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This paper mainly investigates the verification of real eigenvalues of the real symmetric and persymmetric matrices. For a real
symmetric or persymmetric matrix, we use eig code in Matlab to obtain its real eigenvalues on the basis of numerical computation
and provide an algorithm to compute verified error bound such that there exists a perturbation matrix of the same type within the

computed error bound whose exact real eigenvalues are the computed real eigenvalues.

1. Introduction

The eigenvalues of a matrix are one of the important tools to
solve the complex mathematical problems in the fields of
image processing, quantum mechanics, chemistry, and so on
[1-3]. The matrices involved in practical problems often
have algebraic structure. The preservation of matrix alge-
braic structure is helpful to keep the physical background of
the matrix eigenvalue problem [4, 5]. For a matrix with
special algebraic structure, the computation of its eigen-
values is very important in practical problems.

Many scholars have carried out a lot of work to compute
the eigenvalues of matrices with special algebraic structure.
Using QR decomposition, Bunse-Gerstner et al. [6] designed
a stable algorithm to compute the eigenvalues of structured
matrices. Higham and Higham [7, 8] estimated the back-
ward error bound and the condition number for computing
the generalized eigenvalue and generalized eigenvector of
structured matrix. Based on interval calculation, Rump [9]
provided the sensitivity analysis of eigenvalues of structured
matrix under structured perturbation and proved that, for
circulant matrix, Toeplitz matrix, symmetric Toeplitz matrix,
and symmetric matrix, the structured condition number is
equal to the unstructured condition number under norm-
wise perturbations. Byers and Kressner [10] used the con-
dition number of invariant subspace of the structured matrix

to compute the eigenvalues of the structured matrix.
Shiozaki [11] proposed an effective algorithm to compute the
structured eigenvalues in the field of quantum chemistry.
Alon et al. [12] studied the concentration of the maximum
eigenvalue of random symmetric matrix whose diagonal and
upper diagonal entries are independent real random vari-
ables. By Gaussian probability density function with the
same mean and variance, Edwards and Jones [13] proposed a
straightforward method to analyse the characteristic spec-
trum of the large symmetric matrix. Given a symmetric
matrix whose entries depend on a parameter, Hiriart-Urruty
and Ye [14] investigated the first-order sensitivity of all the
eigenvalues. Hladik et al [15] considered the eigenvalue
problem about the symmetric matrix with perturbed interval
entries. Hernandez et al. [16] proposed a greedy algorithm to
compute the selected eigenpairs of a large sparse symmetric
matrix by exploiting localization features of the eigenvector.
Reid [17] showed some useful eigenvalue and eigenvector
properties of symmetric and persymmetric matrices.

In this paper, we use Rump interval method and
Kantorovich theorem to compute the verified error bounds
of real eigenvalues of the given real symmetric and per-
symmetric matrices, such that there exists a perturbation
matrix of the same type within the computed error bound
whose exact real eigenvalues are the computed real eigen-
values. To be precise, we transform the verification of real
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eigenvalues of real symmetric and persymmetric matrices
into the verification of a root of a nonlinear system. We
utilize the Rump interval method to compute the constants
appearing in Kantorovich theorem about the nonlinear
system and then use Kantorovich theorem to compute
verified error bound of the zero vector as an approximate
solution.

The paper is organized as follows. Section 2 is devoted as
a preparation of this paper. The main theory and algorithm
are, respectively, given in Section 3. Section 4 gives some
examples to demonstrate the performance of our algorithm.

2. Notation and Preliminaries

Let N and R denote the set of natural numbers and real
numbers, respectively. For a matrix A € R™", A(:) is a
vector obtained by reshaping all elements of A into a single
column vector, 4;.; designates a submatrix of A by
selecting from the i, th to i,th rows, and A, ; . ; representsa
submatrix of A by selecting from the j,th to j,th columns.
Let O,,,, denote an m x n zero matrix and I, be the identity
matrix of order n. For an m X n matrix A, let null (A) denote
the nullspace of A.

Definition 1 (see [18]). Given a matrix A € R™" withm>n,
the corank of A is defined by corank (A) = n — rank (A). For
a threshold 6 > 0, if the singular values o, (A),...,0,(A) of
matrix A satisfy that

0y (14)2 2O-n—q(lq)>620—rﬁq+1 (A)Z Zan(A)’ (1)

then we say that A has numerical §-corank g, denoted by
coranks (A) = g.

