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In this article, a new aggregation operator called the Young–Shapley optimal weight (Y-SOW) operator is proposed to aggregate
heterogeneous information in group decision-making. /e Y-SOW operator combines the Shapley value with the Young in-
equality. Meanwhile, a series of special cases and main properties of the Y-SOWoperator are studied. Furthermore, the dispersion
maximization model of the Y-SOW operator is established to obtain the optimal 2-additive measure. In the Shapley value method
of the cooperative game, the 2-additive measure not only simplifies the complexity of fuzzy measures but also solves the in-
teraction between attributes./e Shapley value of the 2-additivemeasure is explored to the weight of the Y-SOWoperator. Finally,
the Y-SOW operator-based multiattribute group decision (YSMGAD) algorithm is proposed. /e application of the YSMGAD
algorithm for land pollution remediation is analyzed.

1. Introduction

Group decision-making is rapidly developed to an impor-
tant branch of modern decision sciences, which helps to
gather the wisdom of experts from different fields. /e
transition from individual to group decision-making is a
major step forward to cope with increasingly complex hu-
man activities. To this end, group decision-making has been
recognized and used in economic, military, agricultural, and
other fields [1–6].

In the state-of-art literature, many methods of aggre-
gation operators and their weight determination have been
proposed for multiattribute decision-making. Yager [7]
introduced an ordered weighted averaging (OWA) operator,
where the input arguments were rearranged in the
descending order, and the weight vector was only related to
its ordered position. Xu and Da [8, 9] developed the ordered
weighted geometric averaging (OWGA) operator for mul-
tiattribute decision-making. Chen and Liu [10] proposed an
extension of the OWA operator called an ordered weighted

harmonic mean (OWHA) operator. In 2004, Yager [11] used
a generalized mean in the OWA operator and a generalized
ordered weighted averaging (GOWA) operator. Based on a
minimizing model, Zhou and Chen presented the gener-
alized ordered weighted logarithm averaging (GOWLA)
operator [12], generalized ordered weighted harmonic av-
eraging (GOWHA) operator [13], and so on. Merigo et al.
expanded the OWA operator and proposed the ordered
weighted averaging-weighted average (OWAWA) operator
[14], which unified the OWA operator in the same for-
mulation. Other generalizations of the aggregation operators
were observed in [12, 15–21]. /e operators proposed above
only deal with additive or multiplicative information alone.
/e existing literature is not sufficient to solve the problem
when two kinds of information appear simultaneously in
group decision-making.

In 1995, Grabisch [22–25] proposed the fuzzymeasure as
an aggregation operator for multiattribute decision-making.
However, the fuzzy measure requires a large number of
parameters, which is difficult to implement. In order to
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reduce the computational complexity, various forms and
methods of determining the fuzzy measure have been
proposed. /e choquet integral [26–28] is a nonlinear in-
tegration operator defined on the basis of fuzzy measures,
which can effectively deal with the interaction between
decision attributes. /e premise of the integral is utilized to
determine the fuzzy measure, which is complicated. If there
are n attributes, 2n − 2 parameters are needed. Sugeno [29]
proposed a λmeasure that only requires n parameters but
cannot fully describe the interaction between attributes. In
1996, Grabisch [30] proposed the k-additive measure. /e
Shapley value of a single attribute and the interaction among
k attributes were determined, the computational complexity
was reduced, and the representing ability between the at-
tributes was improved to some extent.

In reality, the attribute value often includes both additive
and multiplicative information; however, it is difficult to
aggregate precisely in one matrix. Based on the Young in-
equality and Shapley value, a new optimal operator called the
Young–Shapley optimal weight (Y-SOW) operator is pro-
posed. Meanwhile, a series of special cases and the main
properties of the Y-SOW operator are studied. Because one
certain interaction exists between the attributes, the 2-ad-
ditive measure is introduced to reduce the complexity of the
fuzzy measure. /e Shapley value method is the most ef-
fective and widely used method in cooperative games.
/erefore, the dispersion maximization model based on the
2-additive measure and the Shapley value is established to
obtain the optimal 2-additive measure. Some formula and
programming models are also provided to effectively de-
termine the 2-additive measure. /e Shapley value of the 2-
additive measure is used as the weight of the Y-SOW op-
erator. Finally, the Y-SOW operator-based multiattribute
group decision (YSMAGD) algorithm is proposed to ef-
fectively aggregate the heterogeneous data. However, the
Y-SOW operator can only aggregate the real-type data and
has certain limitations for the other types of data, such as
interval-type data.

/e rest of this article is organized as follows. In Section
2, the basic concepts of common aggregation operators,
fuzzy measures, and Shapley values are reviewed. In Section
3, the common Y-SOW operator is proposed, and some
special cases and ideal characteristics of the Y-SOWoperator
are also proved. In Section 4, the Y-SOW operator-based
multiattribute group decision (YSMAGD) algorithm is
established. In Section 5, the YSMAGD algorithm is applied
to sequence the remediable location of land pollution. In
Section 6, summary is given.

2. Preliminaries

2.1. Several Commonly Used Information Aggregation
Operators. /e ordered weighted averaging (OWA) oper-
ator was proposed by Yager [7] in 1988 and is widely used in
a series of decision problems, as defined below.

Definition 1. Let R be the set of real number. AnOWA
operator is a mapping, OWA: Rn⟶ R is satisfied:

OWA a1, . . . , an(  � 
n

j�1
wjbj, (1)

then OWAis called an ordered weighted averaging operator,
where bj is the jth largest of the arguments a1, . . . , an and
the weight vector W � (w1, . . . , wn)Tsatisfies 

n
j�1 wj � 1,

wj ∈ [0, 1] and (j � 1, 2, . . . , n).
/e OWA operator is an effective aggregation method

that rearranges the arguments and then weights it according
to the sequence position to weaken the adverse effects of the
extreme value. It is characterized by considering only the
positional relationship of the arguments in the ordering
process. /e OWA operator has many desirable properties
such as monotonicity, boundedness, idempotency, and
permutation invariance. When bj � aj, holds for all
j � 1, 2, . . . , n, then the OWA operator becomes a weighted
averaging (WA) operator [31].

