
Research Article
Identifying Key Classes Algorithm in Directed Weighted Class
Interaction Network Based on the Structure Entropy
Weighted LeaderRank

Wanchang Jiang and Ning Dai

School of Computer Science, Northeast Electric Power University, Jilin 132012, China

Correspondence should be addressed to Wanchang Jiang; jwchang84@163.com

Received 6 August 2020; Revised 16 November 2020; Accepted 24 November 2020; Published 10 December 2020

Academic Editor: Alessandro Tasora

Copyright © 2020 Wanchang Jiang and Ning Dai. +is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Identifying key classes can help software maintainers quickly understand software systems. +e existing key class recognition
algorithms consider the weight of class interaction, but the weight mechanism is single or arbitrary. In this paper, the multitype
weighting mechanism is considered, and the key classes are accurately identified by using four kinds of interaction. By abstracting
the software system into the directed weighted class interaction network, a novel Structure Entropy Weighted LeaderRank of
identifying key classes algorithm is proposed. First, considering multiple types and directions of interactions between every pair of
classes, the directed weighted class interaction software network (DWCIS-Network) is built. Second, Class Entropy of each class is
initialized by the software structural entropy in DWCIS-Network; the Structure EntropyWeighted LeaderRank applies the biased
random walk process to iterate Class Entropy. Finally, the iteration is completed to obtain the Final Class Entropy (FCE) of each
class as the importance score of each class, top-k classes are obtained, and key classes are identified. For two sets of experiments on
Ant and JHotDraw, our approach effectively identifies key classes in class-level software networks for different top-k of classes, and
the recall rates of our approach are the highest, 80% and 100%, respectively. From top-15% to top-5%, the precision of our
approach is improved by 13.39%, which is the highest in comparison with the precisions of the other two classical approaches.
Compared with the best performance of the two classical approaches, the RankingScore of our approach is improved by 16.51%
in JHotDraw.

1. Introduction

As software grows in size and functionality, it becomes more
difficult to understand and maintain. Understanding the
functionality of the software accounts for the vast majority of
the overall cost of software maintenance [1]. Software sys-
tems can also be represented as complex networks, usually
termed as software networks, where nodes are software
entities such as methods, classes, or packages, and edges
represent interactions between entities [2].

Object-oriented (OO) programming is one of the most
widely used programming paradigms for designing and
implementing software systems [3]. Classes can be used to
analyse and understand unfamiliar object-oriented soft-
ware. Complex object-oriented software contains several

closely related key classes that implement the main
functions of the program. +erefore, it is a good choice to
understand the software from the key classes. At present,
there are many researches on key classes. From the
functional perspective, Zaidman and Demeyer [4] con-
sidered the classes that have control functions to be key
classes. When software dependency networks are used to
model software systems, Şora and Chirila [5] believed that
the key classes are those that manage other classes. From
the point of view of influence, Ding et al. [6] considered
key classes that are more likely to affect the structure and
function in one network. It is more effective to analyse and
understand software system starting with key classes [7].
Since classes are the basis of running the main functions of
the system, it is important to propose effective key classes

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 9234042, 12 pages
https://doi.org/10.1155/2020/9234042

mailto:jwchang84@163.com
https://orcid.org/0000-0002-5924-5403
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/9234042

identification approaches to reduce the cost of software
understanding and maintenance.

In addition to defining key classes, how to identify key
classes has also been studied by relevant researchers. To
make the software easy to analyse, Valverde and Sole [8]
proposed a class graph model based on the UML class di-
agram, where classes are represented as nodes and rela-
tionships between classes are represented as edges, ignoring
the complexity of nodes, and the edges are unweighted.
Chong and Lee [2] proposed a weighted complex network to
analyse the maintenance ability and stability of object-ori-
ented software. However, most of researchers assume that
the relationship types between the nodes are the same when
converting the source code to nodes and edges. In fact,
software is relatively complex, and interactions between
every pair of classes have directions and different types of
interactions.

In the key classes identification, Wang et al. [7] used
various complex networkmetrics to identify key classes from
global and local perspectives. However, the weight of the
edge only considers the frequencies of relationship between
two classes. Meyer et al. [9] applied k-core decomposition to
identify a core subset of vertices as potentially important
classes. However, they ignored the fact that there may be
multiple dependencies between classes. To deal with this
problem, a generalized k-core decomposition method
ICOOK has been proposed by Pan et al. [10]. Further,
considering the influence of weights on key classes identi-
fication, Pan et al. [11] have proposed a weighted k-core
decomposition approach to identify key classes. In addition,
by defining various weights for the directed edges, Sora [12]
applied the PageRank algorithm to identify the key classes.
However, that could lead to suspending nodes and slowing
down the sort. To improve the convergence and connectivity
of the network, Lü et al. [13] proposed the standard
LeaderRank by adding the ground node. LeaderRank is
faster than PageRank at identifying influencers. For im-
proving the speed of identifying influencers, a weighting
mechanism is introduced to the LeaderRank, allowing nodes
with more fans to get more scores from the ground node
[14]. Zhang et al. [15] have proposed an improved weighted
LeaderRank by taking clustering coefficient into account to
depict the weight to identify influencers. Existing researches
[16–18] show that structure entropy can be used to classify
data based on ranking.

In order to identify key classes for helping software
maintainers quickly understand software, the existing
LeaderRank weighting mechanism is improved to take ac-
count of multiple types of class interactions and Structure
Entropy Weighted LeaderRank is proposed for applying key
classes identification. +en, we propose a novel identifying
key classes algorithm based on the Structure Entropy
Weighted LeaderRank (IKC-SEWL). First, class interactions
in software source code are abstracted as a directed weighted
class interaction software network (DWCIS-Network).
Second, a Structure Entropy Weighted LeaderRank is pro-
posed by introducing the biased random walk and class
interaction weighting mechanism taking into consideration
both the direction and weights of class interactions to obtain

the class importance scores for key classes identification in
DWCIS-Network. Finally, identifying key classes algorithm
based on the Structure Entropy Weighted LeaderRank is
proposed to identify key classes according to the obtained
class importance scores. To evaluate the performance of our
approach in identifying key classes of class-level software
networks with multiple interaction types, two sets of ex-
periments are conducted on two open-source software
systems. When compared with three other key classes
identification approaches, it is found that our approach has
high identification precision.

