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+e accuracy of feedforward control model including system time-delay significantly affects the position tracking per-
formance in a precision motion system. In this paper, an iterative tuning method for feedforward control with precise time-
delay compensation is proposed. First, considering system time-delay from actuator, sensor, calculation, and commu-
nication in real platform, a feedforward control model with time-delay compensation is established, and a nonlinear
objective function with time-delay is designed based on the measured data of a finite time task, to minimize the position
tracking error. Second, in order to deal with both the nonlinear objective function and also unknown disturbances and noise
in the real system, an optimization strategy combining the Gauss–Newton iterative (GNI) scheme and instrumental variable
(IV) is proposed to realize the unbiased estimation of the feedforward parameters and precise delay time. Finally, with the
identified feedforward control parameters, the precise system time-delay which is a nonintegral multiple of the sampling
period is compensated accurately for the feedforward control with accurate path planning time-shift in the implementation.
+e effectiveness of the proposed feedforward parameter tuning and precise time-delay compensation scheme is verified by
the simulation and also experimental result on a precision motion platform with obvious position tracking
performance improvement.

1. Introduction

In real control systems, the sensors, actuators, data com-
munication, and signal processing can all generate some
time-delay [1, 2]. Without compensation, the time-delay will
lead to reduced system control bandwidth, will lead to slow
response and even affects the system stability. On the one
hand, the characteristics of time-delay can also be utilized in
the active vibration absorber to obtain better vibration
suppression performance [3, 4]. In precision motion sys-
tems, the feedforward control is introduced to compensate
the time-delay by injecting the control signal in advance [5],
which can significantly improve the tracking accuracy. +is
feedforward method is widely used in the high-speed and
high-precision motion control systems such as photoli-
thography equipment [6, 7], machine tool [8], and atomic
force microscope system [9].

+e parameter accuracy of the feedforward control
significantly affects the control performance of the precision
motion system [10]. In the feedback-feedforward control
structure, when the feedforward model is equal to the in-
verse of the controlled plant, the position error can be ef-
fectively compensated. +e model-based feedforward
control is commonly used in the motion system, but it needs
to determine the precise model of the plant in advance.
When the system performs a finite time task, such as point-
to-point motion, the measured data contains the knowledge
of the plant. Based on this, the iterative feedforward tuning
(IFT) [11, 12] method utilizes the measured data to optimize
the feedforward parameters without the need for detailed
knowledge of the plant. In the IFTmethod, the least square
(LS) method based on instrumental variable (IV) is adopted
to eliminate the effect of noise unrelated to the input signal,
and the unbiased estimation of feedforward parameters is
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obtained. It can be seen that the IFTestablishes a connection
between the feedforward tuning and closed-loop system
identification and clarifies the direction of feedforward
parameter regulation. In terms of parameter estimation
variance, an iterative refined instrumental variable is con-
structed to achieve optimal accuracy [13, 14], and the
Kalman filtering (KF) approach is introduced into the IV-
IFT framework, which enables unbiased parameter esti-
mation with zero asymptotic variance [15]. +en, the IFT is
extended to flexible motion systems. For the non-minimum
phase system, the stability problem of model inversion is
solved by the input shaping method [16, 17]. +e unbiased
parameter estimation with optimal accuracy in terms of
variance is obtained for feedforward controllers with a ra-
tional basis [18], and the feedforward control with rational
basis functions can enable higher performance and more
enhanced extrapolation capabilities than polynomial basis
functions [18, 19]. A high-order IFT algorithm is proposed
by introducing the iterative domain into the IFT, and IV is
also employed to tolerate the noise data [6].

+e inherent time-delay in precision motion systems
causes nonlinearity issue. In existing IFTmethods, the linear
feedforward model is adopted, which does not solve the
coupling problem between the delay time and model pa-
rameters. Besides, the LS cannot be directly used in the
nonlinear system with time-delay [20], so the tuning ac-
curacy of feedforward parameters cannot be guaranteed. In
addition to LS, the gradient-descent method (GD) is used to
tune a feedforward controller with force ripple compensa-
tion [21]. +e Newton iterative (NI) method is used to tune
the feedforward controller iteratively for non-minimum
phase systems [16] and design a feedforward controller for
multi-input multioutput systems [7]. +ese two methods are
suitable for the feedforward tuning of nonlinear systems, but
they cannot deal with disturbances in real systems.