Yager also proposed the BUM function Q [32] to cal-
culate the associated weight of the OWA operator, which
satisfies Q(0) � 0, Q(1) � 1, and Q(x)≤Q(y) for any
0≤x≤y≤ 1, that is,

wj � Q
j

n
  − Q

j − 1
n

 , j � 1, 2, . . . n. (2)

/e BUM function is called the fuzzy semantic
quantization operator, and the expression can be stated as
follows:

Q(x) �

0, x≤ x1,

x − x1

x2 − x1
, x1 ≤x≤x2,

1, x≥ x2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where x1, x2, and x are in the range of [0, 1]. When we
choose the pair (0, 0.5), (0.3, 0.8), and (0.5, 1), the fuzzy
linguistic representation is “at least half,” “more,” and “as
many as possible,” respectively.

Definition 2. An OWG operator [33] is a mapping, OWG:
In⟶ I and I � x | x≥ 0{ }, according to the following
formula:

OWG a1, . . . , an(  � 
n

j�1
b

wj

j , (4)

then OWG is called an ordered weighted geometric oper-
ator, where bj is the jth largest of the arguments a1, . . . , an,
and the weight vector w � (w1, . . . , wn)Tsatisfies 

n
j�1 wj �

1 and wj ∈ [0, 1], j � 1, 2, . . . , n.
/e generalized weighted averaging (GWA) operator

was first presented by Yager [11] based on the generalized
mean. Assuming that the fusion result is an n-dimensional
function f, we can construct a penalty function
J � 

n
j�1 wj(fθ − aθ

j)2 and the minimization problem:

min J � 

n

j�1
wj f

θ
− a

θ
j 

2
. (5)
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Let (zJ/zf) � 0, and the aggregation method for
obtaining the GWA operator is shown as follows:

GWA a1, . . . , an(  � 
n

j�1
wja

θ
j

⎛⎝ ⎞⎠

1/θ

. (6)

If the arguments a1, . . . , an in the GWA operator are
arranged in a descending order, the generalized ordered
weighted averaging (GOWA) operator can be obtained. /e
GWA operator also has many desired properties, such as
monotonicity, boundedness, idempotency, and permutation
invariance. When θ � 1, θ � − 1, and θ⟶ 0, then the GWA
operator reduces to the weighted averaging (WA) operator,
the weighted harmonic averaging (WHA) operator, and the
weighted geometric averaging (WGA) operator,
respectively.

2.2. Fuzzy Measure and Shapley Value. /e aggregation
operators used in the traditional multiattribute decision-
making are generally based on the premise that the attributes
are independent and do not interact with each other, but the
actual situations are often interactive or dependent. To deal
with the abovementioned phenomenon, the fuzzy measure
[12, 20–27] is introduced as follows.

Definition 3 (see [29]). Let N be the attribute set and P(N)

be the power set of N. If set function μ: P(N)⟶ [0, 1]

satisfies the following conditions:

(i) μ(ϕ) � 0, μ(N) � 1
(ii) ∀A, sB ∈ P(N), A⊆B⇒ μ(A)≤ μ(B)

/en, μ is a fuzzy measure on P(N).
Fuzzy measure is difficult to calculate and requires a

large number of parameters. Grabisch proposed the 2-ad-
ditive fuzzy measure based on pseudo-Boolean function and
Mobius transform [29].

Definition 4. Let f: 0, 1{ }n⟶ R be a pseudo-Boolean
function [26]. Where 0, 1{ }n denotes the entirety of all
n-dimensional Boolean vectors. Let X � x1, . . . , xn ,

∀A⊆N. Any fuzzy measure μ can be seen as a particular case
of pseudo-Boolean function denoted by

μ(A) � 
T⊆N

aT 
i∈T

yi
⎡⎣ ⎤⎦, (7)

where aT ∈ R, y � (y1, y2, . . . , yn) ∈ 0, 1{ }n, and
aT � S⊆T(− 1)t− sμ(S) is called the Mobius transform co-
efficient. Obviously, yi � 1 if and only if i ∈ A. /e fuzzy
measure μ defined on (X, P(N)) is a k-additive fuzzy
measure, and the corresponding pseudo-Boolean function is
a k-order linear polynomial, that is,∀T ∈ N, if |T|> k, then
aT � 0 and ∃T0 ∈ P(N), |T0| � k⇒ aT0

� 0.
From Definition 4, we get that 1-additive measures are

additive measures and n-additive measures are fuzzy mea-
sures. Especially, when k � 2, by equation (7) we get a 2-
additive measure μ.

Definition 5 (see [30]). For a 2-additive measure μ,
∀S⊆N, s≥ 2, then

μ(S) � 
n

i�1
aixi + 

i,j{ }⊆N

aijxixj � 
i∈S

ai + 

i,j{ }⊆S

aij � 

i,j{ }⊆S

μ(i, j) − (s − 2) 
i∈S

μ(i), (8)

where μ(i) � ai, μ(i, j) � ai + aj + aij.
It is well known that a 2-additive measure requires only

n(n + 1)/2 parameters, and it will be simpler to solve a 2-
additive measure than to solve a usual fuzzy measure.