+e rest of the paper is organized as follows: Section 2
describes the directed weighted class interaction software
network. Section 3 proposes the Structure EntropyWeighted
LeaderRank. Based on that, Section 4 presents the key classes
identification algorithm. Section 5 presents experiments to
verify the effectiveness of our approach. Section 6 gives the
final conclusion and looks forward to future work.

2. Directed Weighted Class Interaction
Software Network

In order to identify key classes from the perspective of
complex network, the structure topology information
should be extracted from the source code of software. +e
extracted classes and class interactions are represented as
nodes and edges, respectively. Class interactions in the
object-oriented software system not only have directions but
also contain different types. Inheritance, instantiation,
return type, and method call between every pair of classes
within the software system are selected and extracted, the
directions and multiple interactions between every pair of
classes are considered, and the directed weighted class in-
teraction software network (DWCIS-Network) is built as
DWCIS-Network� (V, E, W, S). V � vi is the set of N

classes in the network and vi represents class i. E � eij is
the set of L directed weighted edges, in which eij � (vi, vj)

represents the class interaction from vi to vj (vi, vj ∈ V).
W � wij is the weight set of directed edges, in which wij

represents the weight of directed edge eij, that is, the sum of
the multiplication of all interaction type weights and their
frequencies between vi and vj. S � si represents the set of
software structural entropy of N classes, in which si rep-
resents software structural entropy of vi (vi ∈ V).

According to the reality of Ant in [19, 20], there are four
common types of class interactions, which account for more
than 90% of all types. In our approach, according to Ioana
Sora’s idea of the relative proportions of class interactions
rather than the actual values, different weights are empiri-
cally assigned to the four interaction types in DWCIS-
Network, which are described as follows:

(1) Inheritance relation (inh): class i inherits from class j

by “extends”; winh � 3
(2) Instantiation relation (ins): an instance of classj is

created anywhere in the code that belongs to class i;
wins � 1

(3) Return type relation (ret): one method of class i has
the return type of class; wret � 1

2 Mathematical Problems in Engineering

(4) Method call relation (met): onemethod of class i calls
at least one method of class j; wmet � 2

Our approach focuses on the relative proportion of class
interactions as weights to build the set of weights
winh, wins, wret, wmet , the interaction weightwt is the weight
of class interaction of type t, and ft

ij is the frequency of
interaction type t between vi and vj.

+e weight wij can be computed as follows:

wij �
t�inh,ins,ret,met

f
t
ij · w

t
. (1)

A simple example of constructing DWCIS-Network is
shown in Figure 1, where Figure 1(a) is a code slice of
Student class interaction and Figure 1(b) is its corresponding
DWCIS-Network; and class “Task,” class “UNStudent,” and
class “Student” are abstractly represented as nodes 1, 2, and
3, respectively. Taking class “Task” and class “UNStudent” as
example, w12 represents the weight of directed edge “Task-
UNStudent.” +e “Task” has a method “getStudent” that
returns the “UNStudent.” +is method instantiates the
“UNStudent” and calls the “study” method of the
“UNStudent” once. +erefore, the weight w12 is 4 by using
formula (1).

To reflect the significance of one class by the class in-
teractions, the software structure entropy is calculated
according to the relative number of edges owned by the class
of the software network. +erefore, degree information of vi

is introduced to calculate the software structural entropy. In
the following formulas, let N represent the number of
identified software classes. Degree information in complex
network including degree ki, sum of indegree sum kin, sum
of outdegree sum kout, and sum of degree sum k [21], re-
spectively, is expressed as follows:

ki � k
in
i + k

out
i ,

sum k
in

�
N

i�1
k
in
i ,

sum k
out

�
N

i�1
k
out
i ,

sum k � sum k
in

+ sum k
out

,

(2)

where kini represents the indegree of vi and kout
i represents

the outdegree of vi.
With the above information, the software structure

entropy si can be obtained as follows:

si � −pi · ln pi, (3)

pi �
ki

sum k
�

ki

2 · L
, (4)

where pi is proportional to the degree of vi and pi ≥ 0, ki

represents degree of vi, and L represents the number of
directed edges in DWCIS-Network. +e constraint condi-
tion of pi is as follows:

N

i�1
pi � 1. (5)

By using the above building process of DWCIS-Network,
the software system Ant can be abstracted as class inter-
action network shown in Figure 2(a), where the ten key class
nodes are marked red. Key classes will be identified and
discussed in the experiment of Section 5. Class “Project” is
abstracted node 25 and class “Task” is abstracted node 32,
class nodes that interact with node 32 and node 25 are
marked green, and the remaining class nodes are marked
gray. +e class interaction from node 32 to node 25 has 6
return types and 27 method calls, w32 25 � 60, as is shown in
Figure 2(b). Figure 2(b) represents local class interaction
network of Ant based on the class interaction between node
32 and node 25. Similarly, other class interactions can be
calculated according to the above calculation, and the
weights of interactions between classes can be obtained.
+ese weights are different and contain the multiplication of
values of different interaction types and interaction
frequency.

3. Structure Entropy Weighted LeaderRank

+e Structure Entropy Weighted LeaderRank is proposed to
obtain Final Class Entropy as the importance score of each
class for key classes identification.

