Bayesian expectation maximization (VBEM) framework; this solution jointly
realizes sparse imaging and model error calibration. Simulation results demonstrate that the proposed algorithm can both
calibrate the model errors and obtain a well-focused target image with high reconstruction accuracy.

1. Introduction

Imaging radar is an outstanding form of remote sensing
equipment with many advantages, including its robust
performance under all-weather and all-day circumstances,
long-distance capabilities, and high probability of target
identification [1]. Generally speaking, there are two main
types of imaging radars, which are defined in terms of the
validity of the aperture [2], namely, real aperture radar
(RAR) [3] and virtual synthetic aperture (SA) radar [4–7].
While RAR can realize staring imaging for targets or regions
of interest, the azimuth resolution is limited by the practical
antenna aperture; therefore, it is difficult to apply RAR to
high-resolution imaging applications. For its part, the virtual
synthetic aperture radar (SAR) [8, 9], which encompasses
SAR and inverse SAR (ISAR), exhibits high-resolution
ability based on the range-Doppler (RD) principle, where the
high resolution generally depends on large signal bandwidth
and angle variation. However, the dependence on the tar-
get’s relative motion leads to difficulties in motion com-
pensation, forward-looking, or staring imaging.

Based on optical coincidence imaging, radar coincidence
imaging (RCI) [1, 10, 11] is a novel high-resolution staring
imaging technique that can operate under forward-looking
or staring observing geometry and has significant potential
for resolution enhancement, instantaneous imaging, inter-
ference, and jamming suppression. RCI forms a temporal-
spatial stochastic radiation field by random-modulating the
wavefront of the detecting signals. Preliminary theoretical
analysis shows that stochastic radiation can lead to super-
resolution capability, i.e., breaking through the Rayleigh
resolution limit of the antenna [12]. Accordingly, RCI can be
regarded as a complement of conventional imaging methods
such as RAR and SAR/ISAR and can further be employed in
some important applications including high-resolution
Earth observation, oceanic monitoring, and military
reconnaissance.

In theory, RCI reconstructs the target image by means of
coincidence processing between the target scattering echo
and the stochastic radiation field.*us, the reference matrix,
which characterizes the radiation field, needs to be com-
puted precisely according to the imaging model and preset
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parameters. However, a variety of model errors (e.g., gain-
phase error [13], off-grid error [14], array position error [15],
and target motion-induced error [16, 17]) exist in most
application scenarios. In the presence of these errors, the
reference matrix is severely perturbed, meaning that the
reconstructed image will be considerably defocused.

Recently, some attention has been paid to RCI with
certain types of model error [13, 17], and corresponding
autofocus imaging algorithms have been proposed to jointly
calibrate the model error and reconstruct the image. It is
worth noting that autofocus techniques have been investi-
gated widely for SAR/ISAR imaging [5, 7] in a sparse re-
construction or compressive sensing (CS) framework
[18, 19]. However, while the abovementioned studies only
focused on a certain type of model error, many types of
model error tend to coexist in reality; hence, conventional
algorithms cannot be directly applied in practical RCI ap-
plications, and an autofocus technique is required to cali-
brate the model error by considering the universal reference
matrix perturbation. To the best of the author’s knowledge,
few studies have focused on RCI with fully perturbed ref-
erence matrix. One recently published paper [20] proposed a
completely perturbed model that models the effect of model
error on the reference matrix using a perturbation matrix;
accordingly, the regularization-focal underdetermined sys-
tem solver (R-FOCUSS) was proposed, which is based on a
Bayesian framework and regularization method.

By contrast, RCI can also be modeled as a sparse re-
construction [21–23] or CS problem by exploiting the sparse
prior of the target since RCI can be formed as a linear inverse
problem [1, 24] where the reference matrix is a random
matrix. *us, RCI with model error can be regarded as a
perturbed CS problem where the sensing matrix is com-
pletely perturbed. Herman and Strohmer analyzed the effect
of perturbation of the sensing matrix on the performance of
the basis pursuit algorithm and found the condition of stable
recovery [25]. Moreover, based on the total least squares
(TLS) model, Zhu et al. devised the sparse-TLS (S-TLS)
method via the iterative block coordinate descent method
for perturbed CS [26] to cope with sparse and under-
determined “errors-in-variables” models. S-TLS was then
applied to solve the direction of arrival (DOA) estimation
withmodel errors. However, as S-TLS is inefficient and time-
consuming, two faster and more robust algorithms, namely,
TLS-FOCUSS and SD-FOCUSS, were proposed [27]. A
unified framework for the DOA estimation with array im-
perfections was formulated based on the Bayesian approach,
and the sparse Bayesian array calibration (SBAC) method
was proposed to realize array calibration and DOA esti-
mation, resorting to the expectation-maximization (EM)
algorithm for an iterative solution [28].

However, the previous work mostly focused on a certain
type of model error, such as grid mismatch, amplitude, or
phase error. *e actual situation is that multiple model
errors often exist simultaneously. *erefore, this paper aims
to propose a unified framework for multiple model errors,
while the previous imaging algorithms are not effective.