Let IR represent the set of all intervals. A matrix and
vector with interval entries are, respectively, called interval
vector and interval matrix. Given an interval matrix
A € IR™" if an arbitrary real matrix A satisfying A € A is
nonsingular, then we call the interval matrix A a nonsingular
interval matrix. Rump [19] developed INTLAB toolbox in
Matlab for interval arithmetic. For a nonlinear system if the
Jacobian matrix of the system is Lipschitz continuous on
some domain, Kantorovich [20] established Kantorovich
theorem, which gives a sufficient condition to judge whether
the Newton iterative method converges or not by the in-
formation of the initial approximate value on some domain.

Lemma 1 (see [21]). Given A,R € R™" if the spectral radius
of the matrix I — RA is less than 1, then A is nonsingular.

Theorem 1 (see [22]). If verifylss function in INTLAB runs
successfully for a given interval matrix A € IR™" and interval
right-hand side vector b € IR", then the computed interval
XcIR" satisfies the following condition:

Y (Ab)={xeR" Ax=b,VAcAbeblcX. (2

Mathematical Problems in Engineering

Theorem 2 (see [20]). Let f:R" — R" with
f=(fi,.... fn), where f,..., f, are continuously dif-
ferentiable functions and ' (x) denotes the Jacobian matrix of
the system f(x) = 0. Suppose X € R" is an approximate so-
lution satisfying the condition that f' (X) is invertible. Let B be
a constant such that |f' (X)" | <Band x a Lipschitz constant
such that

I (w) = £ W) <xllu-vl, wveQ, (3)

where Q is a sufficiently large region containing X and n is a
constant such that

"f’ (i)"lf(i)" <. (4)
If h = Bin < (1/2) and U (%, p) = {x: |x - X[ <p}cQ for

1-+V1-2h

then there exists x € U (X, p) such that f(x) = 0.

Remark 1. As pointed by Rall [23], one may take the region
Q in Theorem 2 as U (X, 27). If k is the Lipschitz constant for
this region, then U (X, p)cU (X, 27) if and only if h< (1/2).

2.1. Main Result. For a square matrix A if AT = A, then A is
called a symmetric matrix. For a matrix A € R™" with
entries a; j, 1 <i, j<n, define a subtranspose matrix A® with
entries a,,1_ - 1<, j<n. If A°= A, then A is called a
persymmetric matrix.

Let AY™ and AP™Y™, respectively, denote the nxn
symmetric and persymmetric matrices. Let E%™ and EP*'*™,
respectively, represent the corresponding perturbation
matrices, namely,

g1 &2 &3 - &y
€12 &1 &2 - &l
sym _
E"7 =] &5 &, &, - &u |
€in €2n-1 €32 Enl
(6)
1 G122 G13 €1n
&1 &2 &3 €1n-1
persym __
E =1 &1 &2 &3 )
€1 €n-11 w21 - €11

sym

Let {X?"“,Iz ,...,Xiym} be the set of all distinct ei-

genvalues of AY™ computed by eig code in MATLAB. For
each s=1,2,...,k, the singular value decomposition of