3.1. Initialization Stage. For the initialization stage, Class
Entropy of each class is initialized by the software structural
entropy in DWCIS-Network. Similar to the standard
LeaderRank, the Structure Entropy Weighted LeaderRank
adds a node named ground to DWCIS-Network, which
makes the network strongly connected by bidirectional
connection with each node. Unlike the standard random
walk process in the standard LeaderRank, the Structure
Entropy Weighted LeaderRank applies the biased random
walk process, allowing more interacting classes to get more
scores from the ground node. +e initial Class Entropy
CEi(0) of vi can be represented by the software structure
entropy of vi (si) at the initial stage of the Structure Entropy
Weighted LeaderRank. Let N + 1 represent the position of
the ground node relative to all class nodes and CEN+1(0)

represents the initial Class Entropy of the ground node as
follows:

CEi(0) � si, (6)

CEN+1(0) � 0. (7)

+e edge weights from ground node to vi are assigned by
si, wN+1 i � si, and the edge weights from vi to ground are
assigned by 1, and wi N+1 � 1. +e weight wij of the directed
edge from vi to vj should be initialized, which is as follows:

wij �
wij

sumw
out
i

, (8)

Mathematical Problems in Engineering 3

where sumwout
i represents the sum of weight of directed

edge eij [22], that is, the outstrength of vi, and it is expressed
as follows:

sumw
out
i �

N+1

j�1
wij. (9)

3.2. Iteration Stage. For the iteration stage, the Class En-
tropy CEi is iterated through a biased random walk
process by using weights of directed edges and the be-
tweenness of class i. +e Class Entropy CEi is proportional
to the betweenness of class i. CEi(t + 1) is the Class En-
tropy of vi at (t + 1)-th iteration. As the betweenness is
defined based on the shortest path of the network [23], it
makes up the shortcoming that Class Entropy only
considers local characteristics. It is used as the regulatory
factor of the iteration of CEi and CEi is updated by the
following rules:

CEi(t + 1) �
N+1

j�1
wij · CEi(t)⎡⎢⎢⎣ ⎤⎥⎥⎦ · bci, (10)

where CEi(t) is the Class Entropy of vi at t-th iteration, wij

represents the weight of directed edge from vi to vj, and bci

represents the weighted betweenness of vi. +e weighted be-
tweenness is computed using the weighted shortest paths that
not only consider the number of edges necessary to travel
between nodes but also consider the weight attached to the
links in complex network [24]. +e shortest path between two
nodes is the minimum number of edges to travel from a node
to the other. +e weighted shortest paths not only consider the
number of edges necessary to travel between nodes but also
consider the weight attached to the edges. +e definition of bci

is expressed as follows:

bci �
N+1

j

N+1

l

g
jl

i

g
jl

, j≠ l≠ i, (11)

where gjl is the total weight of the weighted shortest path
from vj to vl; g

jl
i is the weight of the weighted shortest path

through vi from vj to vl.

3.3. Iteration Completion Stage. When the difference in the
Class Entropy sum of two iterations is less than 1/1000 of
the Class Entropy sum of the previous iteration, the Class
Entropy is considered to have reached a stable state, and
the iteration of Class Entropy is completed. +e constraint
condition of the stable state iteration times ts is as follows:

N

i�1
CEi ts(−

N

i�1
CEi ts − 1(<

1
1000

N

i�1
CEi ts − 1(. (12)

As the iteration of CEi reaches a stable state, like
WLeaderRank, the weight of a ground node is eventually
split equally among the nodes in the network, and the
ground node is then removed from the network; the Final
Class Entropy FCEi of vi is obtained by the following
formula:

FCEi � CEi ts(+
CEN+1 ts(

N
, (13)

FCEN+1 � 0, (14)

where CEN+1(ts) represents the Final Class Entropy of the
ground node at stable state, FCEN+1 represents importance
score of the ground node, and FCEi represents importance
score of class i for key classes identification.

4. Identifying Key Classes Algorithm Based on
the Structure Entropy Weighted LeaderRank

Identifying key classes algorithm based on the Structure
Entropy Weighted LeaderRank (IKC-SEWL) is proposed to
identify key classes in DWCIS-Network. By using Final Class
Entropy (FCE) in the Structure Entropy Weighted Lead-
erRank, the importance of class is measured, and, as a result,
key classes in DWCIS-Network can be identified. +e
overview of IKC-SEWL is shown in Figure 3.

+e detailed procedure of the algorithm is described in
Algorithm 1.

+e algorithm IKC-SEWL is divided into four stages:
constructing DWCIS-Network, initializing and iterating the
Structure Entropy Weighted LeaderRank, and identifying
key classes. In the stage of constructing DWCIS-Network,
from step 1 to step 6, the source code is abstracted and
software structural entropy and the weights of edges are
calculated to construct DWCIS-Network. +e initialization
stage includes steps 7 to 11; the Class Entropy of each class
and the weights of directed edges between classes are ini-
tialized in the Structure Entropy Weighted LeaderRank by
using the information of DWCIS-Network. In the iteration
stage, including steps 12 to 17, the Class Entropy (CE) is
proportional to the betweenness for each class and the Class
Entropy is iterated in the biased randomwalk process.When
the number of iterations satisfies certain constraints, the
Final Class Entropy (FCE) is obtained. In the key classes
identification stage, step 18, by using corresponding scores
in the set of FCEi , classes in DWCIS-Network are arranged
in descending order. +e top-k of ordered classes are ob-
tained as the candidate set of key classes, and key classes can
be finally identified in terms of key classes in the design
document. Because the weighted matrix W needs to be
traversed, the time complexity is O(n2), and the remaining
operations only nest one layer for loop, so the maximum
time complexity is O(n2), and n is the number of class nodes.

4 Mathematical Problems in Engineering

5. Experiment

Two sets of experiments are designed by using software systems
Ant and JHotDraw, respectively. By comparison with existing
works, including software key class identificationmodel (SKCI)
[7], identifying key class candidates in OO software using
generalized k-core decomposition (ICOOK) [10], and
Weighted LeaderRank (WLeaderRank) [14], which are classical
approaches in the last two, the effectiveness of IKC-SEWL in
identifying key classes is verified. Experiments are done on a
PC at Inter(R) Core (TM) i7-9750HCPU@ 2.6GHzwith 8GB
of RAM.