Definition 6 (see [30]). Let μbe the fuzzy measure on
N,N � 1, . . . , n{ }. ∀i, j ∈ N∃μ(i), μ(i, j), the 2-additive
fuzzy measure satisfies the following conditions:

(i) μ(i)≥ 0,∀i ∈ N,
(ii)  i,j{ }⊆Nμ(i, j) − (n − 2)i∈Nμ(i) � 1,
(iii) i⊆S\k(μ(i, k) − μ(i))≥ (s − 2)μ(k),∀S ∈ N, s≥ 2,

where s and n are the cardinalities of Sand N, respectively.
/e Shapley value [34] is determined in a grand coalition

N based on the marginal contribution of players to obtain
the optimal benefit distribution. In order to avoid the ir-
rationality of the average distribution and show certain
rationality and fairness, the Shapley value method is widely
used for cooperative games.

Definition 7. Vector Sh(N, μ) � (Sh1(N, μ), Sh2(N, μ) . . . ,

Shn(N, μ)), and its components are defined by
Shi(N, μ)

� 
T: i∈T⊆N

(|T| − 1)!(|N| − |T|)!

|N|!
[μ(T) − μ(T\ i{ })], ∀i ∈ N,

(9)

where μ is a fuzzy measure on N and |N| and |T| are the
cardinality of set N and T respectively.

Let μ be a superadditive fuzzy measure on N, and it
follows that μ(T)≥ μ(T\ i{ }) for all ∀i ∈ T⊆N. Obviously,
we have

(i) 
n
i�1 Shi(N, μ) � 1,

(ii) Shi(N, μ)≥ 0 (i � 1, . . . , n).

It means that Sh(N, μ) can be viewed as a weight vector
here, named as the Shapley weight vector.

Mathematical Problems in Engineering 3



3. The Young–Shapley Optimal Weight
(Y-SOW) Operator

3.1. e Proposed Operator and Its Equivalent Expression

Lemma 1 (Young inequality, see [35]). ∀a, b≥ 0, λ ∈ [0, 1],
it holds that

a
λ
b
1− λ ≤ λa +(1 − λ)b, (10)

if and only if a � b, and the equation holds.

In the aggregation process, let a1, . . . , an be the non-
negative aggregation arguments and Shi(N, μ) be a Shapley
weighting vector, then function f is strictly monotonically
increasing. Construct a penalty function H as follows:

H � 
n

i�1
Shi(N, μ)

λf ai(  +(1 − λ)f(y)

f ai( ( 
λ
(f(y))1− λ

− 1⎡⎣ ⎤⎦, (11)

where λ is a parameter that satisfies λ ∈ [0, 1]. According to
the necessary conditions for the existence of extreme values,
taking the partial derivative of H with respect to y, there is

zH

zy
� 

n

i�1
Shi(N, μ)

(1 − λ)f′(y) f ai( ( 
λ
(f(y))1− λ − λf ai(  +(1 − λ)f(y)  f ai( ( 

λ
(1 − λ)(f(y))1− λf′(y)

f ai( ( 
2λ

(f(y))2− 2λ
⎡⎣ ⎤⎦. (12)

Setting (zH/zy) � 0, it follows that



n

i�1
Shi(N, μ)

f ai( ( 
λ
f(y)f′(y) − λf ai(  +(1 − λ)f(y)  f ai( ( 

λ
f′(y)

f ai( ( 
2λ

⎡⎣ ⎤⎦ � 0. (13)

Equation (13) can be written as follows:



n

i�1
Shi(N, μ)

f(y)f′(y) − λf ai( f′(y) − (1 − λ)f(y)f′(y)

f ai( ( 
λ

⎡⎣ ⎤⎦ � 0. (14)

Equation (14) is transformed into the following formula:

f(y) �


n
i�1 Shi(N, μ) f ai( ( 

1− λ


n
i�1 Shi(N, μ) f ai( ( 

− λ . (15)

/e function f is strictly monotonically increasing and
has a reversible property. /us, its inverse function exists as
follows:

y � f
− 1 

n
i�1 Shi(N, μ) f ai( ( 

1− λ


n
i�1 Shi(N, μ) f ai( ( 

− λ
⎛⎝ ⎞⎠, (16)

and we called equation (16) as the Young–Shapley optimal
weight (Y-SOW) operator.

In order to simplify the structure of the Y-SOW oper-
ator, the following equivalent expression is introduced in
detail.

Let

Bi � Bi a1, . . . , an(  �
Shi(N, μ) f ai( ( 

− λ


n
i�1 Shi(N, μ) f ai( ( 

− λ, (17)

then, it holds that 
n
i�1

Bi � 1. /e Y-SOW operator can be
equivalently written as

Y − SOW a1, . . . , an(  � f
− 1



n

i�1

Bif ai( ⎞⎠.⎛⎝ (18)

/e following theorem shows the monotonicity of Bi

with respect to ai.

Theorem 1. Let λ ∈ [0, 1], then Bi is monotonically de-
creasing with respect to ai.

Proof. Taking the derivative of Bi with respect to ai, we have

zBi

zai

�
(− λ)Shi(N, μ) f ai( ( 

− λ− 1
f′ ai( i≠jShi(N, μ) f ai( ( 

− λ


n
i�1 Shi(N, μ) f ai( ( 

− λ
 

2 . (19)

4 Mathematical Problems in Engineering



Since the function f is monotonically increasing, we get
f′(ai)≥ 0. Moreover, function f is nonnegative and
Shi(N, μ)≥ 0, 0≤ λ≤ 1, then we have

zBi

zai

≤ 0. (20)

/en, Bi is monotonically decreasing. □

Theorem 2. Let ai
′ and ai (i � 1, 2, . . . , n) be real numbers,

then we have

(i) If ai
′ ≥ ai, then Bi

′ � Bi
′(a1′, . . . , ai

′, . . . , an
′)≤ Bi(a1, . . . ,

ai, . . . , an) � Bi

(ii) If ai
′ ≤ ai, then Bi

′ � Bi
′(a1′, . . . , ai

′, . . . , an
′)≥ Bi(a1, . . . ,

ai, . . . , an) � Bi

Proof. It can be known from /eorem 1, so the proof
process is omitted. □

3.2. Some Special Cases of the Y-SOW Operator. It is worth
noting that the Y-SOW operator includes some special
operators when the value of λ is different or the expression of
function f(x) changes.