sym _ 7
AY - Ao T, s
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—sym —_sym —sym —sym\ T
A " - U(/\S )Z(AS )v@s )
s T (7)
~sym —sym —sym —sym —sym —sym
() () a1 () ()
Assume that, for each s=1,2,...,k,  corank; sym oym 7 ~sym
(AY™ — )Lsyml,,) = ¢,, where § is a positive real number that ATTHET A L U ”(AS )
. Csym (ssym) —
is very. Sc}}rgsgs;t,% zero. s _oym\T >
If A ,A, ,...,A, are all exact eigenvalues of AY™, U pogst: n()ts ) Oy,
then, for each s =1,2,...,k, the vectors (10)
N Sym 2 Sym I sym 2 sym
e L N RN
Asym Asym
w, (A ). u, (A ), sym T
n q5+2( s ) ”( s ) e :(81,1’81,2""’81,n’82,1>""82,71—1""’8n—1,1’£n—1,2’8n,1) .
are linearly independent. (11)
Therefore, we can make the following reasonable
assumption.
P Lemma 2.~§%r each s=12,...,k if
coranky (AY™ — A, 1,) = q,, then the matrix
Assumption 1. For each s =1,2,...,k, the vectors _sym _sym
AT )T A
—sym —sym —sym —sym s n U:,n—qs+1: n\ *s
vy (As )’V2</‘s )’ R ’anqs</15 )’ un—q;l("s )’ 5 (12)
©) Y
—_sym ~sym U:,n—q.+1: n As OII»H»
un,qsﬂ()tS >, . .,un<)tS ), s ods
is nonsingular.
are linearly independent.
For s=1,2,...,k, define Proof
sym ™ =Sym z <~Sym> O O
AT — As In U:,nfq;rl: n(/ls ) < U(Xsym) o > 1 n=q,,1: n—q,\ s n=qs,q; n=qs,qs
- s R ~sym
~sym\ T - O, > o . ( ) 1
Uingosi: n(’ls ) Og.a. Og,n Iy, Oqs’n & s Iqsﬂ' o B
9o q 954
—sym\ T
V:,l: n—qs</\s ) On—qs,qs
—sym\ T
U:,n—q5+1: n</15 ) Oqs,qs
—sym
zn—qsﬂz nn—q,+1: n(As ) Iq5
(13)
This completes the proof. 0 Let ] be the n x n inverse identity matrix; then, J (APe™Y™ +
~persym . . .
persym __
For a  persymmetric  matrix  APerYm, let E A I,) is a symmetric matrix. Fp}r each
—persym ~persym persym o s=1,2,...,k, the singular value decomposition of
{/\1 A, ye oAy be the set of all distinct real 7 (Apersym _Tspersymln) s

eigenvalues of AP**Y™ computed by eig code in MATLAB.

—persym

_/\S

~—persym

In) - U<A
_persym

:(ul()t

~persym —persym

P
o (T

T
J ( APpersym . . . )

N S

o

—persym

A

S

—persym

>,...,an</1

—persym

)0

—persym

)T ))T

(14)

S S S



Assume that, for each s=1,2,...,k,

ersym
(J (Apersym _ )Lp ) ) = q,, and then define

corank

]<Apersym 4+ EPersym _

Cfersym (epersym) —

where

T
persym
£ :52,n—1>51,n—1>£1,n) .

(16)

:(sn,l’en—l,l’ RIS R S PR I IR

For simplifying, we write &' to stand for both £™ and
Per™ and we write C3™U to denote both ™ and CY*™™.
Then, define the constant K by

1
K = mi ) =1,2,...,k .
m{v— FZ o, }

(17)
Lemma 3. If |||, < K, then, for each s = 1,2, ...k, the
matrix C3M (87Y) is nonsingular.
Proof. If ||l&™| , <K, for each s =1,2,...,k,
n+1 _ Cstruct (0) Cstruct( struct) ,
< m In+qs _ Cztruct (0)— 1Cztruct(£struct) .
< mucztruct (0)— 1 “00 Citruct (0) _ CitruCt(SStht) |OO
< nm||£struct|lm||cztruct (0)— 1 ”00
<1
(18)
From Lemma 1, we can deduce that, for each

s=1,2,...,k, the matrix C3"*' (¢*™') is nonsingular.

For each s = 1,2,...,k, let W (&™) and F, (¢""“") be,
respectively, the first n-rows and the last g,-rows of the
solution of the following linear system:

W sstruct 0
Citruct(sstruct) ( . 5((£Struct>) > _ ( I”qv‘is > (19)
s s

According to Cramer’s rule, we have the following easy
lemma. u

Lemma 4. Foreachs=1,2,...,
symmetric matrix.

k, the matrix F, (") is a

struct

Proposition 1. Suppose that IIEStht||OO<K. IfF,(e )=

O,.q, holds for s =1,2,...,k, then

~persym T
U:,n—qs+1: n(’1 >
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~persym ~persym
/15 In) U:,n—q5+1: n(’ls )
; (15)

Oqs,qs

- _struct
corank(AStruCt + B - A In> =4, (20)

Proof. Firstly, consider the case for the symmetric matrix. If
[, <K, by Lemma 3, we know that, for each
s=1,2,...,k, the matrix C™ (s ) is nonsingular. Next
assume that s is an arbitrary fixed integer from 1 to k. If

F(e )— qqs,then

~sym sym
<Asym +EY™ — A In)WS<E ) = On)qs,

~sym\ T _sym
U:,n—qs+1: n(As ) Ws<£ ) = Iqs'