5.1. Experiment Purpose. +e experiments have two pur-
poses as follows:

(i) Purpose 1: to verify whether the algorithm IKC-
SEWL is efficient at identifying key classes in
DWCIS-Network with the threshold of top-15%

(ii) Purpose 2: to verify whether the algorithm IKC-
SEWL is efficient to the case with different top-k

For these purposes, the experimental comparison and
analysis are evaluated by the four following evaluation
criteria:

(a)

Return type relation: 1 time
Instantiation relation: 1 time
Method call relation: 1 time

TaskUN Student

Student

W23 = 1 × 3=3

W12 = 1 × 1 + 1 × 1 + 2 × 1 = 4

Inheritance relation: 1 time

3

2 1

(b)

Figure 1: Student class interaction code and its corresponding DWCIS-Network. (a) +e code slice of Student class interaction. (b) +e
DWCIS-Network.

(a) (b)

Figure 2: DWCIS-Network of Ant. (a) Class interaction network of Ant. (b) Local class interaction network of Ant based on the class
interaction between node 32 and node 25.

Mathematical Problems in Engineering 5

(i) Precision [4]: the ratio of the number of key classes
obtained by a specific approach relative to the total
number of top-k classes selected

(ii) Recall: the ratio of the number of key classes ob-
tained by a specific approach to the number of all
known key classes

(iii) RankingScore [25]: the average position for key
classes positions found by a particular approach

(iv) Time: the time consumption from the software
network construction to key classes identification

Precision and Recall are used to evaluate whether a
particular approach is capable of identifying key classes in a
software system and determine which approach performs
best. RankingScore is used to measure the average position
of key classes in the ranked list of classes obtained by a
particular approach. Obviously, a good approach is expected
to give high recommendations to true key classes, thus
leading to high ranking score values.

5.2. Experiment Objects. Two different types of software
systems, Ant and JHotDraw, are used as experiment objects.
Ant is a Java library and command-line tool designed for
building Java applications. JHotDraw is a Java graphics
framework for two-dimensional graphics editors; there are
many interactions between every pair of classes that can be
used for key classes analysis. +e characteristics are as
follows:

(i) +ey have design documents containing key classes
to verify the effectiveness

(ii) +ere are related researches of identifying key classes
for comparison

5.3. Experimental Results and Analysis. By using class in-
teractions in Section 2, DWCIS-Network models are con-
structed for Ant and JHotDraw, respectively. Table 1 shows
an overview of Ant and JHotDraw under four approaches
(IKC-SEWL, WLeaderRank, ICOOK, and SKCI), the col-
umn Version is the version of software. Ant1.6.1 is identified
by four approaches. JHotDraw5.1 is identified by the SKCI,
and JHotDraw6.0b.1 is identified by the other three

approaches. +e column Node is the number of classes and
the column Edge is the number of interactions between
every pair of classes.

5.3.1. Effectiveness of Key Classes Identification with Top-15%
Classes. In related studies [4, 5, 10], the recommended
threshold value of key classes is top-15%.+erefore, we use the
threshold of top-15% to compare the performance of the al-
gorithm IKC-SEWL with other key classes identification ap-
proaches. +ere are ten key classes and nine key classes from
the design document in the core of Ant and JHotDraw, re-
spectively, which are used as a benchmark for key classes
identification approaches. Recall and Precision and Ranking-
Score and Time are used to measure the effectiveness of
approaches.

Tables 2 and 3 show the results of top-15% key classes
identification of different approaches applied to Ant and
JHotDraw. +e first column “Order no.” represents the
order of key classes. +e second column contains key classes
extracted from the design document. For example, key
classes in Table 2 can be successively abstracted as the nodes
marked red in DWCIS-Network of Figure 2(a), and the
Node ID column lists the Node ID of each class. +e other
three columns represent identified key classes by three
approaches, IKC-SEWL, ICOOK, and WLeaderRank, re-
spectively. +e classes that are left behind in the ranking are
“TaskContainer” and “ElementHandler.” By examining the
code, class “ElementHandler” is an inner class contained in
class “ProjectHelper.” Class “ProjectHelper” ranks higher, at
position 12. It is rather unusual that the benchmark men-
tions an inner class as a key class, as the public classes have
bigger architectural impact. “TaskContainer” is an interface
that is not an actual class and defines objects that can contain
tasks, so it is not identified as a key class and marked as “N”
in “Identified” column. Its most important implementing
class is “Target,” a key class that is highly ranked by our
approach. +e identified position of class “ElementHandler”
under IKC-SEWL is 34 for Ant, so it can be identified by
IKC-SEWL and marked as “Y.” Since the position at 220
cannot be identified by ICOOK, it is marked as “N.”

For Ant, take several classes in Table 2 as an example: the
class “Project” is instantiated whenever Ant starts and, with

Software source
code Extract calss interactions DWCIN-network

Structure entropy
Weighted LeaderRank

CEi

Initialization stage

Iteration stage

Interation completion
stage

(i)

(ii)

(iii)

Bci
Ranking classes

corresponding scores of
{FCEI}

Key classes
identification

Design
document

Figure 3: +e overview of IKC-SEWL.

6 Mathematical Problems in Engineering

the help of helper classes, the class “Project” instance parses
the build.xml file. +e class “Target” represents the targets
specified in the build.xml file. Once parsing finishes, the
build model consists of a project, containing multiple tar-
gets. As a container of tasks, the class “Target” is represented
by specializations of the class “Task.” Each task in Ant has a

reference to its “RuntimeConfigurable” instance. Prior to the
task being executed, it would need to be configured from its
“RuntimeConfigurable” instance. +e “Main” and “Ele-
mentHandler” are not identified by ICOOK because there
are fewer classes attached to them. Unlike that, “Main” failed
to be identified by IKC-SEWL because “Main” has low