*is paper focuses on the sparsity-driven RCI with
model errors and proposes a unified framework to address

the RCI in the presence of reference matrix perturbation,
which is induced by radar system error and off-grid error
simultaneously. To characterize the perturbation matrix,
Taylor expansion is utilized to approximate the actual ref-
erence matrix perturbed by the off-grid error; in this way, the
joint sparse reconstruction model is built. For radar system
error, the parametric sparse representation model is
established based on the parametric reference matrix. Ac-
cordingly, the parametric joint sparse reconstruction model
combines the two models to uniformly characterize RCI
with model errors. *e merit of SBL is its flexibility in
modeling sparse signals that can not only promote the
sparsity but also exploit the possible structure of the signal to
be recovered. Furthermore, SBL still presents good per-
formance, while the wave-front holds bad stochastic
property. Using Bayesian hierarchical modeling, the sparse
coefficients are assigned to an appropriate structured sparse
prior. An sparse Bayesian learning- (SBL-) based method
named the structured sparse Bayesian autofocus (SSBA)
algorithm within the variational Bayesian expectation
maximization (VBEM) framework [29–31] is then proposed
to realize sparse imaging and model error calibration jointly.
Finally, a scenario in which off-grid error and gain-phase
error coexist is taken as an example in order to demonstrate
that the SSBA method can be extended to calibrate more
than one type of model error and realize sparse imaging
simultaneously. Numerical simulations show that the al-
gorithm realizes the imaging robustly and achieves high
resolution and outstanding imaging quality in the presence
of model errors. *is paper proposes a unified framework to
solve the imaging problems under various model errors. In
conclusion, the proposed method can be applied to various
types of model errors, especially when multiple model errors
exist simultaneously.

*e rest of this paper is organized as follows. Section 2
presents the unified parametric joint sparse reconstruction
model for RCI with model errors. In Section 3, the proposed
structured sparse Bayesian model and SSBA algorithm are
outlined. Section 4 conducts several numerical simulations
involving the proposed algorithm. Finally, conclusions are
drawn, and future research directions are provided in
Section 5.

Notations (·)H and (·)− 1 denote the conjugate transpose
and inverse operations, respectively. ‖ · ‖ is the norm op-
erator, 〈·〉 denotes the posterior expectation operator, and ⊙
is the Hadamard product.

2. Problem Formulation

2.1. Imaging Model of RCI. *e principle of RCI is depicted
in Figure 1. Consider an RCI system configured as a
monostatic array, where the transmitters emit independent
stochastic waveforms [1, 11]. *e RCI system has M

transmitters and a single receiver. *e random-modulated
wavefront shows spatial stochastic diversities to resolve the
targets within the beam and presents temporal stochastic
diversities to decouple and resolve the targets with different
ranges. *e temporal-spatial stochastic radiation field is
constructed by modulating the wavefront of the detecting
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signals. *e imaging performance depends on the sto-
chastic characteristics of the radiation field. Intuitively
speaking, a radiation field with a higher stochastic degree
could improve the stability and performance of RCI,
exhibiting superior super-resolution potential. *e char-
acteristics of the stochastic radiation fields are not only
related to the internal physical configurations of the an-
tenna (array type, number, and spacing of array elements)
but also to the system-transmitted waveform (waveform
type, central frequency, and operation bandwidth). Besides,
the detailed coincidence processing has been introduced
in [1].

*e received scattering echo can be described using the
following simplified form:

y(t) � 
A
β rk(  · S t, rk( dk + w(t), (1)

where A is the imaging area, β(rk) is the backscattering
coefficient of the target at location rk, and w(t) denotes the
measurement noise. S(t, rk) is referred to as the reference
signal (or detecting signal) [1], which is defined as

S t, rk(  � 
M

m�1
Stm t − τm rk( ( , (2)

where M denotes the number of transmitters and Stm(t) is
the transmitted waveform for the m th transmitter. τm(rk) is
the propagation delay corresponding to the m th transmitter
and the receiver with respect to the k th scatterer, which is
defined as

τm rk(  �
1
c

Rm − rk

����
���� + R0 − rk

����
���� , (3)

where rk, R0, and Rm are the position vectors of the k th
scatterer, the receiver, and the m th transmitter, respectively,
and c is the speed of light in free space.

In practical coincidence processing, the received echo
y(t) should be discretized in both space and time domains.
*us, the range-azimuth imaging area is divided into K1
azimuth cells, K2 range cells, and associated cell size Δ1 and
Δ2. Accordingly, the number of grid-cells is K1 × K2 � K,
and the received signal is sampled to generate N samples,
such that the imaging equation can then be given by

y � S · β + w,
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(4)

where S is the reference matrix [1], while y, w, and β are the
echo, noise, and unknown scattering coefficient vectors,
respectively. Obviously, S is a random matrix that is used
commonly in CS theory as the sensing matrix due to its
improved statistical features and low implementation
complexity. *us, the imaging model reduces to a familiar
linear model problem that estimates β from reference matrix
S and the echo vector y. *e echo vector y can be obtained
using A/D sampling, while the reference matrix S is deduced
through the radiation field calculation.