Many methods are proposed to identify the delay time.
+e Bode diagram of the plant can be used to fit the delay
time [22, 23]. +e time-delay term is linearly parameterized
by Taylor expansion, and a new adaptive law is constructed
to identify the delay time [20]. +en, an approximate
nonlinear LS is proposed to simultaneously estimate the
delay time and dynamic parameters in the continuous
system [24]. Moreover, the Pade approximant is applied to
replace the time-delay to realize parameter estimation [25].
In addition, the Newton iterative and separable methods are
applied to identify the delay time of nonintegral multiple
period for the discrete system [26]. +erefore, the approx-
imate linear transformation is a key step to realize the
identification of the time-delay.

As we can see, the existing IFT based on IV is not suitable
for nonlinear systems with time-delay, and the feedforward
adjustment method based on GD and NI cannot deal with
disturbances in real systems. To solve these problems, this
paper presents a precise parameter tuning method of
feedforward control with time-delay compensation. +e
main contributions of this paper are as follows: (1) fully
considering the comprehensive system time-delay from
actuator, sensor, calculation, and communication in real
platform, a nonlinear objective function is proposed based

on the measured data of a finite time task for iterative tuning
of the feedforward parameters, to minimize the position
tracking error; (2) in order to handle the proposed nonlinear
objective function and also tolerate unknown disturbances
and noise in real system, a desired optimization strategy
combining the Gauss–Newton iterative (GNI) scheme and
instrumental variable (IV) is proposed in this paper to re-
alize the unbiased estimation of the feedforward parameters
and precise delay time, which is the key innovation of this
paper; (3) the identified precise system time-delay which is a
nonintegral multiple of the sampling period, is exactly
compensated in the feedforward control with accurate path
planning time-shift. +e simulation illustration and exper-
imental validation demonstrate the advantages of the pro-
posed control strategy.

+e paper is organized as follows: in Section 2, the
mathematical model of the feedforward controller with
time-delay compensation is established, and a feedforward
parameter tuning method considering the time-delay is
elaborated; in Section 3, a discrete realization method of
feedforward control with time-delay compensation is pro-
posed; in Sections 4 and 5, the effectiveness of the proposed
method is verified in the simulation example and experiment
on an air floating precision motion platform.

2. Iterative Tuning Method of Feedforward
Parameters with Time-Delay

In order to achieve the position tracking control, a feedback-
feedforward control system is established in this paper, as
shown in Figure 1. +e error signal between the reference
position and the feedback position is processed by the
feedback controller to generate the control signal, which is
loaded on the motor to generate thrust and the controlled
plant moves.+emeasured position is fed back to the loop to
build the closed-loop control, which realizes the position
tracking control on the premise of ensuring the stability of
the system, and has the ability of restraining the disturbance.
On this basis, the feedforward control improves the position
tracking accuracy by adding an input signal in the forward
channel.

In Figure 1, the unknown controlled plant P(s) is a
single-input single-output (SISO) and continuous time-in-
variant system with time-delay, and P(s) is considered with
unit numerator for motion systems with dominant rigid-
body dynamics [6, 11, 13]. Cfb(s) is the feedback controller,
and Cff(s) is the feedforward controller. r denotes the
reference position and is a known third-order multisegment
polynomial trajectory, ufb is the feedback control signal, and
uff is the feedforward control signal. +e unknown dis-
turbance w is assumed to be given by w � H(s)ε, where ε is
the normally distributed white noise with zero mean and
variance λ2ε , H(s) is the shaping filter that makes w a colored
noise; and hence, w and r are uncorrelated. In a finite time
task [11], the planned path r is input to the system and the
system implements point-to-point motion, em is the mea-
sured position error signal, and ym is the position signal.

From Figure 1, the position error is
em � G(1 − PCff)r –GPw, where G � 1/(1 + PCfb), where
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the Laplace transform symbol (s) is omitted. It shows that
when the feedforward controllerCff is equal to the inversion
of the plant P− 1, G(1 − PCff)r in the error em is zero and
this is the goal of the feedforward parameters tuning.