Input: software source code.
Output: key classes in DWCIS-Network.
(1) for each class interaction from class i to class j do 2–5 /∗ DWCIS-Network construction ∗/
(2) Extract class i, class j as vi, vj and put them into set V;
(3) Extract the class interaction from class i to class j as eij and put it set E;
(4) wij is calculated for eij by formula (1), put it into set W;
(5) si and sj are calculated by formulas (3) and (4) and put them into set S;
(6) With 1–5, DWCIS-Network (V, E, W, S) is obtained;
(7) for each vi in V do 8/∗ Initialization stage ∗/
(8) CEi is initialized with si by formula (6);
(9) CEN+1 is initialized with 0 by formula (7);
(10) for each wij in N + 1 dimensional W do 11
(11) wij is initialized by formulas (8) and (9);
(12) while the constraint condition of formula (12) is not true do 13–15 /∗ Iteration stage∗/
(13) for each vi in V of N + 1 dimensional do 14, 15
(14) bci is calculated by formula (11);
(15) CEi is updated by formula (10);
(16) for each vi in V do 17 /∗ Iteration completed∗/
(17) FCEi is calculated by formula (13);
(18) All classes are ranked in descending order by using corresponding scores in the set of FCEi , top-k classes are obtained and key

classes are identified;

ALGORITHM 1: IKC-SEWL.

Table 1: +e overview of Ant and JHotDraw under four approaches.

System
IKC-SEWL WLeaderRank ICOOK SKCI

Version Node Edge Version Node Edge Version Node Edge Version Node Edge
Ant1.6.1 1.6.1 797 2518 1.6.1 797 2518 1.6.1 900 2672 1.6.1 403 —
JHotDraw 6.0b.1 517 1591 6.0b.1 517 1591 6.0b.1 544 — 5.1 155 —
+e symbol “—” indicates that the data is not mentioned in the paper.

Table 2: +e top-15% key classes identification in Ant under three approaches.

Order no. Key classes Node ID
IKC-SEWL ICOOK WLeaderRank

Identified Position Identified Position Identified Position
1 Project 25 Y 4 Y 1 Y 5
2 Task 32 Y 8 Y 3 Y 9
3 ProjectHelper 28 Y 12 Y 55 Y 16
4 RuntimeConfigurable 30 Y 23 Y 51 Y 17
5 UnknownElement 36 Y 15 Y 36 Y 18
6 IntrospectionHelper 18 Y 19 Y 43 Y 21
7 Target 31 Y 20 Y 19 Y 28
8 Main 23 N 142 N 208 N 271
9 TaskContainer 34 N 142 Y 101 N 308
10 ElementHandler 65 Y 34 N 220 N 447
Recall (%) 80 80 70
Precision (%) 6.69 5.90 5.86
RankingScore 41.9 73.7 114
Time (s) 13.763 48.078 12.277

Mathematical Problems in Engineering 7

betweenness value, resulting in a significant decline in the
influence of this class in DWCIS-Network. In terms of Time,
WLeaderRank performs better than IKC-SEWL, because
WLeaderRank fails to consider the effect of betweenness of
classes during iteration.

For Ant, while the top-15% of ICOOK has 135 can-
didate key classes and the top-15% of IKC-SEWL only
contains 120 candidate key classes, these two approaches
have the same number in identifying key classes. +ere-
fore, IKC-SEWL has a higher precision than ICOOK in
identifying key classes. In terms of RankingScore and
Time, IKC-SEWL has a higher average rank than ICOOK
and WLeaderRank and uses less time to identify key
classes than ICOOK.

As shown in Table 3, IKC-SEWL selects top-15% of 517
classes; nine key classes are all identified according to the
positions obtained by arranging the scores of classes. Pre-
cision can be calculated as 9/(517∗ 15%) and Recall can be
calculated as (9/9)∗ 100%. +e results of identifying key
classes in JHotDraw are obtained, and the performance
parameters of IKC-SEWL are Recall, 100%, Precision,
11.61%, RankingScore, 10.11, and Time, 14.435 s, all of which
are better than those of ICOOK. Except for time, IKC-
SEWL’s other performance parameters are all better than
WLeadeRank’s. Among them, both ICOOK and WLea-
derRank have the same Recall. However, in terms of Ran-
kingScore, key classes average position of IKC-SEWL is 2
and 14.557 higher than that of ICOOK and WLeaderRank.
+erefore, IKC-SEWL has better performance than ICOOK
and WLeaderRank in RankingScore.

As shown in Table 2, Precision of IKC-SEWL for Ant is
6.69%, which is 0.79% and 0.83% higher than that of ICOOK
and WLeaderRank. From Table 3, Precision of IKC-SEWL
for JHotDraw is 11.61%, which is 0.58% and 1.29% higher
than that of ICOOK and WLeaderRank.

As shown in Figures 4 and 5, each approach is applied to
identify the key classes of Ant and JHotDraw, and the
position of the key classes varies. Average position of
identified key classes of IKC-SEWL, the RankingScore, is
higher than that of ICOOK and WLeaderRank. In Figure 4,
on the horizontal axis, the “order of the key class” corre-
sponds to the order of the ten key classes listed in the column
“Order no.” in Table 2. +e same can be said for Figure 5.

For Ant, the number of candidate key classes of
WLeaderRank and IKC-SEWL is 120, while the number of
candidate key classes identified by ICOOK is 135. From
Figure 4, three nodes, far away from 120, are not identified
by WLeaderRank. IKC-SEWL can identify the key classes
with the position no more than 141. +e positions for order
no. 8 and order no. 9 are 142 and 142, respectively. +ey are
all higher than 141, because, in the software source code for
the two classes “Main” and “TaskContainer,” there are only a
few interactions with other classes.

ICOOK and IKC-SEWL all have identified eight key
classes, but the average position of key classes identified by
IKC-SEWL is 43.15% higher than that identified by ICOOK,
so IKC-SEWL has better performance than ICOOK. From
Figure 5, IKC-SEWL and ICOOK identify all key classes; that
is, the positions of all key classes are at top-15%;

furthermore, the RankingScore of IKC-SEWL is 16.51%
higher than that of ICOOK. So, IKC-SEWL can effectively
identify key classes in top-15% classes.