Notice that the columns of W (’Esym
pendent. Hence, corank (ASym +E7" - /1
that corank (A%™ + E™™

(21)

) are linearly inde-

In) >q,. Assume
In) >q; then, there exists a
nonzero vector 3, € null (Asym +E7 - ijml ,) such that the

matrix (W, (Esym)ﬁs) is full rank, and then, for a nonzero
vector b, € R%*!, the following equality

sym sym sym
AL BTN - T

U:nqsﬂ'n(fym)Tn (w.(z" e o =0 @

holds, which leads to a conditions.
corank (AY™ + E™™ — Ay 1) =g,
Consider the case of persymmetric matrix. According to

the above conclusion, we know that corank (J (APe™Y™4

Consequently,

EP f::y:I )) =q,. Apparently, corank (AP +
Epersym _ P Y I ) =g, m

Lemma 5. The following nonlinear system,

Fl (sstruct )

F2 (sstruct )

1: g1

G(sstruct) — 2: g2 — 0) (23)

struct
F k(£ ) .
qS . qs ’qS

is an underdetermined nonlinear system.
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Proof. System (23) consists of (n(n + 1)/2) variables, and
Yi1(q;(g; + 1)/2) equations. Since

2 2 2 2 2 2
ch+QZ+"'+‘L+‘Z1+q2+"'+%<‘h+‘12+"'+%+”

For pairs (i},j;) and (i, j,) with 1<i <n,
1<j,<n—i +1, 1<i,<n, and 1<j,<n—1i, +1, differ-
entiating both sides of system (25) with respect to ¢; ; and

&,,j,» produces the following system:
2 2 |
3PW, (e)
2 oym — —_sym — sr7
_ (@ +d+ - +q) — 2% 42j<q:9; + 1 AT+ ETT A 1, Uy n()ts ) Og; ; Og; ;.
2
2 PRiaY @
n+n nn+1) U;,,,,qur];n(/\s ) Oy.a. 0“F (¢
< 2 - Z qlq]S 2 > os: . 0€:
1<i<j<s j1” )2
24
(24) Oj1+i1_2’qs Oil_lvqs
then the proof is completed.
' In the following, assume that s is.an arb.itrary fixed oW, (&) oW, ()
integer from 1 to k. By Lemma 3, there exists a neighborhood =t - % . e
with the center of the origin such that, for an arbitrary <t 2 Ly 2 A i+l
belonging to this neighborhood, the matrix C$"™“! (¢5<!) is
nonsingqlar. Moreover, in this neighborhpod, ee.tch 'entry.of oy 1, g =i,
the solution of system (19) has the partial derivative with
respect to ea.ch variable. . . o O 4i,24, 0,14,
Concerning symmetric matrix, for each pair (i, j) with
1<i<n, 1< j<n—i+ 1, differentiating both sides of system
(19) with respect to ¢; ; gives the following system: ot - (aws (£)> <6W5 (8)> ’
ow (8) agipfl iy, a£i1>jl Jatip—1,:
sym sym +sym +Sym .
A +E _As In U:,n—qSJrl: n<A5 ) ae,-’j
Onigejr-intia, 1+, —ing,
_sym\ T (27)
U:,n—qs+1: n(As > Oqs,qs —an (8)
0¢; ; where
S
Ojsizg, Oi-14, > h=L
t =12
L=
=t| - Ws (s)i,: - Ws (£)j+i—1,: >
_1, 2S]1Sn_11+1,
Oﬂ+q;j*i+1>qs Onwri,qs (1 (28)
) iy = 1)
(25) > 2
ty =1
where
) [ 1, 2<j,<n—i,+ 1
N j = 1:
P J (26) Considering the persymmetric matrix, for each pair (i, j)
with1<i<mand 1< j<n-i+ 1 differentiating both sides of
I, 2<j<n—-i+1 system (19) with respect to ¢; ; yields the following system:
oW, (¢)
ersym persym —persym —persym
J AP +E - As I, U:,n—q5+1: n As agi,j
_persym\ T’ oF (8)
U:,n—q5+1: n(As ) Oqs,qs S
Ot (29)
Oj_l’qs On_i’qs
=t| - Ws (s)n—i+l,: - Ws (e)j,: >
On+qs_j’qs Oq5+i_1’qs
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where For pairs (i},j;) and (i, j,) with 1<i <n,
1 1<j,<n—i +1, 1<i,<n, and 1<j,<n—1i, +1, differ-
= j=En—i+l, entiating both sides of system (29) with respect to ¢; ; and
2 K X 1J1
t= (30) ¢ ;, provides the following system:
1, 1<j<n—i
3”W, (o)
persym persym Fpersym ~persym —
]<A +E - )Ls In) U:,n—qs+1: n()‘s ) aeibjlasiz,jz
_persym\ T’ @
U:,n—qs+1: n<As ) O%ﬂs d Fs (8)
Oz ;,0%,j,
Ojlfl’qs On_il’qs
t (aws (s)) (aws (s))
= 1 — -
asiz’jz n—i;+1,: asiz’jz Ji» (31)
Onﬂz;qus Oqﬁil*l)qs
sz—l’qs O”‘inqs
oW, (&) oW, (&)
+t,| - 3 3 ,
eil’jl n—iy+1,: eil’jl Jast
On'HJS_jZ’qs Oqs+i2_l>qs
where by
Lo i+ 1 truct
- =n-i R ~ _ strucf
(=12 ; ! G(ei > i 2 8ii,) = G e ororper 35
[ 1, 1<j,<n-i,
(32)
1. . Remark 2. By Theorem 2, we compute verified error bound
= Jp=n—iy+1, . . .
PR when the zero vector is the solution of the nonlinear system
: (34).
L1, 1<j,<n—i,