2.1. Feedforward Control Model. In order to realize the
feedforward control and tune the feedforward parameters,
the mathematical model of the feedforward controller Cff is
established. Considering the time-delay in the system, the
time-advance term eτs is introduced in the linear parametric
model [11–17] and Cff is parameterized as follows:

Cff � θns
n

+ θn− 1s
n− 1

S + · · · + θ0􏼐 􏼑e
τs

� 􏽘
n

i�0
θis

i⎛⎝ ⎞⎠e
τs

,

(1)

where n can be determined by means of a model order
selection procedure [27]. θi are the feedforward parameters,
and τ is the delay time.+e feedforward parameters vector is
θ � [θ0, θ1, . . . , θn, τ]T.

2.2. Feedforward Parameter TuningMethod. In this method,
the feedforward parameters are tuned iteratively by using the
measurement data of the finite time task of the system to
achieve the feedforward control goal. In a task, the system
starts from the static state and executes point-to-point
motion to obtain the complete motion data. +e measured
signal vector u in each task is defined as
u � [u(1), u(2), . . . , u(N)]T ∈ RN, where u(t) is a mea-
surement at time instant t for t � (1, . . . , N)Ts, where Ts is
the sampling time and N is the number of sampling.

In the kth task, the feedforward controller is Ck
ff; from

equation (1), we obtain

C
k
ff � 􏽘

n

i�0
θk

i s
i⎛⎝ ⎞⎠e

τks
. (2)

And θk � [θk
0, θ

k
1, . . . , θk

n, τk]T is known but may not be
equal to the plant parameters. +e task is executed, and the
measured signals ek

m and yk
m are given by

ek
m � ek

r + ew � G 1 − PC
k
ff􏼐 􏼑r –GPw, (3)

yk
m � yk

r + yw � GP Cfb + C
k
ff􏼐 􏼑r + GPw. (4)

In ek
m, the error caused by the reference r is ek

r � G(1 −

PCk
ff )r and the error caused by the disturbance is

ew � − GPw. In yk
m, the position caused by the reference r is

yk
r � GP(Cfb + Ck

ff)r and the position caused by the dis-
turbance is yw � GPw.

+en, as shown in Figure 2, the feedforward parameters
are tuned, and the iterative format is

θk+1
� θk

+ θΔ,

C
k+1
ff � 􏽘

n

i�0
θk+1

i s
i⎛⎝ ⎞⎠e

τk+1s
� 􏽘

n

i�0
θk

i + θΔi􏼐 􏼑s
i⎡⎣ ⎤⎦e

τk+τΔ( )s
,

(5)

where θΔ � [θΔ0 , . . . , θΔn , τΔ]T is the feedforward correction
vector, θΔi are the feedforward parameters corrections, and
τΔ is the delay time correction, which constitute the feed-
forward correction model CΔff � (􏽐

n
i�0 θ
Δ
i si)eτ

Δs. In a linear
system, Ck+1

ff is a linear superposition ofCk
ff and CΔff [11, 12].

Here, Cff is nonlinearly parameterized and the feedforward
parameters and delay time need to be superimposed
separately.

Next, an objective function is established by the mea-
surement data ek

m and yk
m to calculate the feedforward pa-

rameter correction vector θΔ.

2.2.1. Objective Function for Feedforward Parameter
Identification. +e objective function J(θΔ) is established
based on the measured data, and the correction vector θΔ
can be obtained by minimizing J(θΔ). +en, Ck

ff is updated
to Ck+1

ff to minimize the position error.
First, the residual vector is established based on the

measured data. In order to associate the measured data with
θΔ, Ck+1

ff − Ck
ff is introduced into equation (4), which

contains θΔ. Assuming the disturbance w � 0, equations (3)
and (4) can be transformed into

ek
m � rG 1 − PCk

ff􏼐 􏼑, (6)

yk
m Cfb + C

k
ff􏼐 􏼑

− 1
C

k+1
ff − C

k
ff􏼐 􏼑 � rGP C

k+1
ff − C

k
ff􏼐 􏼑. (7)

+e following formula can be obtained by subtracting
equation (7) from equation (6):

ek
m − yk

m Cfb + C
k
ff􏼐 􏼑

− 1
C

k+1
ff − C

k
ff􏼐 􏼑 � rGP P

− 1
− C

k+1
ff􏼐 􏼑.