5.3.2. Effectiveness of Key Classes Identification for Different
Top-K. In addition to the effectiveness of key classes
identification by IKC-SEWL in top-15% classes, two set of
experiments are conducted to verify the effectiveness of key
classes identification by IKC-SEWL in top-10% classes.
From Table 4, in terms of Precision, SKCI has a precision
rate of 18% and identifies seven key classes which are as
many as those of WLeaderRank and ICOOK but one less
than IKC-SEWL. Among IKC-SEWL, WLeaderRank, and
ICOOK, Precision of IKC-SEWL is the highest, 10.04%.
From the view of Recall, IKC-SEWL identifies eight key
classes, and the Recall rate is up to 80%. However, in top-
10% classes (90 classes), ICOOK cannot identify “Task-
Container,” and the Recall rate of ICOOK is reduced to 70%.
Although WLeaderRank has the shortest time, it sacrifices
performance of Recall and Precision. In addition, IKC-
SEWL takes 71.37% less time to identify key classes than
ICOOK and 77.06% less time than SKCI, which greatly
improves the speed of identifying key classes.

As shown in Table 5, SKCI does not mention the
RankingScore of key classes for JHotDraw; four approaches
are compared under three perspectives. +e Recall rates of
SKCI, WLeaderRank, ICOOK, and IKC-SEWL are 56%,
77.8%, 100%, and 100%, respectively, indicating that ICOOK
and IKC-SEWL can identify all key classes in JHotDraw.
Among IKC-SEWL, WLeaderRank, and ICOOK, Precision
of IKC-SEWL is the highest, 17.41%. Precision of identifying
key classes of SKCI is 33% higher than that of other ap-
proaches, but the identified candidate set is only 155 classes,
less than the 544 classes of ICOOK and 517 classes of IKC-
SEWL and WLeaderRank. As a result, the identified can-
didate classes by SKCI and Recall of identifying key classes
dropped significantly. In addition, SKCI takes 30 s and only
identifies 155 classes, and IKC-SEWL takes less time
(14.435s) and more key classes are identified. WLeaderRank
ignores the influence of betweenness on the importance of
nodes and simplified the identification process of key classes,
so it improves time performance at the cost of reducing
Recall and Precision.

For top-10% classes, it is still likely to be a larger can-
didate set range and to further verify that our approach is
still effective for identifying key classes on a smaller can-
didate set range. +e top-5% classes will be selected as the
candidate set to determine whether key classes are identified
according to the class rank identified by each approach.
Because SKCI does not provide the position information for
identifying key classes, the comparison is only made in the
other three approaches.

Ant is used as an example, and it can be known that, in
the top-5% of Ant, IKC-SEWL, ICOOK, and WLeaderRank
can identify 40, 45, and 40 classes, respectively. From Ta-
bles 2 and 3, we can see the positions of each key class
identified by the three approaches. We found that IKC-
SEWL, ICOOK, and WLeaderRank identify 8, 5, and 7 key

8 Mathematical Problems in Engineering

classes, respectively. +erefore, the Precision rate of IKC-
SEWL is 20.08% (8/(797∗ 5%)), and those of ICOOK and
WLeaderRank are 11.11% and 17.57%, respectively. For
different top-k, the Precision of three approaches in iden-
tifying key classes in Ant is shown in Table 6.

Figure 6 represents the variation trend of Precision of
identifying key classes in Ant when varying the top-k be-
tween 5% and 15%. From Figure 6, with the gradual decrease
of k of top-k, the Precision of key class identification is
increasing, which indicates that positions of key classes are at
higher position in the identification results of various ap-
proaches. Because the positions of class “ProjectHelper” and
class “RuntimeConfigurable” are 55 and 51, respectively,

higher than the top-5% (45 classes) identified by ICOOK,
these two classes cannot be identified, so the Precision of
ICOOK is the lowest among the top-5% key classes iden-
tified. Because WLeaderRank only identified 7 key classes at
the top-5%, its Precision is lower than that of IKC-SEWL.
From top-15% to top-5%, the Precision of our approach is
improved by 13.39%, which is highest in comparison with
the Precision of the other two classical approaches. +is
shows that our approach can still efficiently identify key
classes in a small range of candidate set.

For the overall identification performance of top-10%
key classes on Ant and JHotDraw and the Precision from
top-15% to top-5%, the performance of IKC-SEWL still

0 1 2 3 4 5 6 7 8 9 10
Order of the key class

0

50

100

150

200

250

300

350

400

450

500

Po
sit

io
n

IKC-SEWL
ICOOK
WLeaderRank

Figure 4: Key classes nodes ranking for each approach applied to Ant.

Order of the key class

0

10

20

30

40

50

60

70

80

90

100

Po
sit

io
n

0 1 2 3 4 5 6 7 8 9 10

IKC-SEWL
ICOOK
WLeaderRank

Figure 5: Key classes nodes ranking for each approach applied to JHotDraw.

Mathematical Problems in Engineering 9

Table 3: +e top-15% key classes identification in JHotDraw under three approaches.

Order no. Key classes
IKC-SEWL ICOOK WLeaderRank

Identified Position Identified Position Identified Position
1 Figure Y 1 Y 1 Y 2
2 DrawingView Y 3 Y 11 Y 3
3 DrawingEditor Y 8 Y 16 Y 8
4 Handle Y 4 Y 27 Y 10
5 Drawing Y 10 Y 6 Y 13
6 DrawApplication Y 14 Y 21 Y 25
7 Tool Y 9 Y 17 Y 26
8 CompositeFigure Y 23 Y 3 Y 56
9 StandardDrawingView Y 19 Y 7 N 79
Recall (%) 100 100 88.9
Precision (%) 11.61 11.03 10.32
RankingScore 10.11 12.11 24.667
Time (s) 14.435 47.867 11.581

Table 4: Top-10% key classes identification in Ant under four approaches.