(i) When the weights of players (attributes) are indif-
ferent and independent and Sh(N, μ) � ((1/n),

(1/n), . . . , (1/n)) is selected, we have

Y − SOW a1, . . . ,an(  � f
− 1 

n
i�1 f ai( ( 

1− λ


n
i�1 f ai( ( 

− λ
⎛⎝ ⎞⎠, (21)

then equation (21) becomes the Young-optimal
weight (Y-OW) operator.

(ii) When λ � 1, then

Y − SOW a1, . . . , an( 

� f
− 1 1


n
i�1 Shi(N, μ) 1/ f ai( ( ( 

 .

(22)

/e Y-SOW operator reduces to the Shapley
weighted harmonic averaging (SWHA) operator.

(iii) When λ � 0, then

Y − SOW a1, . . . , an(  � f
− 1



n

i�1
Shi(N, μ)f ai( ⎛⎝ ⎞⎠.

(23)

Equation (23) reduces to quasi-Shapley weighted
averaging (QSWA) operator.

(iv) When f(x) � x is selected according to the overall
risk attitude, the Y-SOW operator reduces to the
following operator with respect to risk neutrality:

Y − SOW a1, . . . ,an(  �


n
i�1 Shi(N,μ) ai( 

1− λ


n
i�1 Shi(N,μ) ai( 

− λ . (24)

(v) When f(x) � lnx is selected according to the overall
risk attitude, the Y-SOW operator is simplified to the
following operator in terms of risk aversion:

Y − SOW a1, . . . , an( 

� e 
n

i�1 Shi(N,μ) ln ai( )( )
1− λ/

n

i�1 Shi(N,μ) ln ai( )( )
− λ( 

.

(25)

If λ � 0, equation (25) is changed to

Y − SOW a1, . . . , an(  � e 
n

i�1 Shi(N,μ) ln ai( )( )
1− λ/

n

i�1 Shi(N,μ) ln ai( )( )
− λ( 

� e


n

i�1 Shi(N,μ)ln ai( )/
n

i�1
Shi(N,μ))�e


n

i�1
Shi(N,μ)ln ai( ) 

�e


n

i�1
ln ai( )Shi(N,μ)· 

�
n

i�1 a
Shi(N,μ)

i
.

(26)

Equation (26) becomes the Shapley weighted geo-
metric average (SWGA) operator.

(vi) When f(x) � ex is selected according to the deci-
sion makers overall risk attitude, the Y-SOW op-
erator is reduced to the following operator in terms
of risk proneness:

Y − SOW a1, . . . ,an(  � ln


n
i�1 Shi(N,μ) · e(1− λ)·ai


n
i�1 Shi(N,μ) · e(− λ)·ai

 .

(27)

3.3. Desirable Property of the Y-SOWOperator. /e Y-SOW
operator has many potential properties, such as monoto-
nicity, idempotency, and boundedness.

Property 1 (monotonicity). ∀ai
′, ai ∈ R, (i � 1, . . . , n). If

ai
′ ≥ ai, it holds that

Y − SOW a1′, . . . , an
′( ≥Y − SOW a1, . . . , an( . (28)

Proof. Denoting

Mathematical Problems in Engineering 5



H � f
− 1 

n
i�1 Shi(N, μ) f ai( ( 

1− λ


n
i�1 Shi(N, μ) f ai( ( 

− λ
⎛⎝ ⎞⎠. (29)

It follows that

lnf(H) � ln
n

i�1
Shi(N, μ) f ai( ( 

1− λ
− ln

n

i�1
Shi(N, μ) f ai( ( 

− λ
.

(30)

Taking the derivative of the lnf(H) with respect to
ai(i � 1, 2, . . . , n), respectively, we get

z(lnf(H))

zai

�
Shi(N, μ) · (1 − λ) · f ai( ( 

− λ
· f′ ai( 


n
i�1 Shi(N, μ) f ai( ( 

1− λ −
Shi(N, μ) · (− λ) · f ai( ( 

− λ− 1
· f′ ai( 


n
i�1 Shi(N, μ) f ai( ( 

− λ

� Shi(N, μ) · f′ ai(  ·
(1 − λ) · f ai( ( 

− λ


n
i�1 Shi(N, μ) f ai( ( 

1− λ +
λ · f ai( ( 

− λ− 1


n
i�1 Shi(N, μ) f ai( ( 

− λ
⎛⎝ ⎞⎠.

(31)

Since f: [1, T]⟶ [0, +∞] and f is increasing and
nonnegative, we have f′(ai)≥ 0. According to Definition 7,
we have Shi(N, μ)≥ 0,λ ∈ [0, 1]. /erefore, (z(lnf(H))

/zai)≥ 0. /is means that lnf(H) is a monotonically in-
creasing function. Obviously, f(H) is also a monotonically
increasing function. /us, we get


n
i�1 Shi(N, μ) f ai

′( ( 
1− λ


n
i�1 Shi(N, μ) f ai

′( ( 
− λ ≥


n
i�1 Shi(N, μ) f ai( ( 

1− λ


n
i�1 Shi(N, μ) f ai( ( 

− λ ,

(32)

which can be equivalently expressed as

f
− 1 

n
i�1 Shi(N, μ) f ai

′( ( 
1− λ


n
i�1 Shi(N, μ) f ai

′( ( 
− λ

⎛⎝ ⎞⎠

≥f
− 1 

n
i�1 Shi(N, μ) f ai( ( 

1− λ


n
i�1 Shi(N, μ) f ai( ( 

− λ
⎛⎝ ⎞⎠.