(8)

+en, (Cfb + Ck
ff)(1/sn+1)e− (τk+τΔ)s is introduced to

filter the left polynomial of equation (8), which can avoid the
calculation of the transfer function inversion, the differential
term, and the advance term, and the residual vector is de-
fined as

w

r em
ym

uff

Cff  (s)

Cfb (s) P (s)
ufb

+ + +
+

–

Figure 1: Feedback-feedforward control configuration.
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ε θΔ􏼐 􏼑 � ek
m − yk

m Cfb + C
k
ff􏼐 􏼑

− 1
C

k+1
ff − C

k
ff􏼐 􏼑􏼒 􏼓 Cfb + C

k
ff􏼐 􏼑

1
s

n+1 e
− τk+τΔ( )s

� ek
mA

1
s
e

− τΔs
− yk

m 􏽘

n

i�0

θk
i + θΔi􏼐 􏼑s

i

s
n+1

⎛⎝ ⎞⎠ − 􏽘
n

i�0

θk
i s

i

s
n

⎛⎝ ⎞⎠
1
s
e

− τΔs⎡⎢⎢⎣ ⎤⎥⎥⎦,

(9)

where A � Cfb(e− τks/sn) + 􏽐
n
i�0(θ

k
i si/sn) and the time-delay

e− τks and e− τΔs can be approximated by first-order Pade
polynomial [25].

Based on the residual vector, J(θΔ) is established as
follows:

J θΔ􏼐 􏼑 � εT θΔ􏼐 􏼑ε θΔ􏼐 􏼑 � 􏽘
N

j�1
ε2(j). (10)

+e optimization problem is θΔ,opt � minθΔJ(θΔ). When
J(θΔ) is minimized, the residual vector ε(θΔ) will be zero
without considering the disturbance and modeling error. Since
ε(θΔ) is derived from equation (8),Ck+1

ff � P− 1 can be obtained
from the right side of equation (8) equal to 0; that is, the
feedforward parameters after tuning can be equal to the true
plant parameters. +en, in the next task, ek+1

r � G

(1 − PCk+1
ff )r � 0, the position error is minimized, and the

feedforward control goal is achieved.

2.2.2. Iterative Identification of Parameters. After the defi-
nition of the objective function, the Gauss–Newton iteration
method based on instrumental variable (IV-GNI) is proposed to
realize the unbiased estimation of the feedforward correction
vector θΔ.

According to GNI, J(θΔ + ΔθΔ) is constructed by in-
troducing the parameter variation ΔθΔ into J(θΔ). +rough
the first-order Taylor expansion, J(θΔ + ΔθΔ) becomes a
linear function of ΔθΔ:

J θΔ + ΔθΔ􏼐 􏼑 � εT θΔ + ΔθΔ􏼐 􏼑ε θΔ + ΔθΔ􏼐 􏼑

� εT θΔ􏼐 􏼑ε θΔ􏼐 􏼑 + 2εT θΔ􏼐 􏼑
zε θΔ􏼐 􏼑

z θΔ􏼐 􏼑
T
ΔθΔ

+ ΔθΔ􏼐 􏼑
T zε θΔ􏼐 􏼑

z θΔ􏼐 􏼑
T

⎛⎜⎝ ⎞⎟⎠

T
zε θΔ􏼐 􏼑

z θΔ􏼐 􏼑
T
ΔθΔ,

(11)

where zε(θΔ/z(θΔ))T is the derivative of ε(θΔ) with respect
to θΔ:

zε θΔ􏼐 􏼑

z θΔ􏼐 􏼑
T

� − yk
m

1
s

n+1, . . . , yk
m

s
n

s
n, ek

mA + yk
m · 􏽘

n

i�0

θk
i s

i

s
n

⎛⎝ ⎞⎠⎛⎝ ⎞⎠e
− τΔs⎡⎢⎢⎣ ⎤⎥⎥⎦.