2.2. Unified Model of RCI with Model Errors. In the deri-
vation of the reference matrix, all corresponding parameters,
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Figure 1: Principle of radar coincidence imaging.
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including the transmitted waveform Stm(t), the array po-
sition (Rm and R0), and the grid-cell centers rk, should be
known accurately. Moreover, the scatterers should be lo-
cated exactly at the grid-cell centers. As noted above, model
errors (such as gain-phase error [13], off-grid error [14], and
array position error [15]) are known to exist in practical RCI
applications. *us, the reference matrix is inevitably per-
turbed by the unknown model error; accordingly, the actual
reference matrix can be expressed as

S
⌢

� S + E, (5)

where E ∈ CN×K denotes the perturbationmatrix induced by
model error. In the presence of model error, the imaging
processing will be affected; in cases of large model error, the
target image will be severely defocused.

*e fully perturbed reference matrix shown in (5)
models all types of model errors using the perturbation
matrix, which is simple. However, there is insufficient
structured information between the reference matrix and the
model errors. Fully exploiting the structured information
could lead to improved performance. *e reference matrix
for RCI with gain-phase error is represented as a parametric
matrix [13], while the off-grid RCI is modeled using Taylor
expansion [14] to utilize the structured information. Since
the structured dependences between S

⌢
and the different

model errors differ, building the structured relationship for
all different types of model errors would increase the
computational complexity to an unacceptable degree.
Hence, we classify the set of model errors Θ into two types:

(a) Type I: Radar System Error. Radar system error Θ
results from uncertainty in the radar system, e.g.,
gain-phase error and array position error. *e ref-
erence matrix involving radar system error is gen-
erally modeled as a parametric matrix, i.e., S(Θ).
Accordingly, the sparse RCI is translated to a
parametric sparse representation problem [32],
which is a special case of dictionary learning [33];
thus, it can dynamically learn the unknown factors
during imaging and achieve the optimally sparse
representation of radar signals.

(b) Type II: Off-Grid Error. Dividing the imaging area
into several discrete grid cells results in the off-grid
error. *e imaging model (4) is formulated based on
the assumption that the scatterers are located pre-
cisely at these prediscretized grid-cell centers [1].
However, the scatterers are in fact distributed in a
continuous scene and generally located off the grid-
cell centers; therefore, the off-grid error emerges.
Moreover, the relative motion between target and
radar also results in off-grid error. *e off-grid-er-
ror-induced reference matrix is generally approxi-
mated using first-order Taylor expansion, such that
the off-grid imaging model is

y ≈ Sβ + S1β1 + S2β2 + w, (6)

where β1 � δ1⊙ β and β2 � δ2⊙ β; δ1 and δ2 are the off-grid
errors in the azimuth and range directions, respectively.

Clearly, β1 and β2 are also sparse vectors and share the same
support with β. S1 and S2 are the matrices obtained from the
first-order Taylor expansion and share the same dimension
with S.

Obviously, the off-grid model (6) is closely related to the
on-grid equation (4). In fact, the off-grid model is the first-
order approximation of the true signal model, while the on-
grid model is the zeroth-order approximation. Herein, the
off-grid model has a much smaller modeling error. Finally,
off-grid imaging reduces to a joint sparse reconstruction
problem, shown in (6), where both β and β1, β2  need to be
estimated sparsely using three known dictionaries S, S1, S2 .

Accordingly, in the presence of both radar system error
and off-grid error, the RCI model y � S(Θ) · β + w based on
the parametric reference matrix is built as the following
parametric joint sparse reconstruction model:

y ≈ S(Θ) · β + S1(Θ) · β1 + S2(Θ) · β2 + w, (7)

where S(Θ), S1(Θ), and S2(Θ) correspond to S, S1, and S2 in
formula (6), respectively. Herein, the specific expressions of
these variables are not explicitly given for a general purpose.
*ey can be definitely deduced when S and Θ are explicitly
defined in the real application.

*e above parametric joint sparse reconstruction model
combines the parametric sparse representation model (for
radar system error) and joint sparse reconstruction model
(for off-grid error). *us, the unknown parameters
β, β1, β2  should be estimated jointly, and themodel errorΘ
also needs to be calibrated. Hence, the proposed imaging
model characterizes the model error well and utilizes the
structured information of the model error to improve the
performance.

3. Structured Sparse Bayesian
Autofocus Algorithm

Based on the structured imaging model proposed in (7), the
RCI with model errors can be investigated in a sparse re-
construction framework by exploiting the sparsity of the
target. In fact, the target is assumed to be composed of a very
limited amount of strong scatterers for a sufficiently high
carrier frequency, which is widely used in the imaging radar
system [34]. Accordingly, the number of scatterers is much
smaller than that of the number of grid cells in the image
plane, which means that the image is spatially sparse. Fully
exploiting the sparse prior could facilitate the achievement
of super-resolution, denoising, and feature extraction. *is
section establishes the structured sparse prior and then
conducts the Bayesian inference to complete the target
imaging in the VBEM framework.

3.1. Structured Sparse Bayesian Model. *e sparse recon-
struction problem can be reformulated as an estimation
problem to be solved in the Bayesian framework [35,36]. In
sparse Bayesian modeling, all unknown variables are treated
as stochastic quantities with assigned probability distribu-
tions. *e unknown sparse signal is assumed to follow a
prior distribution to model the sparsity property. *e
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measurement y is also a random process with conditional
distribution.