(33)

To sum up, we have f(a1′, . . . , an
′)≥f(a1, . . . , an).

/erefore, Property 1 is proved. □

Property 2 (idempotency). a, ai ∈ R, (i � 1, . . . , n). If ai � a

for all i ∈ 1, . . . , n{ }, then

Y − SOW a1, . . . , an(  � a. (34)

Proof:. Denoting

Y − SOW a1, . . . , an(  � f
− 1 

n
i�1 Shi(N, μ) f ai( ( 

1− λ


n
i�1 Shi(N, μ) f ai( ( 

− λ
⎛⎝ ⎞⎠.

(35)

Since ai � a, for all i � 1, . . . , n, we have

Y − SOW a1, . . . , an(  � f
− 1 

n
i�1 Shi(N, μ) f ai( ( 

1− λ


n
i�1 Shi(N, μ) f ai( ( 

− λ
⎛⎝ ⎞⎠

� f
− 1 (f(a))1− λ 

n
i�1 Shi(N, μ)

(f(a))− λ 
n
i�1 Shi(N, μ)

 

� f
− 1

(f(a)) � a.

(36)

/erefore, Property 2 is proved. □

Property 3 (boundedness). ai ∈ R(i � 1, . . . , n)and denoting
max

i
ai � amax and min

i
ai � amin, then

amin ≤Y − SOW a1, . . . , an( ≤ amax. (37)

Proof. Denoting

Y − SOW a1, . . . , an(  � f
− 1 

n
i�1 Shi(N, μ) f ai( ( 

1− λ


n
i�1 Shi(N, μ) f ai( ( 

− λ
⎛⎝ ⎞⎠.

(38)

By /eorem 1, we have

Y − SOW a1, . . . , an(  � f
− 1



n

i�1

Bif ai( ⎛⎝ ⎞⎠. (39)

Because λ ∈ [0, 1], we have



n

i�1

Bif ai( ≥ 
n

i�1

Bif amin(  � f amin(  

n

i�1

Bi �f amin( , 
n

i�1

Bif ai( ≤ 
n

i�1

Bif amax(  � f amax(  

n

i�1

Bi �f amax( . (40)
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/us, we get

f amin( ≤ 
n

i�1

Bif ai( ≤f amax( . (41)

It follows that

amin ≤f
− 1



n

i�1

Bif ai( ⎛⎝ ⎞⎠≤ amax. (42)

To sum up, we have

amin ≤Y − SOW a1, . . . , an( ≤ amax. (43)

/e proof of Property 3 is completed. □

4. Deriving theOptimalWeightVectorBasedon
Dispersion Maximization Method

Aggregation operators play a vital role in multiple fields,
such as economics, statistics, and management. In case that
the attribute associated with weight information is un-
known, we establish the optimal weight vector based on the
dispersion maximization method.

Suppose A � a1, . . . , am  is a finite set of alternatives,
C � c1, . . . , cn  is a set of attributes and D � d1, . . . , dt  is
the set of decision makers and v � (v1, . . . , vt)

T is the weight
vector of a decision maker, which satisfies the condition
vk ∈ [0, 1], 

t
k�1 vk � 1. Assume that A(k) � (a

(k)
ij )m×n is the

decision matrix given by the decision maker dk, where the
estimated value a

(k)
ij indicates that the alternative ai ∈ A

under attributes cj ∈ C is given by the decision maker dk.
ω � (ω1,ω2, · · · ,ωt)

T is the weight of the decision maker,
satisfying ωi ∈ [0, 1], 

t
i�1 ωi � 1.

In multiattribute decision-making, the attributes cannot
be aggregated directly due to their different size. /e
primitive decision maker matrix has to be normalized. /e
attributes mainly include three types: benefit attribute, cost
attribute, and fixed attribute. /e benefit attribute refers to
the bigger the better index, the cost attribute refers to the
smaller the better index, and the fixed attribute refers to how
close is it to a fixed value.

Let Hi(i � 1, 2, 3) be the subscript set of the above three
types of attributes in order [10], and the following formula
can be used for normalization:

rij �
aij

mini∈Naij

, j ∈ H1, (44)

rij �
maxi∈Naij

aij

, j ∈ H2, (45)

rij � 1 −
aij − aj





max aij − aj




i

, j ∈ H3. (46)

For multiattribute decision-making, if the attribute uj

can make a bigger difference in the attribute values of all
alternatives, it means that uj plays a bigger role in the or-
dering of the alternatives and shall be given a bigger weight,
vise verse. In particular, if all of the alternatives have no
difference in the attribute values under the attribute uj, uj

will have no effect on the ordering of the alternatives and uj

is zero. Based on that the weight can be determined with the
dispersion maximization method.

Because there is a certain interaction between the attributes,
in order to simplify the complexity of the fuzzy measure, the
Shapley value based on the 2-additive measure is introduced as
the weight of the attributes and the traditional Shapley value
function has been mentioned in equation (9).

When the fuzzy measure μ is a 2-additive measure,
equation (9) is converted to [36–38]

Shi(N, μ) �
3 − n

2
μ(i) + 

j∈N\i

1
2

(μ(i, j) − μ(j)), ∀i ∈ N.