(12)

To minimize J(θΔ + ΔθΔ), ΔθΔ can be calculated by
making the derivative of J(θΔ + ΔθΔ) zero:

ΔθΔ � −
zε θΔ􏼐 􏼑

z θΔ􏼐 􏼑
T

⎛⎜⎝ ⎞⎟⎠

T
zε θΔ􏼐 􏼑

z θΔ􏼐 􏼑
T

⎛⎜⎝ ⎞⎟⎠

− 1
zε θΔ􏼐 􏼑

z θΔ􏼐 􏼑
T

⎛⎜⎝ ⎞⎟⎠

T

ε θΔ􏼐 􏼑,

(13)

which is in the form of LS [27, 28].+en, θΔ can be identified
iteratively based on ΔθΔ. Let θΔ,l be the lth estimate of θΔ,
and the iterative form is given by

θΔ,l+1 � θΔ,l + ΔθΔ,l, (14)

Ck
ff  (s)

Cfb (s) P (s)r em
k ym

k

Path planning

wuff

eτks
rff n

θi
ksi

i = 0

+

θk+1 = θk + θ∆

–

+ +
+

Figure 2: +e iterative tuning procedure of feedforward parameters. In the kth task, the known Ck
ff is applied to obtain the

measurement data. +e feedforward correction vector θΔ is identified by ek
m and yk

m. +en, θk is updated to θk+1 with θΔ to complete
this adjustment.
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where ΔθΔ,l can be obtained by equation (13) based on the
known θΔ,l:

ΔθΔ,l � Xl
m􏼐 􏼑

T
Xl

m􏼒 􏼓
− 1

Xl
m􏼐 􏼑

T
Yl

m. (15)

In the above formula,

Xl
m � yk

m

1
s

n+1, . . . , yk
m

s
n

s
n+1, ek

mA + yk
m · 􏽘

n

i�0

θk
i s

i

s
n

⎛⎝ ⎞⎠⎛⎝ ⎞⎠e
− τΔ,ls⎡⎢⎢⎣ ⎤⎥⎥⎦ ∈ RN×(n+2)

,

Yl
m � ek

mA + yk
m · 􏽘

n

i�0

θk
i s

i

s
n

⎛⎝ ⎞⎠⎛⎝ ⎞⎠
1
s
e

− τΔ,ls
− yk

m · 􏽘
n

i�0

θk
i + θΔ,li􏼐 􏼑s

i

s
n+1

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ ∈ RN×1
.

(16)

In this method, the optimization of J(θΔ) is transformed
into the optimization of J(θΔ + ΔθΔ), which is an ingenious
transformation.

From equations (3) and (4), ek
m and yk

m are constructed
based on r, which provides a persistence of excitation
condition and ensures that (Xl

m)TXl
m is nonsingular, so ΔθΔ,l

exists. As the motion starts from the static state and the
initial state is 0, it will not affect the identification of pa-
rameters. In the iteration, the initial value is selected as
θΔ � 0, which is located in the convex interval of the ob-
jective function containing the required extreme points, so
that the algorithm can converge to the correct value. See
Appendix for the proof process.

+e influence of the disturbance in the measured data on
ΔθΔ,l is explained below. In Figure 1, w contains the random
disturbance in the system and the unmodeled factors when
establishing the feedforward model. From equation (16), we
can get Xl

m � Xl
r + Xl

w and Yl
m � Yl

r + Yl
w, where

Xl
r � yk

r

1
s

n+1, . . . , yk
r

s
n

s
n+1, ek

rA + yk
r · 􏽘

n

i�0

θk
i s

i

s
n

⎛⎝ ⎞⎠⎛⎝ ⎞⎠e
− τΔ,ls⎡⎢⎢⎣ ⎤⎥⎥⎦,

Yl
r � ek

rA + yk
r · 􏽘

n

i�0

θk
i s

i

s
n

⎛⎝ ⎞⎠⎛⎝ ⎞⎠
1
s
e

− τΔ,ls
− yk

r · 􏽘
n

i�0

θk
i + θΔ,li􏼐 􏼑s

i

s
n+1

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

Xl
w � wGP

1
s

n+1, . . . ,wGP
s

n

s
n+1,w 􏽘

n

i�0

θk
i s

i

s
n − A⎛⎝ ⎞⎠GPe

− τΔ,ls⎡⎢⎢⎣ ⎤⎥⎥⎦,

Yl
w � w 􏽘

n

i�0

θk
i s

i

s
n − A⎛⎝ ⎞⎠GP

1
s
e

− τΔ,ls
− w · 􏽘

n

i�0

θk
i + θΔ,li􏼐 􏼑s

i

s
n+1

⎛⎝ ⎞⎠GP⎡⎢⎢⎣ ⎤⎥⎥⎦.