Order no. Key classes
IKC-SEWL ICOOK SKCI WLeaderRank

Identified Position Identified Position Identified Position Identified Position
1 Project Y 4 Y 1 Y — Y 5
2 Task Y 8 Y 3 Y — Y 9
3 ProjectHelper Y 12 Y 55 Y — Y 16
4 RuntimeConfigurable Y 23 Y 51 Y — Y 17
5 UnknownElement Y 15 Y 36 Y — Y 18
6 IntrospectionHelper Y 19 Y 43 Y — Y 21
7 Target Y 20 Y 19 Y — Y 28
8 Main N 142 N 208 N — N 271
9 TaskContainer N 142 N 101 - — N 308
10 ElementHandler Y 34 N 220 N — N 447
Recall (%) 80 70 77 70
Precision (%) 10.04 7.78 18 8.78
RankingScore 41.9 73.7 — 114
Time (s) 13.763 48.078 60.000 12.277

Table 5: Top-10% key classes identification in JHotDraw under four approaches.

Order no. Key classes
IKC-SEWL ICOOK SKCI WLeaderRank

Identified Position Identified Position Identified Position Identified Position
1 Figure Y 1 Y 1 — — Y 2
2 DrawingView Y 3 Y 11 — — Y 3
3 DrawingEditor Y 8 Y 16 — — Y 8
4 Handle Y 4 Y 27 — — Y 10
5 Drawing Y 10 Y 6 — — Y 13
6 DrawApplication Y 14 Y 21 — — Y 25
7 Tool Y 9 Y 17 — — Y 26
8 CompositeFigure Y 23 Y 3 — — N 56
9 StandardDrawingView Y 19 Y 7 — — N 79
Recall (%) 100 100 56 77.8
Precision (%) 17.41 16.54 33 13.54
RankingScore 10.11 12.11 — 24.667
Time (s) 14.435 47.867 30.000 11.581

10 Mathematical Problems in Engineering

remains effective when our approach identifies key classes in
a small range of candidate sets of key classes.

For the positions identified by key classes, the average
position RankingScore obtained by IKC-SEWL is 43.15%
and 16.51% higher than that obtained by ICOOK for Ant
and JHotDraw, respectively, which indicates that the key
classes identified by our method may be obtained in a
small top-k, because average positions of key classes are
high. By analysing from top-15% to top-5% of classes as
the candidate set of key classes, compared with the average
Precision of ICOOK and WLeaderRank, we can conclude
that our approach identifies key classes with the highest
precision for Ant. Compared with the Recall rates of
ICOOK, WLeaderRank, and SKCI, IKC-SEWL has the
highest Recall rate of 80% for Ant and 100% for JHot-
Draw. In terms of Time, IKC-SEWL reduces the average
time of the other three approaches by 65.69% and 51.58%
for Ant and JHotDraw, respectively.

ICOOK assigns weights either 1 or 10 for each classes
coupling, IKC-SEWL selects four kinds of class interaction
types, and assigns different weights, which makes the identified
key classes have higher position than ICOOK. When com-
paring it with WLeaderRank and SKCI, we find that the latter
two only consider the number of interactions as the weight
when calculating weights, because the software is complex and
does not consider the influence of the type of class interactions
on the classmeasurement. IKC-SEWL considered the weighted
intermedium in the iterative process and found in the ex-
perimental process that the algorithm iteration would quickly
converge, which improved the recognition speed. Because of
the introduction of weighted intermedium, it is more con-
sistent with the identification of key classes in the multitype
interactive software network.

+erefore, IKC-SEWL effectively identifies key classes
in class-level software networks with multiple types of
interactions for candidate sets of different sizes. With high
Precision, it can help software maintainers to quickly
understand the software and reduce the cost of software
maintenance.

6. Conclusion

In this paper, we propose a novel identifying key classes
algorithm IKC-SEWL to identify key classes for helping
software maintainers quickly understand software systems.
+e software system is firstly abstracted into a directed
weighted class interaction network. +en the Structure
EntropyWeighted LeaderRank is proposed to initialize Class
Entropy of each class with the software structural entropy in
DWCIS-Network and applies the biased random walk
process to iterate Class Entropy. When the iteration is
completed, the Final Class Entropy of each class is obtained
and used as the importance score of each class. Finally,
according to importance scores of classes, top-k classes are
obtained and key classes are identified.

Java open software systems are used to evaluate the
effectiveness of the key classes identification algorithm
proposed in this paper. Results of experiments show that the
Precision and Recall of our approach are higher than the
related approaches, and the RankingScore ranks higher.
Based on the above, our approach can identify key classes
and performs well in aspects.

In the future, the scalability and universality of our
approach will be verified in data sets of large-scale and
package software networks. Except for mining key classes in
the class-level software network, identification of key

6.69%

10.04%

20.08%

5.90%
7.78%

11.11%

5.86%

8.78%

17.57%

0.00

5.00

10.00

15.00

20.00

25.00

Pr
ec

isi
on

 (%
)

Top-15% Top-10%
Top-k

Top-5%

Precision of ant

IKC-SEWL
ICOOK
WLeaderRank

Figure 6: +e trend of Precision of identifying key classes in Ant for different top-k.

Table 6: +e Precision of three approaches for different top-k in Ant.

Top-15 (%) Top-10 (%) Top-5 (%)
IKC-SEWL 6.69 10.04 20.08
ICOOK 5.90 7.78 11.11
WLeaderRank 5.86 8.78 17.57

Mathematical Problems in Engineering 11

components in software networks of different granularity
including function network and package network will be
verified by further experiments.

Data Availability

+e data used to support the findings of this study have not
been made available because the ownership of the tools that
process the software source code is not made public.

Conflicts of Interest

+e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

+is work was supported in part by the project of the National
Natural Science Foundation of China under Grant 61572420,
in part by Research Project of the Education Department of
Jilin Province under Grant JJKH20190706KJ, and in part by
Science and Technology Innovation Development Program of
Jilin Province under Grant 20190104140.

References

[1] F. Fittkau, A. Krause, and W. Hasselbring, “Software land-
scape and application visualization for system comprehension
with ExplorViz,” Information and Software Technology,
vol. 87, pp. 259–277, 2017.