(47)

InDefinition 7, Shi(N, μ) can be regarded as aweight vector.
In view of Definition 6 and equation (47), the dispersion

maximization model based on the 2-additive measure and
Shapley value is established as follows:

Model (M − 1):

maxT �
3 − n

2


m

j�1


n

i�1


n

k�1
rij − rkj 

2
μ(j) +

1
2



m

j�1


n

i�1


n

k�1
rij − rkj 

2


l∈N\j

μ(j, l) − μ(l)⎛⎝ ⎞⎠,

s.t.


l⊆S\j

(μ(j, l)) − μ(l)≥ (s − 2)μ cj , ∀S⊆N,∀l ∈ S, s≥ 2,


j,l{ }⊆N

μ(j, l) − (n − 2) 
j∈N

μ(j) � 1,

μ(j)≥ 0, j � 1, 2, . . . , n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)

Finally, the optimal 2-additive measure can be obtained,
and the optimal 2-additive measure can be reused to calculate
the Shapley value in the Y-SOW operator. Using equation (16)
to aggregate the Y-SOWoperator, the optimal result is obtained.

/erefore, the Y-SOW operator-based multiattribute
group decision (YSMAGD) algorithm is stepped as follows:

Step 1. Assuming that A(k) � (a
(k)
ij )m×n is the decision

matrix given by the decision maker dk (k � 1, 2, . . . , t).
Step 2. By equations (2) and (3), according to the
decision makers’ preference, the fuzzy linguistic
quantifier with the pair (a, b) is selected to compute the
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weights of the decision makers wj � (w1, w2, . . . , wn)T

(j � 1, 2, . . . , n).
Step 3. Based on equations (1) and (4), the OWA
operator and the OWG operator are used to aggregate
the additive and multiplicative information of the
decisionmatrix A(k), respectively. Final decisionmatrix
A � (rij)m×n is obtained.
Step 4. /e final decision matrix A is normalized by
equations (44)–(46) to obtain a collective decisionmatrixR

−

.
Step 5. Utilize the dispersionmaximizationmodel (M − 1)
to obtain the optimal 2-additive measure μ(i) and μ(i, j).
Step 6. μ(i) and μ(i, j) are used to calculate the Shapley
value based on equation (47), that is, the weight vector
of the Y-SOW operator.
Step 7. Utilize equation (16) to aggregate the
normalized matrix R

−

, and the overall preference value
ri(r � 1, . . . , m) of the alternative ai is obtained.
Step 8. Rank all the alternatives ai(i � 1, . . . , m) and
select the best one in accordance with the ranking of
ri(r � 1, . . . , m).
Step 9. End.

Based on the above analysis, the framework of the
YSMAGD algorithm is illustrated in Figure 1.

5. Numerical Example

/e economic development brings us livelihood improvement,
but with increasing land pollution. It is investigated that among
the total 150 million mu of cultivated land in the country, 32.5
million mu is contaminated by sewage, 2 million mu is oc-
cupied by solid waste, and 2 million mu is destroyed, ac-
counting for over 20%. Crops accumulate harmful substances
from polluted land, which causes diseases and ultimately en-
danger human future. However, the prevention and control is
still weak. Nowadays, distribution and extent of soil pollution
in the country are unclear. As a result, the government lacks
specific controlmeasures and capital input, and experts on land
science research are also difficult to carry out in depth.

/e first task is to select the polluted location for reme-
diation. /ere are many both objective and subjective factors
involved. /e evaluation index is usually chaotic and miscel-
laneous. It is a typical problem of multiattribute aggregation
with additive and multiplicative information. /e proposed
Y-SOW operator above is applied to decision analysis.

Consider site selection for land remediation, that is, the
assessment of polluted land. Assume that there are eight land
experts (d1, d2, . . . , d8), evaluating the improvement of rural
land from six attributes: c1 pollution area, c2remediation po-
tential, c3 realistic feasibility, c4 fertilizer and pesticide use rate, c5

Decision goal

Expert 1

Decision matrix

Multiplicative

Normalized

2-additive
measure

Collective
decision matrix

Shapley
value

Overall
preference

values

Ranking
alternatives

The Y-SOW
operator

The OWG
operator

The OWA
operator

Additive

Decision matrix Decision matrix

Expert k Expert n

Figure 1: Framework of the YSMAGD algorithm.
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soil pH, and c6 irrigation guarantee rate. /ere exist four lands
(A, B, C, D), and eight experts score four lands according to the
above six attributes.

Step 1. Because the analytic hierarchy process (AHP)
[39–41] can easily and flexibly deal with the quantitative
problem of decision makers on complex systems, it is a
classic weighting method commonly used by decision
makers./e core of the method is to compare the degree
of importance between the two elements by the 1 to 9
scale method. c2 and c3 are multiplicative indicators and
cannot be calculated by specific numerical values.
/erefore, the AHP scale method is used. Suppose there
is a sample land E with a scale of 1 for each attribute. Let
land E be Fj and lands A B C D be Fi. /e experts
compare the four lands A B C D with the sample land E
according to the following 1–9 scale (shown in Table 1).

Let us suppose that the decision matrix A(k) � (a
(k)
ij )4×6

provided by decision makers dk (k � 1, 2, . . . , 8) is
obtained as follows:

A
(1)

�

40 7 6 0.6 5 0.5

60 4 5 0.7 5.5 0.3

55 5 6 0.5 7 0.7

70 3 4 0.6 8.5 0.4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

A
(2)

�

43 6 7 0.4 4.8 0.4

58 5 4 0.8 5.8 0.7

48 7 6 0.4 7.5 0.8

65 4 3 0.7 8 0.4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

A
(3)

�

48 6 7 0.3 5.4 0.7

62 5 5 0.7 6 0.5

53 7 7 0.6 7.8 0.8

76 4 4 0.7 8.7 0.4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

A
(4)

�

38 8 7 0.3 5.8 0.6

58 6 6 0.6 6.6 0.7

50 7 7 0.5 7 0.7

80 4 3 0.8 8 0.2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

A
(5)

�

45 6 7 0.5 5.5 0.6

55 5 5 0.6 5 0.4

50 5 7 0.5 7.4 0.7

73 4 3 0.7 8.8 0.3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

A(6) �

40 6 7 0.4 5.3 0.7
58 4 5 0.6 5.5 0.5
58 5 7 0.2 7.2 0.8
66 3 3 0.8 8.2 0.4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