(17)

According to equation (15), based on the measured data
with disturbance, we can get ΔθΔ,lm � ΔθΔ,lr + A, and the
matrix inversion formula is used in the derivation [27, 28],
where

ΔθΔ,lr � Xl
r􏼐 􏼑

T
Xl

r􏼒 􏼓
− 1

Xl
r􏼐 􏼑

T
Yl

r,

A � − Xl
r􏼐 􏼑

T
Xl

r􏼒 􏼓
− 1
B I + Xl

r􏼐 􏼑
T
Xl

r􏼒 􏼓
− 1
B􏼢 􏼣

− 1

Xl
r􏼐 􏼑

T
Xl

r􏼒 􏼓
− 1

Xl
r􏼐 􏼑

T
Yl

r

+ I − Xl
r􏼐 􏼑

T
Xl

r􏼒 􏼓
− 1
B I + Xl

r􏼐 􏼑
T
Xl

r􏼒 􏼓
− 1
B􏼢 􏼣

− 1⎧⎨

⎩

⎫⎬

⎭

Xl
r􏼐 􏼑

T
Xl

r􏼒 􏼓
− 1
C,

B � Xl
r􏼐 􏼑

T
Xl

w + Xl
w􏼐 􏼑

T
Xr + Xl

w􏼐 􏼑
T
Xl

w,

C � Xl
r􏼐 􏼑

T
Yl

w + Xl
w􏼐 􏼑

T
Yl

r + Xl
w􏼐 􏼑

T
Yl

w,

(18)

in which ΔθΔ,lr is determined by the system parameters and is
not affected by the disturbance, which is accurate. However,
due to the presence of w, ΔθΔ,lr cannot be obtained directly.
+e reasons are as follows: the mathematical expectation of
ΔθΔ,lm is E(ΔθΔ,lm ) � ΔθΔ,lr + E(A). It can be seen from
equations (17) and (18) that A contains (Xl

r)
TXl

r and
(Xl

r)
TYl

r, where the reference r is auto-correlated, and A
contains (Xl

w)TXl
w and (Xl

w)TYl
w, where w is autocorrelated,

so that there exists E(A)≠ 0. +erefore, when the distur-
bance exists, ΔθΔ,lm obtained by the Gauss–Newton iterative
method cannot be guaranteed to be the unbiased estimate of
ΔθΔ,lr .

Since equation (15) has the least square calculation
format, the instrumental variable method in linear system
identification can be employed to eliminate the deviation
caused by the disturbance w. +e instrumental variable Z is
introduced, which is the same dimension as Xl

m and satisfies
the following limit characteristics: limN⟶∞(1/N)ZTw � 0
and limN⟶∞(1/N)ZTXl

r � Q, in which Q is nonsingular.
+at is, Z needs to be independent of w and is strongly
correlated to ek

r and yk
r in Xl

r. Obviously, the ideal choice is
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Z � Xl
r, but X

l
r cannot be obtained when w ≠ 0. Since both ek

r

and yk
r are correlated to r, one choice of Z is

Z � [r, . . . , rsn, rsn+1], which can meet the limit
characteristics.

From equation (15), we can get Yl
m � Xl

mΔθ
Δ,l, and ZT is

introduced to obtain ZTYl
m � ZTXl

mΔθ
Δ,l
IV . +en, the IV es-

timate of ΔθΔ,l is ΔθΔ,lIV � (ZTXl
m)− 1ZTYl

m. According to the
limit characteristics of Z, we can get

lim
N⟶∞
ΔθΔ,lIV �

ZTXl
r

N
􏼠 􏼡

− 1 ZTXl
r

N
􏼠 􏼡 ·ΔθΔ,lr

− lim
N⟶∞

ZTXl
r

N
􏼠 􏼡

− 1ZTXl
w

N
I+

ZTXl
r

N
􏼠 􏼡

− 1ZTXl
w

N
⎡⎣ ⎤⎦

− 1

·
ZTXl

r

N
􏼠 􏼡

− 1 ZTXl
r

N
􏼠 􏼡ΔθΔ,lr

+ lim
N⟶∞

ZTXl
r

N
+
ZTXl

w

N
􏼠 􏼡

− 1ZTYl
w

N

�ΔθΔ,lr .