Solving (25) and (27) or (29) and (31) at ™" = 0 can
obtain Jacobi matrix G’ (0) and Hessian matrix G” (0). O

Assumption 2. The Jacobi matrix G' (0) is full rank.

Suppose that, for an index set % ={(i, ),
(iys j2)s s (i )} the following matrix,
0G(0) oG (0 0G (0
(0) 0G(0) ( )’ (33)

5 PICECICES)
asil’jl asiz’jz asim’Jm

is nonsingular, and then define the following nonlinear
system,

G(gil’jl’ Eiz’jz’ T 8im>jm) =0, (34)

For system (34), define the constants B and 7 in Theorem
2 by

s=fd 0],
o (36)
1-Je oG],

Define an m-dimensional interval vector Q = (),

i)y
Qiz,j2>"’>Qim,jm)T with each entry as interval [-27,2#].

Define the corresponding interval perturbation matrix Q by
setting ﬁi,]- =Q; for (i, ) € 7 and ﬁi,]- =0 for (i,5) ¢ 7.
By verifylss function, we solve interval linear systems
(19), (25), (27) or (19), (29), (31) at E = Q, and then we can
obtain an interval tensor {Hs)t: I<s<t< m} that satisfies
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H,,D-——-— 1<s<t<m. (37)

Define the Lipschitz constant k in Theorem 2 by

T s max{||H||Oo; VH € Hs,t}' (38)
3. Main Algorithm

We propose Algorithm 1 for computing verified error
bounds such that a slightly perturbed matrix is guaranteed to
possess an eigenvalue of geometric multiplicity g within the
computed bounds if the algorithm is successful.

Theorem 3. If Algori~thtm . is successful, then there exists a
perturbation matrix E* of the same type, whose entries

satisfy the condition

lgi,jl <p, (,j)eJ, (39)

. =0,

y (i) ¢ 7.

~struct ~struct ~struct
vk

1 M
. =struct
matrix AS"Ut + E

are all exact real eigenvalues of

. Furthermore, for each s = 1,2,...,k,
~struct
q, is the geometric multiplicity of eigenvalue /\: e

Proof. If Algorithm 1 is successful, then by Theorem 2, we
know that a perturbation matrix ™™ whose entries satisty
condition (39), such that G(Eipj]’zizvb’ .. ’Eim,jm) = 0. Thus,
there exists an interval matrix E""* whose entries satisfy

condition (39), such that G ('émm) = 0. Finally, it follows by
Proposition 1 that, for each s=1,2,...,k,

~struct  ~struct

corank (ASr<t + Ao L) =g, O

4. Examples

In this section, we show the performance of Algorithm 1.
The following experiments are carried out in Matlab R2012a
with INTLAB V5 under Windows 7.

Example 1. Given a symmetric matrix
1001000
0110000
0110000
A=l1001000| (40)
0000102

0000020

0000201

then by Algorithm 1, we get q, =q,=1,9, =2,95 =3,
fAi=-11,=0X,=21,=3}, and p = 0.

