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Object detection plays an important role in many computer vision applications. Innovative object detection methods based on
deep learning such as Faster R-CNN, YOLO, and SSD have achieved state-of the-art results in terms of detection accuracy. (ere
have been few studies to date on object detection with the addition of new classes, however, though this problem is often
encountered in the industry. (erefore, this issue has important research significance and practical value. On the premise that the
old class samples are available, a method of reserving nodes in advance in the output layer (RNOL) was established in this study.
Experiments show that RNOL can achieve high detection accuracy in both new and old classes over a short training time while
outperforming the traditional fine-tuning method.

1. Introduction

Object detection involves the two distinct tasks of object
recognition and location. It is not only necessary to identify the
class of the object in the image but also able to locate the object
within a rectangular area. In [1], only the object is recognized,
but the object is not located in the rectangular area. Object
detection is a common component of artificial intelligence and
information technology systems including robot vision, un-
manned aerial vehicle surveillance, automatic driving, intelli-
gent video surveillance, and medical image analysis.

Many scholars have studied object detection. Most of the
traditional methods are based on background subtraction
[2–4]. Recently, many scholars have developed numerous
object detection methods based on deep learning, such as
Faster R-CNN [5], YOLO v3 [6], and SSD [7] and achieved
state-of the-art results in regard to detection accuracy. When
adding new classes, however, it is very time-consuming to
train an object detection model from scratch on the premise
that the old classes are available. How can the model training
time be improved without sacrificing high detection accu-
racy in both new and old classes? (is problem is often

encountered in the industry; this issue has important re-
search significance and practical value.

Fine-tuning [8] is the method most commonly used to
solve the new-class addition problem at present. (e fine-
tuning method uses the weights of the old model except for
the last output layer. Although this method can train the
model in a short time, its detection accuracy is relatively low.

In this study, we developed the reserving nodes in ad-
vance in the output layer (RNOL) method to solve the object
detection problem when adding new classes based on the
Faster R-CNN and fine-tuning method. We conducted a
series of experiments on the PASCAL VOC 2007 to validate
the proposed method. (e results show that, on the premise
that the old classes are available, RNOL can train the model
well and quickly when new classes are added. RNOL also
demonstrated higher detection accuracy on both new and
old classes than fine-tuning, discussed in detail as follows.

2. Related Work

Object detection is mainly based on a geometric principle
first developed in the 1960s. With the emergence of neural
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network and support vector machine techniques, object
detection methodology has transformed from geometric to
statistical. In recent years, advancements in computing and
deep learning technology have brought about object de-
tection frameworks based on deep learning such as R-CNN
[8], Fast R-CNN [9], Faster R-CNN [5], YOLO [10], YOLO
v2 [11], YOLO v3 [6], and SSD [7].

(e new-class addition problem has a long history in the
machine learning and artificial intelligence field [12–15].(e
problem may be approached when old classes are not
available [16, 17] or when old classes are available; there has
been considerably less research centered on the latter sce-
nario. Rebuffi et al. [18] researched the problem using a small
number of old classes. Extant methods are not ideal as far as
the detection accuracy of new or old classes, so it is difficult
to meet industrial needs at present. In this paper, we discuss
only scenarios wherein old classes are available.

3. Reserving Nodes in Advance in the
Output Layer

For object detection problems considering the addition of
new classes, the RNOLmethod primarily works by reserving
the number of nodes in the output layer appropriately; the
number of nodes in the output layer in this case exceeds the
number of old classes. To operate RNOL, we first use a Faster
R-CNN to build a model, then reserve the correct number of
nodes in the output layer, and train the model on the old
classes before saving the model and weight. Next, when new
classes are added, the saved models and weights are loaded
and the models are trained on both the new and old classes.
Finally, we use the fully trained model to detect the test
samples.

A diagram of the RNOL method is shown in Figure 1.
Hollow dots in the output layer represent reserved nodes.
(e number of nodes in the output layer is larger than the
number of the old classes, as mentioned above. (e number
of reserved nodes can be set artificially. (is method is
effective as long as the number of new classes is not greater
than the number of reserved nodes. (e person in Figure 1
belongs to the old class and the horse belongs to the new
class. (e proposed method resolves the problem of the
coexistence of new and old classes. Compared to fine-tuning,
the advantage of RNOL is that it can effectively utilize more
weight information of the old class model, including the
weight of the output layer.

(e architectures of RNOL are consistent with those of
Faster R-CNN, except the number of nodes in the output
layer. (e activation function of neurons in the output layer
is softmax.