*e measurement noise is generally assumed to be in-
dependent and Gaussian, with zero mean and α− 1

0 variance:

p w | α0(  � CN w | 0, α− 1
0 I  � πα− 1

0 
− K

exp − α0‖w‖
2
2 ,

(8)

where α0 is termed the hyperparameter, and an additional
prior distribution, called the hyperprior, is assigned to it:

p α0; c, d(  � Γ α0
 c, d , (9)

where Γ(α0 | c, d) is the Gamma distribution with parame-
ters c and d.

To determine the sparse prior of β, Laplace distribution
is a popular choice [36,37]. However, the Laplace prior does
not allow for a tractable Bayesian analysis and only provides
point estimation without any higher-order statistical in-
formation. In order to fully utilize the uncertainty infor-
mation during estimation, the signal is hierarchically
modeled to impose a Gaussian-inverse Gamma prior that
promotes sparsity [37].

In the first stage of the hierarchical model, each entry of
β is independent and assigned a complex Gaussian distri-
bution with prior variance α− 1

k :

p(β | α) � 
K

k�1
CN βk

 0, α− 1
k , (10)

where α � [α1, α2, . . . , αK]T. In the second stage, the pre-
cision (inverse-variance) of β is assumed to obey an inde-
pendent Gamma distribution in the interests of convenient
inference since it is the conjugate prior of Gaussian
distribution:

p(α; a, b) � 
K

k�1
Γ αk

 a, b . (11)

*e above model incorporates four free parameters, i.e.,
a, b, c, d{ }. Herein, this paper sets a � b � c � d � 10− 6,
which strongly promotes a sparse estimation and makes the
prior noninformative [36]. By combining (10) and (11), it
can be shown that the marginalized distribution of β is a
complex Student-t distribution, which is suitable sparsity
[36].

*e hyperparameter α is inversely proportional to the
width of the probability density function (PDF). Naturally, a
large value of αk will drive the corresponding weight βk to
zero, which promotes the sparse solution accordingly. To
investigate the structured information among β, β1, β2 , the
priors of β1 and β2 should be properly assigned. As
δ1,k ∈ (− Δ1/2,Δ1/2], δ2,k ∈ (− Δ2/2,Δ2/2], β1,k � βkδ1,k,
β2,k � βkδ2,k, and the prior variance of βk is α− 1

k , then the
prior variances of β1,k and β2,k can be set as Δ21α− 1

k /4 and
Δ22α− 1

k /4; this is to accommodate the worst case when the true
scatterer is located in the middle of the two consecutive
grids. Moreover, this setting also satisfies the constraint of
common support among β, β1, β2 . Consequently, the
priors of β1 and β2 can be expressed as

p β1
 α  � 

K

k�1
CN β1,k

 0,
Δ21α− 1

k

4
 , (12)

p β2
 α  � 

K

k�1
CN β2,k

 0,
Δ22α− 1

k

4
 . (13)

*e structured sparse Bayesian modeling can be inter-
preted in a statistical way to impose the common support
shared by the three unknown coefficients. Meanwhile, the
proposed modeling should be considered as a flexible way to
allow learning from data. Next, a full Bayesian inference
procedure is carried out to make full use of the uncertainty
information, as well as structured sparsity based on the
hierarchical sparse prior model. *e obtained solution has a
smaller possibility of converging to a local minimum since
the posterior estimation can smooth away the shallow local
minimum [35].

3.2. Bayesian Inference. By combining the stages of the
hierarchical Bayesian model, the joint distribution of all
unknown and observed quantities can finally be acquired in
order to derive the sparse Bayesian model of signal re-
construction. Bayesian inference based on the posterior
distribution is then implemented to update the parameters
and unknown signals. During the inference,
Ω � β, β1, β2, α, α0  is modeled as the set of hidden and
random variables to be estimated, while Θ is modeled as the
deterministic parameter. Considering the RCI with model
errors, the target imaging can be interpreted as an expec-
tation maximization (EM) procedure that calibrates the
model errors Θ and iteratively reconstructs the target.
According to (8)–(13), a joint probability distribution can be
obtained by

p(y,Ω;Θ) � p y | β, β1, β2, α0;Θ(  · p α0; c, d( 

· p(β | α) · p β1
 α  · p β2

 α  · p(α; a, b).

(14)

*e EM algorithm requires the knowledge of the pos-
terior distribution [29] p(Ω | y;Θ) � p(Ω, y;Θ)/p(y).
However, the EM algorithm cannot be directly applied since
p(y) has no closed-form solution. Accordingly, variational
Bayesian expectation maximization (VBEM) is used to
approximate the intractable posterior. In a VBEM frame-
work (14), the intractable posterior of hidden variablesΩ can
be approximated using variational Bayesian inference (VBI)
in the variational Bayesian expectation (VBE) step, while the
unknown parameter Θ is estimated in the variational
Bayesian maximization (VBM) step. *e approximating
PDF q(Ω) approximates the true posterior p(Ω | y;Θ) by
minimizing the Kullback–Leibler divergence (KLD) between
q(Ω) and p(Ω | y;Θ) [31]. Moreover, a structured mean
field approximation can be applied to compute q(Ω):
q(Ω) � q(β)q(β1)q(β2)q(α)q(α0). Consequently, the opti-
mal posterior distribution for the i − th entry of Ω, i.e.,
q(Ωi), can be expressed as
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q Ωi( ∝ exp 〈lnp(y,Ω;Θ)〉q Ω\Ωi( ) , (15)

where 〈·〉q(Ω\Ωi)
denotes the expectation with respect to

q(Ω\Ωi) and Ω\Ωi represents the set Ω without Ωi. By
applying the VBEM algorithm and the aforementioned
Bayesian model, the best posterior densities for the entries of
Ω can be obtained from the following procedures:

(1) VBE Step. Update of q(Ω)

In this step, the optimal posterior distribution q(Ω)

is updated iteratively for the givenmatrices S
⌢
≜ S(Θ),

S
⌢

1 ≜ S1(Θ), and S
⌢

2 � S2(Θ), where Θ is the model
error estimated in the last iteration.
*e posterior distribution of scattering coefficients,
i.e., q(β), can be obtained as follows:

q(β)∝ exp 〈lnp y | β, β1, β2, α0;Θ( p(β | α)〉q β1( )q β2( )q(α)q α0( ) 

� CN(β | μ,Σ),

(16)

Σ � 〈α0〉S
⌢H

S
⌢

+〈Λ〉 
− 1

, (17)

μ �〈α0〉ΣS
⌢H

y − S
⌢

1 · μ1 − S
⌢

2 · μ2 , (18)

where 〈Λ〉 � diag(〈α〉). Similarly, the posterior dis-
tributions of β1 and β2 are q(β1) � CN(β1 | μ1,Σ1) and
q(β2) � CN(β2 | μ2,Σ2). *e parameters of the ap-
proximating factors can be computed as follows:

Σ1 � 〈α0〉S
⌢H

1 S
⌢

1 + 4Δ− 2
1 〈Λ〉 

− 1
, (19)

μ1 �〈α0〉Σ1S
⌢H

1 y − S
⌢Hμ − S

⌢H

2 μ2 , (20)

Σ2 � 〈α0〉S
⌢H

2 S
⌢

2 + 4Δ− 2
2 〈Λ〉 

− 1
, (21)

μ2 �〈α0〉Σ2S
⌢H

2 y − S
⌢Hμ − S

⌢H

1 μ1 . (22)

*e hyperparameters αk,∀k  are independent; thus,
the probability density function (PDF) q(αk) can be
derived as q(αk) � Gamma(αk | a

⌢
, b

⌢

). *e parameters a
⌢

and b
⌢

of the Gamma distribution are given as

a
⌢

� a + 3, (23)

b
⌢

k � b + [Σ]kk + [μ]k



2

  + 4Δ− 2
1 Σ1 kk + μ1 k



2

 

+ 4Δ− 2
2 Σ2 kk + μ2 k



2

 ,
(24)

where [·]kk represents the k th main diagonal element
of a matrix and [·]k is the k th element of a vector. Using
the property of the Gamma distribution, the expected
value of αk can be computed as

〈αk〉 �
a
⌢

b
⌢. (25)

*e optimal posterior distribution of the noise preci-
sion α0 is obtained as q(α0) � Gamma(α0 | c

⌢
, d

⌢

), where
the parameters c

⌢ and d
⌢

are given as

c
⌢

� c + N, (26)

d
⌢

� d + y − S
⌢
μ − S

⌢

1μ1 − S
⌢

2μ2
�����

�����
2

2
+〈α0〉

− 1


K

k�1
λ, (27)

where λk � 3 − 〈α0〉 [Σ]kk + 4Δ− 2
1 [Σ1]kk + 4Δ− 2

2 [Σ2]kk .
*e expectation of α0 is

〈α0〉 �
c
⌢

d
⌢. (28)

*e optimal distribution q(Ω) is obtained by iter-
atively calculating the above steps until convergence.
In order to estimate the model error Θ, each hidden
variable should be updated before proceeding to the
next step.

(2) VBM Step. Update of Θ

According to the VBEM, Θ is estimated when the es-
timate of Ω is given:

Θ
⌢

� argmax
Θ

〈lnp(y,Ω;Θ)〉q(Ω)

� argmin
Θ
〈 y − S(Θ) · β − S1(Θ) · β1 − S2(Θ) · β2

����
����
2
2〉 .

(29)

Hence, the estimation of Θ is a nonlinear least-square
problem, but it is difficult to obtain the closed-form ex-
pression; thus, the Quasi-Newton method is adopted to
update the parameter, as follows:

Θ
⌢

� Θ − ∇2f(Θ) 
− 1

[∇f(Θ)], (30)

where f(Θ) � 〈‖y − S(Θ) · β − S1(Θ) · β1 − S2(Θ)β2‖
2
2〉 is

the objective function and ∇f(Θ) and ∇2f(Θ) represent the
gradient and Hessian with respect to the model error, re-
spectively. *e derivations of ∇f(Θ) and ∇2f(Θ) are
presented in [13]. After estimating the model error Θ, the
matrices S

⌢
≜ S(Θ), S

⌢

1≜S1(Θ), and S
⌢

2 � S2(Θ) should be
updated before stepping into the next iteration.