A(7) �

45 6 7 0.5 5.3 0.7
62 3 5 0.7 5 0.4
52 5 7 0.4 7.5 0.7
71 2 2 0.7 9 0.3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

A(8) �

47 6 6 0.6 5.3 0.6
65 3 3 0.8 4.8 0.3
50 5 7 0.5 7.2 0.7
75 2 3 0.8 8.3 0.3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(49)

Step 2. By equations (2) and (3), and according to the
decision makers’ preference, the fuzzy linguistic
quantifier “more,” with the pair (0.3, 0.8) is selected to
compute all the weights of the decision makers
wj � (w1, w2, . . . , wn)T(j � 1, 2, . . . , n).

w1 � Q
1
8

  − Q(0) � 0,

w2 � Q
1
4

  − Q
1
8

  � 0,

w3 � Q
3
8

  − Q
1
4

  � 0.15,

w4 � Q
1
2

  − Q
3
8

  � 0.25,

w5 � Q
5
8

  − Q
1
2

  � 0.25,

w6 � Q
3
4

  − Q
5
8

  � 0.25,

w7 � Q
7
8

  − Q
3
4

  � 0.1,

w8 � Q(1) − Q
7
8

  � 0.

(50)

Finally, we can derive the weights of the decision
makers w � (0, 0, 0.15, 0.25, 0.25, 0.25, 0.1, 0)T.
Step 3. c2 and c3 are multiplicative indicators, and the
rest are additive indicators, so it cannot be directly
aggregated. Based on equations (1) and (4) to aggregate
the additive and multiplicative of the decision matrix
A(k), obtain Alimx⟶∞ � (rij)m×n:

A �

42.4500 10.3165 10.4335 0.4250 5.4900 0.6500

58.2500 9.8638 10.0035 0.6250 5.6750 0.5150

52.6500 10.1308 10.4335 0.4300 7.3200 0.7400

73.2500 9.4474 9.2511 0.7500 8.4550 0.3150

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(51)

Step 4. It is clear that c2, c3, and c6 are benefit attributes,
c1 and c4 are cost attributes, and c5 is the fixed attribute.

Table 1: 1–9 comparison scale.

Scale value Meaning
1 When Fi is as important as Fj

3 When Fi is slightly more important than Fj

5 When Fi is more important than Fj

7 When Fi is much more important than Fj

9 When Fi is extremely important than Fj

2, 4, 6, 8 A compromise of the above degree
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Equations (44)–(46) are used for normalization to
obtain a collective decision matrix R:

R �

1.0000 1.0000 1.0000 1.0000 0.0662 0.8784

0.7288 0.9561 0.9588 0.6800 0.1225 0.6959

0.8063 0.9820 0.9820 0.9884 0.7881 1.0000

0.5795 0.9158 0.8867 0.5667 0.0364 0.4257

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(52)

Step 5. From the above model (M − 1), the dispersion
maximization model based on the 2-additive measure
and Shapley value is established to obtain the optimal 2-
additive measure μ(i) and μ(i, j).

max(− 3.28μ(1) − 3.55μ(2) − 4.26μ(3) − 3.78μ(4) − 4.54μ(5) − 3.22μ(6) + 0.38μ(1, 2) + 0.4μ(1, 3)

+ 0.94μ(1, 4) + 1.91μ(1, 5) + 1.12μ(1, 6) + 0.05μ(2, 3) + 0.59μ(2, 4) + 1.56μ(2, 5) + 0.76μ(2.6)

+ 0.61μ(3, 4) + 1.57μ(3, 5) + 0.78μ(3, 6) + 2.12μ(4, 5) + 1.32μ(4, 6) + 2.23μ(5, 6)),

s.t.


l⊆S\j

(μ(j, l)) − μ(l)≥ (s − 2)μ(j)∀S⊆ 1, 2, 3, 4, 5, 6{ }, ∀l ∈ S, s≥ 2,



j,l{ }⊆ 1,2,3,4,5,6{ }

μ(j, l) − 4(μ(1) + μ(2) + μ(3) + μ(4) + μ(5) + μ(6)) � 1,

μ(j)≥ 0, j � 1, 2, . . . , 6.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(53)

Solving the above linear programming model (M − 1),
we get

μ(1) � 0.05,

μ(2) � 0.1,

μ(3) � 0.1,

μ(4) � 0.1,

μ(5) � 0.05,

μ(6) � 0.05,

μ(1, 2) � 0.0081,

μ(1, 3) � 0.0091,

μ(1, 4) � 0.0013,

μ(1, 5) � 0.2252,

μ(1, 6) � 0.0063,

μ(2, 3) � 0.001,

μ(2, 4) � 0.0028,

μ(2, 5) � 0.2617,

μ(2, 6) � 0.0096,

μ(3, 4) � 0.0096,

μ(3, 5) � 0.2556,

μ(3, 6) � 0.0097,

μ(4, 5) � 0.2701,

μ(4, 6) � 0.0049,

μ(5, 6) � 0.3250.