Example 2. For a symmetric matrix,

11010000
11100000
0110000O00O0

A= , (41)

00000210

00002001

applying Algorjthm 1 Zields 4 = g6 = 2,q, = 43
=q,=g5=1, {1, =-1.0000,1, = -0.6180,1, = 0.3820,1,
= 1.6180, A5 = 2.6180, A = 3.0000}, and p = 5.5359% — 16.

Example 3. Given a symmetric matrix

100110000
011100000
0110000O0O0O0
110100000

A=110001000O0] (42)

0000O0O0O1T1O0

0000O01O0O0T1

then the computed results of Algorithm 1 are
G =9=9=19=9,=3, {)Ll =-0.7321,1, = 0,15 =
1.0000, A, = 2.0000, A5 = 2.7321}, and p = 5.1876e — 16.

Example 4. For an n X n symmetric matrix A, whose entries
are uniformly distributed in the interval [0, 1], Table 1 shows
the radius p computed by Algorithm 1 for different n.

Example 5. Given a persymmetric matrix
1000101
0200000
0010001
, (43)

00
00
10
01

- o O O

0 0
0 0
0 2
0 0

oS O = O

1
0
0
0

Algorithm 1 outputs g, =1,¢q, =3, {Xl =21, = 1}, and
p=0.
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Input AS““:‘: an 71X n symmetric or persymmetric matrix; 0: the tolerance of numerical rank.
3 struc

Output {A,  €R:s=1,2,...,k}, {g, e R:s=1,2,...,k}, p~$r|]§ and an index set .7.
Step 1 Use eig code to calculate all distinct real eigenvalues {A; ~ € R: s=1,2,...,k} of AS"“C‘;S " e
Step 2 For each s = 1,2,...,k, compute the singular value decomposition of the matrix A% - A Sy I, or J(APersy™ — Af ).

Step 3 Solve (25) and (27) or (29) and (31) to obtain Jacobi matrix G’ (0).
Step 4 If G’ (0) is full rank, choose the index set % such that G’ (0) is nonsingular.

Step 5 Compute the constants B, 7 by (36).
Step 6 Compute the constant « by (38).
Step 7 If h = xBy < (1/2), Erllllgn compute p by (5).
Step 8 If p< K, returnz{

/lz fos= 1,2,...,kh {q: s=1,2,...,k}, pand 5.

ALGORITHM 1: VerifyEig.

TaBLE 1: The calculation results of p in Example 4.

then by Algorithm 1, we obtaing, =q, =q,=¢q; = 1,43 = 2,
{}\'1 =2.0000,1, = 1.0000, A, = 0,1, = 2.4142, A = —0.4142},

n P and p = 1.9386e — 15.
4 1.0257e—-15
5 3.1887e—14 .
. 2e1s 15 3 Conclusion and Future Work
g 11;1;12;12: }g This paper demonstrated how to compute the validated and
9 19717 — 14 narrow error bounds for the symmetric and persymmetric
10 2:1013 e—15 matrices, such that there exists a perturbation matrix of the
20 1.2099¢ — 14 same type within the computed error bound whose exact real
eigenvalues are the computed real eigenvalues. We will make
further efforts to extend the results for other types of
Example 6. Given a persymmetric matrix structured matrices.
1000000 2 o
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Example 7. Given a persymmetric matrix

o

(45)

=

I
— O NN O O O O O ==
SO O O O o O o N o
N O O O O O O o
SO O O O o = o o o
SO O O O o o o o o
S O O = O O NN O O
S O O O O NN O o o
S DM O O O O o o
- o O O O O O = N
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Supplementary Materials

Supplementary materials are the Matlab code of the ex-
amples, where “Function” folder is the main function,
“Input” is the execution command of each example, and
“Output” is the corresponding output result. (Supplementary
Materials)

References

[1] S.-H. Tsai, Y.-K. Wu, and C.-Y. Lee, “A critical eigenvalues
tracing method for the small signal stability analysis of power
systems,” Energy and Power Engineering, vol. 5, no. 4,
pp. 677682, 2013.

[2] Y. H. Zeng, C. L. Koh, and Y. C. Liang, “Maximum eigenvalue
detection: theory and application,” in Proceedings of the 2008


http://downloads.hindawi.com/journals/mpe/2020/9240852.f1.rar
http://downloads.hindawi.com/journals/mpe/2020/9240852.f1.rar

Mathematical Problems in Engineering

IEEE International Conference on Communications, Beijing,
China, May 2008.