*e proposed method above utilizes the hierarchical
modeling procedure to encode signal sparsity which could
obtain the approximate posterior distribution q(β) and is
regarded as a full Bayesian method. *e statistical
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information is used to enhance the estimation performance
and avoid converging to a shallow local minimum during the
learning procedure due to the utilization of higher-order
statistical information.

3.3. Algorithm Summary and Discussion

Remark 1. Convergence. *e VBEM procedure can be
summarized as a process of iteratively updating the hidden
and deterministic parameters. *e SSBA algorithm is based
on the VBEM framework. *e update of Ω decreases the
KLD between q(Ω) and p(Ω | y;Θ), i.e.,
q(Ω) � KLDq(Ω)(q(Ω) ‖ p(Ω | y;Θ)), while the update ofΘ,
respectively, decreases the negative expected log-likelihood
function until convergence. *us, the (marginal) likelihood
monotonically increases throughout the iterations, and the
convergence is guaranteed [31]. Numerical results presented
in Section 4 also validate that the algorithm will converge
within tens of iterations.

Remark 2. Computational Complexity. *e SBL-based SSBA
algorithm operates in an iterative manner; both the number
of iterations and the computational cost of each iteration
determine the total computational cost. Compared with the
conventional Fourier-based approach, the SBL-based algo-
rithm is known to converge rather slowly, and its compu-
tational complexity is much higher [6]. Generally, the above
procedure involves the matrix inversion in (17) and matrix-
vector multiplication, the computational costs of which are
o(K3) and o(K2), respectively. *is procedure is compu-
tationally expensive, particularly, for a large K, which is
generally the case in practical applications. Moreover, the
convergence slows down when model errors exist, meaning
that more iterations are necessary to reach convergence.
*us, the algorithm is impractical for use with large-scale
applications. *erefore, a faster algorithm should be de-
veloped to decrease the computational complexity or to
obtain fast convergence.

Fortunately, a grid pruning operation could be applied to
decrease the computational burden since most of the prior
precisions (i.e., αk) tend to quite large values upon con-
vergence benefiting from the sparsity of the target. *e
pruning of the current grids set Ψj can be achieved via

Ψj+1
� k | 〈αk〉 < αth, k ∈ Ψj

 , (31)

where Ψj+1 denotes the grids set after pruning and αth is a
large threshold. Finally, the computational burden is re-
duced, and the convergence rate is improved due to the grid
pruning; moreover, the sparsity of the reconstruction results
is enhanced, while the common support shared by β, β1, β2 

is guaranteed.
In summary, the procedure of the proposed SSBA al-

gorithm based on VBEM is outlined in Algorithm 1.

4. Simulations and Discussion

In this section, simulations are carried out to validate the
performance of the proposed SSBA algorithm. SSBA

provides a unified framework for RCI in the presence of
various model errors, while a scenario with only two types of
model errors is considered in the simulations, namely, gain-
phase error (type I error) and off-grid error (type II error).
*e RCI system consists of one receiver and M � 16
transmitters configured as uniform linear array (ULA) and
interelement spacing d � 0.5m. *e transmitters emit
random-modulated frequency-hopping (FH) waveforms
[39] with carrier frequency fc � 10GHz and signal band-
width B � 0.5GHz. *e azimuth-range imaging is dis-
cretized to 40× 40 grid cells with grid-cell size
0.001 rad× 0.1m. First, we calculate the matrices S

⌢
� S(Θ),

S
⌢

1 � S1(Θ), and S
⌢

2 � S2(Θ) by settingΘ � 0 to initialize the
input parameters of the SSBA algorithm. Furthermore, we
initialize α0 � 102/var(y), α � N/|S

⌢
Hy|, αth � 106, and

a � b � c � d � 10− 6. To terminate the algorithm, this paper
sets the tolerance c � 10− 3 and the maximum number of
iterations to Jmax � 200. In the simulations, the gain and
phase errors randomly vary at [0.7, 1.3] and [− π/4, π/4],
respectively. *e scatterers of grid mismatch are randomly
located in between the grid cells. *erefore, the maximum
size of grid mismatch is half the grid size in theory.

In addition to the proposed SSBA algorithm, SBL [36],
S-TLS [26], and R-FOCUSS [24] are also simulated to
demonstrate the superior performance of SSBA. SBL re-
constructs the target without the model errors. S-TLS and
R-FOCUSS consider sparse recovery with dictionary per-
turbation: y � (S + E)β + w. S-TLS solves the nonconvex
optimization problem, while R-FOCUSS is proposed based
on the SD-FOCUSS algorithm, which aims to find the
maximum a posteriori (MAP) estimation:

min
β,E

‖y − (S + E)β‖22 + λ1‖E‖2F + λ2‖β‖p
p , (32)

in practical applications, and the regularization parameters
λ1 and λ2 in R-FOCUSS are properly chosen rather than
known a priori as in SD-FOCUSS. *e original R-FOCUSS
uses the output of the Tikhonov regularization method [40]
as initialization, while the result of SBL is employed to
initialize R-FOCUSS in this paper. In addition, the sparsity-
driven autofocus (SDA) method [41] is also extended to
solve the imaging problem (7) as

min
β,Θ

y − S(Θ) · β − S1(Θ) · β1 − S2(Θ) · β2
����

����
2
2

+ λ ‖β‖1 + 4Δ− 2
1 β1

����
����1 + 4Δ− 2

2 β2
����

����1 ,

(33)

where λ is the regularization parameter, which specifies the
strength of the contribution of the regularization term into
the solution.