(e old classes are marked as CA. (e model trained in
the old classes is marked as A(CA), and the new classes are
marked as CB. (e model trained in new and old classes is
marked as B(CA∪CB).

4. Experiments

4.1. Datasets and Evaluation. We evaluated our method on
the PASCAL VOC 2007 dataset, as mentioned above. VOC

2007 consists of 5K images in the trainval split and 5K
images in the test split for 20 object classes. We used the
standardmean average precision (mAP) at 0.5 IoU threshold
as the evaluation metric; evaluation of the VOC 2007 ex-
periments was conducted on the test split.

4.2. Implementation Details. We randomly initialized all
new layers by drawing weights from a zero-mean Gaussian
distribution with a standard deviation of 0.01. We used the
stochastic gradient descent (SGD) with Nesterov momen-
tum [19] to train the network in all experiments. We set the
learning rate to 0.001, decay to 0.0001 after 50K iterations,
and momentum to 0.9. In the second stage of training, i.e.,
learning the extended network with new classes, we used a
learning rate of 0.001 and decay to 0.0001 after 10K itera-
tions. (e A(CA) network was trained for 70K iterations on
PASCAL VOC 2007. (e B(CB) network was trained for
20K iterations when only one class was added and 30K it-
erations when 10 classes were added simultaneously. For the
Faster R-CNN, we took batches of two images each. All other
layers (i.e., the shared convolutional layers) of the A(CA)

network were initialized by pretraining a model for
ImageNet classification [20]. We implemented this in
Tensorflow [21].

4.3. Effects of RNOL. We sought to determine whether re-
serving nodes in advance in the output layer increases the
computing time or affects the object detection accuracy
compared to the traditional method.

We took 10 classes in alphabetical order from the
VOC2007 dataset and ran two respective types of experi-
ment. Experiment 1 involved reserving 10 nodes in the
output layer (that is, the number of neurons in the output
layer was 20). (ere was no reserved position in the output
layer, in Experiment 2; that is, the number of neurons in the
output layer was 10.

(e detection accuracy of the two experiments is shown
in Table 1, and the training times are shown in Table 2. We
observed no significant difference in test results and training
time between the two experiments, which suggests that
RNOL does not increase the training time nor affect the
detection accuracy.

4.4. Addition of One Class. In this experiment, we took 19
classes in alphabetical order from the VOC 2007 dataset as
CA and the remaining one as the only new class CB. We then
trained the A(1−19) network on CA and the B(1−20)

network on the VOC trainval containing the 20 classes. A
summary of the evaluation of these networks on the VOC
test set is shown in Table 3, and the full results are listed in
Table 4.

As shown in Table 3, when applying the RNOL method
on the basis of the old network A(1 − 19), the new network
B(1 − 20) has 69.0% mAP after 20K iterations. When using
the fine-tuning method on the basis of the old network
A(1 − 19) without RNOL, the new network B(1 − 20) only
has 68.1% mAP after 20K iterations. When applying the
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training from scratch (TFS) method, the network A(1 − 20)

only has 59.2% mAP after 20K iterations. (e TFS method
needs 70K training iterations to achieve the ideal accuracy.
(ese results suggest that the RNOL method outperforms
both the fine-tuning method and TFSmethod. When adding
one class, the RNOL method yields higher accuracy in a
shorter training time than fine-tuning or TFS.

We next compared the RNOL and fine-tuning methods
in the new network B(1 − 20) when adding one class. Each
was trained 30K times, and the weights were saved every 5K
iteration; each saved weight was loaded on the detection set.
(e test results are shown in Figure 2, where the RNOL
method achieves its highest detection accuracy when
training 20K iterations and then begins to decline. (e fine-
tuning method accuracy increases slowly over the experi-
ment but does not readily exceed that of the RNOL method.

4.5.Addition ofMultipleClasses. In this experiment, we took
10 classes in alphabetical order from the VOC 2007 dataset
as CA and the remaining 10 classes as CB. We then trained
the A(1 − 10) network on CA and the B(1 − 20) network on
the VOC trainval containing the 20 classes. A summary of
the evaluation of these networks on the VOC test set is
shown in Table 5, and the full results are listed in Table 6.

As shown in Table 5, on the basis of the old network
A(1 − 10) with RNOL, the new network B(1 − 20) has 68.2%
mAP after 30K iterations. On the basis of the old network
A(1 − 10) with fine-tuning alone and no RNOL, the new
network B(1 − 20) only has 67.3% mAP after 30K iterations.
When using the TFS method, the network A(1 − 20) only
has 62.5% mAP after 30K iterations. (e TFS method needs
training 70K iterations to achieve the ideal accuracy. Once
again, the RNOL method outperforms both fine-tuning and
TFS methods. When adding 10 classes, the RNOL method
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Figure 1: Diagram of RNOL.