(54)
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/ese are the optimal 2-additive measures. Step 6. From Equation (47), the Shapley value of the
Y-SOW operator is calculated as follows:

Sh1(N, μ) � −
3
2
μ(1) +

1
2

[μ(1, 2) − μ(2) + μ(1, 3) − μ(3) + μ(1, 4) − μ(4) + μ(1, 5) − μ(5) + μ(1, 6) − μ(6)] � 0.16,

Sh2(N, μ) � −
3
2
μ(2) +

1
2

[μ(2, 1) − μ(1) + μ(2, 3) − μ(3) + μ(2, 4) − μ(4) + μ(2, 5) − μ(5) + μ(2, 6) − μ(6)] � 0.076,

Sh4(N, μ) � −
3
2
μ(4) +

1
2

[μ(4, 1) − μ(1) + μ(4, 2) − μ(2) + μ(4, 3) − μ(4) + μ(4, 5) − μ(5) + μ(4, 6) − μ(6)] � 0.229,

Sh3(N, μ) � −
3
2
μ(3) +

1
2

[μ(3, 1) − μ(1) + μ(3, 2) − μ(2) + μ(3, 4) − μ(4) + μ(3, 5) − μ(5) + μ(3, 6) − μ(6)] � 0.142,

Sh5(N, μ) � −
3
2
μ(5) +

1
2

[μ(5, 1) − μ(1) + μ(5, 2) − μ(2) + μ(5, 3) − μ(3) + μ(5, 4) − μ(4) + μ(5, 6) − μ(6)] � 0.272,

Sh6(N, μ) � −
3
2
μ(6) +

1
2

[μ(6, 1) − μ(1) + μ(6, 2) − μ(2) + μ(6, 3) − μ(3) + μ(6, 4) − μ(4) + μ(6, 5) − μ(5)] � 0.121.

(55)

Step 7. Based on equation (16), for convenience, we set
f(x) � x, λ � 1, and the overall preference value ri(r �

1, . . . , m) of the alternative ai is obtained. Let
ri � Y − SOW(a1, . . . , an). /e overall preference
values are obtained as

r1 � 4.858,

r2 � 3.247,

r3 � 4.323,

r4 � 8.679.

(56)

Step 8. /e ranking is r4 > r1 > r3 > r2.

/erefore, the best alternative is a4. Namely, land D is
most needed for remediation.

In this example, we can see that the YSMAGD algorithm
can efficiently handle heterogeneous data with the good
aggregation. /e evaluation index of site selection of pol-
luted land in the above example usually contains objective
factors and subjective factors. For example, indicators such
as remedial potential and realistic feasibility are multipli-
cative indicators that cannot be calculated from specific
values. Indicators such as pollution area and soil pH are
additive indicators that can be obtained through clear nu-
merical measurements. /e key to land pollution assessment
is to combine both indicators, so decision makers use the
Y-SOW operator proposed above to aggregate and use the
YSMAGD algorithm for effective land assessment. /is is
not only beneficial for the government to implement land
pollution remediation, but also for experts to conduct land
research.

6. Comparison and Conclusion

6.1. Comparison and Analysis

6.1.1. Comparative Analysis of Aggregation Results under
Different Values of λ. Because λ ∈ [0, 1], there are many
options of parameter λ, such as λ � 0, λ � (1/2), and λ � 1.
Comparing these three situations, the overall preference
value is obtained shown as follows:

(i) When λ � 0,
r1 � 1.368,

r2 � 1.667,

r3 � 1.105,

r4 � 2.222.

(57)

(ii) When λ � (1/2),
r1 � 2.269,

r2 � 2.191,

r3 � 1.113,

r4 � 3.730.

(58)

Compare the above three cases and use the obtained
overall preference values as a scatter plot, as shown in
Figure 2.

Obviously, for λ � 0, λ � (1/2), and λ � 1, the results of
aggregation are not numerically identical. However, by
comparing these results, the same alternative approach can
be obtained, namely, land D needs to be repaired the most
urgently.
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6.1.2. Comparing the Y-SOW Operator with WAA Operator
and WGA Operator. Let a1 � (1/2), a2 � 3, and a3 � 8 be
three real numbers. For comparing with the weighted
arithmetic averaging (WAA) operator [42] and weighted
geometric averaging (WGA) operator [43], λ � 0.5 and
f(x) � x are selected. Assume that decision makers (or
attributes) are independent and unrelated, so we set
weighted vector w � Sh(N, μ) � ((1/3), (1/3), (1/3)). Ac-
cordingly, the aggregation results calculated by three ag-
gregation operators are shown as follows:

WAA a1, a2, a3(  � 3.833,

WGA a1, a2, a3(  � 2.289,

Y − SOW a1, a2, a3(  � 2.246.

(59)

We denote H(WWA), H(WGA), and H(Y − SOW) the
penalty functions derived by equation (11), respectively.
/us, we have the following results:

H(WWA) � 0.214,

H(WGA) � 0.172,

H(Y − SOW) � 0.171.

(60)

It is clear that the value of penalty function H with
respect to the Y-SOW operator is the smallest. From
equation (11), we know that the Y-SOW operator is the
optimal aggregation for minimizing the penalty function.
/is supports the optimality of the Y-SOW operator.

6.2. Brief Conclusion. /is paper introduces a new aggre-
gation operator called the Young–Shapley optimal weight
(Y-SOW) operator. Some special cases and main properties
of the Y-SOW operator are studied. /e advantages of this
paper are as follows:

(i) /e Y-SOW operator solves the problem that the
additive and the multiplicative decision information
appear simultaneously in the group decision-
making.

(ii) In the Shapley value method of cooperative game,
the 2-additive measure replaces the original fuzzy
measure. /is not only can effectively deal with the

interaction between decision attributes, but also
reduce the computational complexity and improve
the representation between attributes.

(iii) To solve the problems of multiattribute group de-
cision-making under attribute interaction, we de-
velop the Y-SOW operator-based multiattribute
group decision (YSMAGD) algorithm and establish
a linear programming model (M − 1).

It is worth noting that we can also apply the Y-SOW
operator to the other areas such as deep learning, cluster
analysis, and artificial intelligence.

Nevertheless, in this article, we only consider the case
where decision information is represented by real numbers.
However, in some cases, the decision information may be in
other forms, such as interval numbers and fuzzy numbers.
/is is an issue that needs further study in the near future.
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