4.1. Qualitative Results and Comparison with Other
Algorithms. To demonstrate the validity of the SSBA algo-
rithm, the paper conducts a numerical simulation where the
conventional SBL algorithm is also implemented as a
comparison. Gaussian noise is added to the echo vector
ywith a signal-to-noise ratio (SNR) of 20 dB. Figure 2
presents the imaging results. *e actual target image is

Mathematical Problems in Engineering 7



shown in Figure 2(a), where the scatterers are randomly
distributed in between the grid cells. *e white circles in
Figure 2(a) represent the actual locations of scatterers, while
the red points represent the closest grid cells to the scatterers.
*e target image is deemed to have been reconstructed
successfully if the off-grid scatterers are captured by the
closest grid-cell centers.

Figure 2(b) plots the image reconstructed by SBL when
model errors are completely calibrated. It can be seen that
SBL achieves perfect performance while the scatterers are
reconstructed accurately. However, it is too difficult to
calibrate model errors accurately in practical applications;
when complete calibration is impossible, the performance of
SBL degrades, as shown in Figure 2(c). *e image in

Figure 2(c) is defocused, and many spurious scatterers exist.
By contrast, compared with Figure 2(c), the image shown in
Figure 2(d) is significantly improved. *e scatterers are
reconstructed much better without any obvious spurious
scatterers, mainly because the prior knowledge of sparsity is
fully utilized and the model errors are calibrated well. Ac-
cordingly, the proposed SSBA algorithm can be applied to
RCI with multiple model errors.

To demonstrate the superior performance of SSBA, four
sparsity-based algorithms are simulated, i.e., SBL, S-TLS,
SDA, and R-FOCUSS. *e imaging results are depicted in
Figure 3. As an outstanding sparse recovery method, SBL has
shown superior performance in radar imaging but still
cannot focus the target image well as the model errors exist.
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Figure 2: RCI results: (a) ground truth; (b) imaging result of conventional SBL when model errors are calibrated accurately; (c) imaging
result of conventional SBL without considering model errors; (d) imaging result of SSBA.

Initialization j � 0, Θ � 0, S
⌢

� S(Θ � 0), S
⌢

1 � S1(Θ � 0), S
⌢

2 � S2(Θ � 0), and Ψ0 � k | k � 1, · · · , K{ }

Input y, S
⌢
, S

⌢

1, S
⌢

2, a, b, c, d{ }, αth, c, and Jmax
while not converged do

(1) VBE step: update Σ, μ, Σ1, μ1, Σ2, μ2, 〈αk〉, and 〈α0〉 from (17)–(22), (25), and (28), where k ∈ Ψj

(2) VBM step: estimate Θ from (30) and update S
⌢

� S(Θ), S
⌢

1 � S1(Θ), and S
⌢

2 � S2(Θ)

(3) Prune the grids: Ψj+1 � k | 〈αk〉< αth, k ∈ Ψj 

(4) Check for convergence: ‖μj − μj− 1‖
2
2/‖μ

j‖
2
2 < c or j � Jmax and then j � j + 1

end while
Output reconstructed scattering coefficient vector β

⌢

� μ

ALGORITHM 1: *e procedure of the proposed SSBA algorithm based on VBEM.
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From the Bayesian perspective, S-TLS yields an MAP so-
lution when the perturbation matrix E is Gaussian, which is
hard to be satisfied. S-TLS does not utilize the structured
information of model errors and tends to generate non-
sparse and defocused images. Comparably, the three algo-
rithms (SDA, R-FOCUSS, and SSBA) generate focused
images with quite a few spurious scatterers, as shown in
Figures 3(d)–3(f ).*e three algorithms fully exploit both the
sparsity of target and the structured information of model
errors (or statistical information of perturbation matrix for
R-FOCUSS) and thus perform well for fully perturbed RCI.

To evaluate the numerical complexity of SSBA, the time
needs of the five algorithms are recorded in Table 1. *e
simulations are performed on a computer with Intel Xeon
CPU E5-2670 at 2.5GHz and 32GB of memory. S-TLS uses
the convex optimization method to reconstruct the target;
thus, it is time-consuming and suffers from heavy com-
putational complexity. SBL and SDA are also time-con-
suming because the matrix inversion and matrix-vector
multiplication are calculated in each iteration. Comparably,
R-FOCUSS has the lowest computation complexity. Due to
the grid pruning, SSBA converges rapidly and is also
computationally efficient and could thus be applied to
practical RCI. Furthermore, SSBA has advantages over
R-FOCUSS considering both RIE and image entropy, which
is compared in detail in Figure 4.