[3] W. V. Frederick, “An application of eigenvalue methods to
structural domain analysis,” Geological Society of America
Bulletin, vol. 102, no. 6, pp. 786-791, 1990.

[4] D. Kressner, Numerical Methods for General and Structured
Eigenvalue Problems, Springer, Berlin, Germany, 2005.

[5] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Science
Press, Beijing, China, 2001.

[6] A. Bunse-Gerstner, V. Mehrmann, and R. Byers, “A chart of
numerical methods for structured eigenvalue problems,”
SIAM Journal on Matrix Analysis and Applications, vol. 13,
no. 2, pp. 419-453, 2006.

[7] D. J. Higham and N. J. Higham, “Backward error and con-
dition of structured linear systems,” SIAM Journal on Matrix
Analysis and Applications, vol. 13, no. 1, pp. 162-175, 1992.

[8] D.J. Higham and N. J. Higham, “Structured backward error
and condition of generalized eigenvalue problems,” SIAM
Journal on Matrix Analysis and Applications, vol. 20, no. 2,
pp. 493-512, 1998.

[9] S. M. Rump, “Eigenvalues, pseudospectrum and structured
perturbations,” Linear Algebra and Its Applications, vol. 413,
no. 2-3, pp. 567-593, 2006.

[10] R. Byers and D. Kressner, “Structured condition numbers for
invariant subspaces,” SIAM Journal on Matrix Analysis and
Applications, vol. 28, no. 2, pp. 326-347, 2006.

[11] T. Shiozaki, “An efficient solver for large structured eigen-
value problems in relativistic quantum chemistry,” Molecular
Physics, vol. 115, no. 1-2, pp. 5-12, 2016.

[12] N. Alon, M. Krivelevich, and V. H. Vu, “On the concentration
of eigenvalues of random symmetric matrices,” Israel Journal
of Mathematics, vol. 131, no. 1, pp. 259-267, 2002.

[13] S. F. Edwards and R. C. Jones, “The eigenvalue spectrum of a
large symmetric random matrix,” Journal of Physics A:
Mathematical and General, vol. 9, no. 10, pp. 1595-1603, 1976.

[14] J.-B. Hiriart-Urruty and D. Ye, “Sensitivity analysis of all
eigenvalues of a symmetric matrix,” Numerische Mathematik,
vol. 70, no. 1, pp. 45-72, 1995.

[15] M. Hladik, D. Daney, and E. Tsigaridas, “Characterizing and
approximating eigenvalue sets of symmetric interval matri-
ces,” Computers & Mathematics with Applications, vol. 62,
no. 8, pp. 3152-3163, 2011.

[16] T. M. Hernandez, R. V. Beeumen, M. A. Caprio et al, “A
greedy algorithm for computing eigenvalues of a symmetric
matrix,” 2019, https://arxiv.org/pdf/1911.10041.pdf.

[17] R. M. Reid, “Classroom note: some eigenvalue properties of
persymmetric matrices,” SIAM Review, vol. 39, no. 2,
pp. 313-316, 1997.

[18] G. H. Golub and F. Charles, Matrix Computations, Johns
Hopkins University Press, Baltimore, MD, USA, 1996.

[19] S. M. Rump, INTLAB-Interval Laboratory, Tibor Csendes,
Developments in Reliable Computing, Kluwer Academic
Publishers, Dordrecht, Netherlands, 1999.

[20] L. V. Kantorovich, Functional Analysis and Applied Mathe-
matics, Vol. 1509, National Bureau of Standards, Washington,
DC, USA, 1952.

[21] S. M. Rump, “Verification methods: rigorous results using floating-
point arithmetic,” Acta Numerica, vol. 19, pp. 287-449, 2010.

[22] S. M. Rump, “Solving algebraic problems with high accuracy,”
A New Approach to Scientific Computation, pp. 51-120, Ac-
ademic Press, San Diego, CA, USA, 1983.

[23] L. B. Rall, “A comparison of the existence theorems of
Kantorovich and Moore,” SIAM Journal on Numerical
Analysis, vol. 17, no. 1, pp. 148-161, 1980.


https://arxiv.org/pdf/1911.10041.pdf