Table 1: Detection results (mAP (%)).

Number of iterations (K) Experiment 1 Experiment 2
10 59.1 56.6
20 65.1 65.3
30 67.5 67.6
40 68.5 68.3
50 68.0 68.9
60 70.2 70.1
70 70.3 69.9

Table 2: Training time (minutes).

Number of iterations (K) Experiment 1 Experiment 2
10 93 94
20 181 179
30 265 265
40 350 350
50 436 438
60 522 521
70 608 607

Table 3: Test results when adding one class (mAP (%)).

Method (e number of iterations
(K) Old New All

A (1–19) RNOL 70 69.5 — —
B (1–20) RNOL 20 69.1 68.6 69.0
A (1–19) without
RNOL 70 69.2 — —

B (1–20) fine-tuning 20 68.0 68.6 68.1
A (1–20) TFS 20 59.1 62.3 59.2
A (1–20) TFS 70 69.5 71.9 69.6
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achieves higher accuracy in a shorter training time than fine-
tuning or TFS.

For adding 10 classes, we have compared RNOL and fine-
tuning methods in the new network B(1 − 20). Each was

trained 30K times, the weights were saved every 5K iteration,
and each saved weight was loaded on the detection set. (e
results are shown in Figure 3. (e detection accuracy of RNOL
is higher than that of the fine-tuningmethodwhen training 30K

Table 4: Test results when adding one class (mAP (%)).

A (1–19) RNOL B (1–20) RNOL A (1–19) without RNOL B (1–20) fine-tuning A (1–20) TFS A (1–20) TFS
(e number of iterations 70K 20K 70K 20K 20K 70K
Aero 69.1 68.8 70.6 69.2 61.6 75.2
Bike 77.5 78.1 78.3 77.8 67.9 78.9
Bird 67.5 66.2 68.3 65.9 55.6 67.7
Boat 58.5 56.2 55.8 52.2 38.4 55.8
Bottle 52.4 51.5 53.4 52.4 43.1 53.6
Bus 76.1 75.3 81.5 77.3 67.6 74.6
Car 79.7 80.2 80.1 80.0 74.1 79.8
Cat 84.3 83.9 78.4 78.7 73.9 79.2
Chair 50.3 48.3 49.5 49.4 40.1 52.9
Cow 74.4 73.3 71.2 71.0 57.8 73.6
Table 64.7 65.9 66.4 64.9 60.2 68.7
Dog 81.7 77.4 77.7 75.9 62.5 76.3
Horse 80.5 80.6 79.7 79.8 73.3 80.6
Mbike 75.9 76.1 73.4 74.2 65.1 76.6
Person 77.2 77.1 77.1 77.2 69.3 77.4
Plant 43.5 42.7 41.9 39.1 31.6 40.1
Sheep 66.2 68.3 67.1 66.1 52.3 67.2
Sofa 66.7 66.6 68.5 66.9 53.9 66.3
Train 74.1 74.7 75.8 74.9 73.8 75.6
Tv — 68.6 — 68.6 62.3 71.9
mAP 69.5 69.0 69.2 68.1 59.2 69.6
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Figure 2: Comparison of two methods when adding one class.

Table 5: Test results when adding 10 classes (mAP (%)).

Method (e number of iterations (K) Old New All
A (1–10) RNOL 70 70.3 — —
B (1–20) RNOL 30 68.3 68.1 68.2
A (1–10) without RNOL 70 69.9 — —
B (1–20) fine-tuning 30 67.5 67.1 67.3
A (1–20) TFS 30 61.9 63.2 62.5
A (1–20) TFS 70 69.1 70.1 69.6
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times. More iterations are needed to achieve higher detection
accuracy as the number of added classes increases beyond one.

5. Conclusion

For object detection considering the addition of new classes
when the old classes are available, we improved the Faster
R-CNNmodel in this study by reserving nodes in advance in
the output layer. Our experimental results show that RNOL
can achieve high detection accuracy in both new and old
classes in a short training time. Although the proposed
method outperforms the fine-tuning method, its detection
accuracy still has room for further improvement. One
possible way to do this is to increase the number of training
iterations, but it will increase the cost of training time.

Data Availability

We evaluated our method on the PASCAL VOC 2007
dataset.
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