4.2. Quantitative Results for Different SNRs. In this part, the
performance of SSBA is evaluated quantitatively under
different SNRs by means of Monte Carlo simulations and is

also compared with that of the other algorithms (i.e., SBL,
S-TLS, SDA, and R-FOCUSS). In the simulations, the SNR
varies from − 10 dB to 20 dB. Two criteria are introduced to
qualify the performance, i.e., relative imaging error (RIE)
and image entropy. RIE is defined as 20 log10(‖β

⌢

− β‖2/‖β‖2),
where β and β

⌢

are the true and estimated scattering coef-
ficient vectors, respectively. Image entropy is defined as

E � − 
K

k�1
β
⌢

k





2
/P ln β

⌢

k





2
/P  , (34)

where P � 
K
k�1 |β

⌢

k|2 is the energy of the reconstructed
image. Generally, lower image entropy indicates a better-
focused image, which means that the image is sparser.

*e results are presented in Figure 4. Figures 4(a) and
4(b) show the RIE and image entropy versus SNR, re-
spectively. It can be seen from Figure 4(a) that the recon-
structed RIEs decrease quickly, and that the proposed SSBA
tends to reconstruct the most accurate image, as the SNR
increases. In terms of the focusing performance shown in
Figure 4(b), the three SBL-type algorithms (i.e., SBL, SDA,
and SSBA) achieve superior performance in high-SNR re-
gimes, while SSBA generates a much sparser and more
focused image with smaller RIE. *e image reconstructed by
S-TLS is defocused and blurry. Apart from the strong
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Figure 3: RCI results: (a) ground truth; (b) SBL; (c) S-TLS; (d) SDA; (e) R-FOCUSS; (f ) SSBA.

Table 1: Time needs of the five algorithms.

Algorithm SBL S-TLS SDA R-FOCUSS SSBA
Runtime (s) 107.1 4514.4 454.1 6.6 47.2
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scatterers, many spurious scatterers exist. In low-SNR re-
gimes (SNR< 0 dB), S-TLS and R-FOCUSS seem to re-
construct the target with a lower image entropy; however,
the RIEs are much higher, meaning that the target is not
imaged successfully. S-TLS and R-FOCUSS employ the
perturbation matrix E to model the effect of model errors
without utilizing the structured information fully so that the
model errors are not calibrated well. Moreover, when the
noise is strong, overfitting emerges, which makes S-TLS and
R-FOCUSS converge to the local optima easily. Generally,
while all five algorithms are sensitive to noise, SSBA achieves
superior results relative to the other imaging algorithms and
significantly improves the practical imaging performance.

Benefiting from the fact that the sparsity prior andmodel
errors are fully exploited, the proposed SDA and SSBA
exhibit superior performance. Although they assign different
sparse priors of β, both of them are SBL-based algorithms
that share the same imaging models. SDA is a l1-based
regularization method, in which a sparsity-inducing Laplace
prior is directly imposed on the signal, after which the sparse
solution is exploited from the MAP estimation corre-
sponding to the point estimation of the sparse coefficients.
Comparably, SSBA utilizes hierarchical modeling to encode
signal sparsity and achieve better sparse solutions, which can
obtain the approximate posterior distribution, and is
regarded as a full Bayesian method. Herein, higher-order
statistical information is used to enhance the imaging
performance and avoid converging to a shallow local
minimum. Moreover, the alternate optimization between
the sparse coefficients and model errors inevitably results in
error propagation [6,42], meaning that the estimation error
of the sparse coefficients degrades the estimation accuracy of
model errors during iterations [43,44]. As for SSBA, the
utilization of a higher-order statistical information alleviates
the effect of error propagation and improves the imaging
performance considerably.

5. Conclusion

In summary, this paper focuses on the sparsity-based RCI
with model errors. Firstly, the parametric joint sparse re-
construction model was built to utilize the structured in-
formation of model errors; then, an appropriately structured
sparse Bayesian prior was assigned to the sparse coefficients
and the SSBA algorithm was proposed under the VBEM
framework. SSBA fully exploited the sparse prior and
structured information of model errors and jointly realized
model error calibration and sparse imaging. Numerical
experiments demonstrated the superior performance of
SSBA, which could yield a well-focused target image with
high reconstruction accuracy in the presence of model er-
rors. *us, SSBA can be applied in practical radar systems.

Although SSBA performs well for RCI withmodel errors,
its performance is sensitive to the parameters of the RCI
model (e.g., grid-cell size and array aperture). Besides, the
incoherence of the reference matrix determines the imaging
performance. In the future, the effects of model parameters
should be investigated. Moreover, SSBA still suffers from
high computational complexity, especially when the grids
are denser or a number of model errors coexist, despite the
fact that the unified framework and grid pruning are applied.
*us, the development of fast SSBA algorithms is also of
great interest.

Data Availability

In this paper, the proposed SSBA algorithm is dedicated to
theoretical research. So, all the data are generated by
computer simulation. *e specific method of generating the
simulated data has been described in detail in Section 2 from
equations (1) to (7). Moreover, the values of the simulated
parameters are also given in Section 4. Accordingly, all the
readers can easily reproduce the needed data to verify our
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Figure 4: RIE and image entropy for different SNRs: (a) RIE vs. SNR; (b) image entropy vs. SNR.
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conclusions. It means that the simulated data are the “in-
ternal” data, and no “external” data are needed to validate or
reproduce the results. *erefore, we claim that “the simu-
lated data used to support the findings of this study are
included within the article.”
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