[2] C. Y. Chong and S. P. Lee, “Analyzing maintainability and reli-
ability of object-oriented software using weighted complex net-
work,” Journal of Systems and Software, vol. 110, pp. 28–53, 2015.

[3] J. Saraiva, “A roadmap for software maintainability mea-
surement,” in Proceedings of the 2013 35th International
Conference on Software Engineering (ICSE), pp. 1453–1455,
San Francisco, CA, USA, May 2013.

[4] A. Zaidman and S. Demeyer, “Automatic identification of key
classes in a software system using webmining techniques,”
Journal of Software Maintenance and Evolution: Research and
Practice, vol. 20, no. 6, pp. 387–417, 2008.

[5] I. Şora and C. B. Chirila, “Finding key classes in object-ori-
ented software systems by techniques based on static analy-
sis,” Information and Software Technology, vol. 116, pp. 1–15,
Article ID 106176, 2019.

[6] Y. Ding, B. Li, and P. He, “An improved approach to iden-
tifying key classes in weighted software network,” Mathe-
matical Problems in Engineering, vol. 2016, Article ID
3858637, 9 pages, 2016.

[7] J. Wang, J. Ai, Y. Yang, and W. Su, “Identifying key classes of
object-oriented software based on software complex net-
work,” in Proceedings of the 2017 2nd International Conference
on System Reliability and Safety (ICSRS), pp. 444–449, Milan,
Italy, December 2017.

[8] S. Valverde and R. Sole, “Hierarchical small-worlds in soft-
ware architecture,” Dynamics of Continuous Discrete and
Impulsive Systems: Series B; Applications and Algorithms,
vol. 14, pp. 1–6, 2007.

[9] P. Meyer, H. Siy, and S. Bhowmick, “Identifying important
classes of large software systems throughK-core decomposition,”
Advances in Complex Systems, vol. 17, no. 7, pp. 25–32, 2015.

[10] W. Pan, B. Song, K. Li, and K. Zhang, “Identifying key classes
in object-oriented software using generalized k-core

decomposition,” Future Generation Computer Systems,
vol. 81, pp. 188–202, 2018.

[11] W. Pan, B. Li, J. Liu, Y. Ma, and B. Hu, “Analyzing the
structure of Java software systems by weighted K-core de-
composition,” Future Generation Computer Systems, vol. 83,
pp. 431–444, 2018.

[12] I. Sora, “A PageRank based recommender system for iden-
tifying key classes in software systems,” in Proceedings of the
2015 IEEE 10th Jubilee International Symposium on Applied
Computational Intelligence and Informatics, pp. 495–500,
Timisoara, Romania, May 2015.

[13] L. Lü, Y. C. Zhang, C. H. Yeung, and T. Zhou, “Leaders in
social networks, the delicious case,” PLoS One, vol. 6, no. 6,
Article ID e21202, 2011.

[14] Q. Li, T. Zhou, L. Lü, and D. Chen, “Identifying influential
spreaders by weighted LeaderRank,” Physica A: Statistical Me-
chanics and Its Applications, vol. 404, no. 15, pp. 47–55, 2014.

[15] Z. Zhang, G. Jiang, Y. Song, L. Xia, and Q. Chen, “An
improved weighted LeaderRank algorithm for identifying
influential spreaders in complex networks,” in Proceedings
of the 2017 IEEE International Conference on Computa-
tional Science and Engineering (CSE) and IEEE Interna-
tional Conference on Embedded and Ubiquitous Computing
(EUC), pp. 748–751, Guangzhou, China, July 2017.

[16] F. A. N. Palmieri and D. Ciuonzo, “Objective priors from
maximum entropy in data classification,” Information Fusion,
vol. 14, no. 2, pp. 186–198, 2013.

[17] F. Zhao, L. Jiao, H. Liu, X. Gao, and M. Gong, “Spectral
clustering with eigenvector selection based on entropy
ranking,” Neurocomputing, vol. 73, no. 10-12, pp. 1704–1717,
2010.

[18] F. Palmieri and D. Ciuonzo, “Data fusion with entropic
priors,” in Proceedings of the Conference on Neural Nets
Wirn10: Italian Workshop on Neural Nets, Vietri sul Mare,
Italy, February 2011.

[19] I. Sora, “Helping program comprehension of large software
systems by identifying their most important classes,” in
Proceedings of the International Conference on Evaluation
of Novel Approaches to Software Engineering, vol. 599,
pp. 122–140, Barcelona, Spain, April 2015.

[20] I. Sora, G. Glodean, and M. Gligor, “Software architecture
reconstruction: an approach based on combining graph
clustering and partitioning,” in Proceedings of the 2010
International Joint Conference on Computational Cyber-
netics and Technical Informatics, pp. 259–264, Timisoara,
Romania, May 2010.

[21] D. S. Lekha and K. Balakrishnan, “Central attacks in
complex networks: a revisit with new fallback strategy,”
Physica A: Statal Mechanics and Its Applications, vol. 549,
pp. 1–19, 2020.

[22] M. Bellingeri, D. Bevacqua, F. Scotognella et al., “+e het-
erogeneity in link weights may decrease the robustness of real-
world complex weighted networks,” Scientific Reports, vol. 9,
Article ID 10692, 2019.

[23] Z. Qi, M. Z. Li, and Y. Deng, “A betweenness structure en-
tropy of complex networks,” pp. 1–18, 2014, http://arxiv.org/
abs/1407.0097.

[24] M. Bellingeri, D. Bevacqua, F. Scotognella et al., “A com-
parative analysis of link removal strategies in real complex
weighted networks,” Scientific Reports, vol. 10, no. 1, Article
ID 3911, 2020.

[25] Z. K. Zhang, T. Zhou, and Y. C. Zhang, “Tag-aware recom-
mender systems: a state-of-the-art survey,” Journal of Com-
puter Science and Technology, vol. 26, no. 5, pp. 765–777, 2012.

12 Mathematical Problems in Engineering

http://arxiv.org/abs/1407.0097
http://arxiv.org/abs/1407.0097