(19)

+at is, the instrumental variable Z eliminates the deviation
caused by the disturbancew and ΔθΔ,lIV is the consistent estimate
ofΔθΔ,lr .When the number ofmeasured dataN is large enough,
ΔθΔ,lIV has an unbiased estimation characteristic. +erefore, θΔIV
obtained by the iteration in equation (14) based on ΔθΔ,lIV is also
the unbiased estimation of the feedforward parameter correction
vector θΔ, which canminimize J(θΔ). Since θΔ is calculated by a
complete finite time task data, the whole tuning procedure is
conducted offline.

Based on the above optimization for J(θΔ), the iterative
tuning of feedforward controller can be executed. +e flow
chart of iterative tuning of feedforward parameters is shown
in Figure 3, and the procedure is as follows:

(1) k � 0, the current feedforward controller is
Ck

ff � C0
ff, measures ek

m and yk
m with Ck

ff applied to
the system.

(2) Iterative calculation of θΔ. As shown in Figure 3,
when l � 0, set the initial correction vector
θΔ,l � θΔ,0 � 0. Construct Xl

m and Yl
m from equation

(16) and introduce the instrumental variable
Z � [r, . . . , rsn, rsn+1]; solveΔθΔ,lIV � (ZTXl

m)− 1ZTYl
m,

and then, in the next iteration, θΔ,l+1 � θΔ,l + ΔθΔ,l. If
each element in θΔ converges to its stable value, the
iterative calculation of θΔ ends and proceeds to the
next step. Otherwise, l � l + 1, and repeat this step.

(3) Construct the new feedforward controller Ck+1
ff �

[􏽐
n
i�0(θ

k
i + θΔi )si]e(τk+τΔ)s, and this adjustment is

completed.+en, set k � k + 1 and proceed from step 1.

In this section, the iterative tuning method of the
feedforward parameters in the motion system with time-
delay is elaborated. A nonlinear objective function J(θΔ) is

established based on the measured data ek
m and yk

m of a single
finite time task, and the IV-GNI method is proposed to
identify unbiased feedforward parameters and delay time
with the presence of disturbance. +en, the feedforward
parameters are tuned iteratively to match the tuned feed-
forward controller with the inverse model of the plant, so as
to minimize the position error and achieve the optimal
feedforward control performance.

3. Realization Method of Feedforward
Control with Precise Time-
Delay Compensation

Discrete signals are utilized in the digital control system, and
the control period is Ts. +e realization method of feedfor-
ward control is explained by taking n � 2 as an example in
equation (1). +e feedforward control signal is
uff � reτs(θ2s2 + θ1s + θ0) � affθ2 + vffθ1 + rffθ0, where
rff, vff, and aff are the position, velocity, and acceleration
inputs in the feedforward control, respectively, and τ is the
delay time.+e control block diagram is shown in Figure 4. At
time t, the system reference position is the planned signal r(t),
and rff, vff, and aff are r(t + τ), v(t + τ), and a(t + τ),
respectively, which are ahead of time period τ. +en, they are
introduced into the feedforward model to generate the
feedforward force, which can make the plant reach the ref-
erence position, and thus realize the feedforward control with
time-delay compensation, so as to improve the control
performance.

Is θ∆convergent?

Yes

No

θ∆,l 

θ∆,l+1 = θ∆,l + ∆θ∆,l l = l + 1 k = k + 1

Initial correction vector
θ∆,0 = 0 

The system executes the finite time task
and measures the data em

k and ym
k  Ck

ff

Ca
lc
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at
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e o
f θ

∆ Calculate Xl
m, Yl

m as equation (16)
and the instrumental variable is

Z = [r, . . ., rsn, rsn+1],
and calculate ∆θ∆,l = ( ZTXl

m)–1ZTY l
m

Initial feedforward controller
C0

ff = i=0

n
θ0

i s
i eτ0s
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n
(θk

i + θ∆
i)si e(τk+τ∆)s Cff =k+1

Figure 3: +e flow chart of iterative tuning of feedforward
parameters.

6 Mathematical Problems in Engineering



+e ahead planning of the position rff by accurate path
planning time-shift is explained below.+e delay time τmay
be a nonintegral multiple of period, which satisfies
n0Ts ≤ τ < (n0 + 1)Ts and n0 is a nonnegative integer. As
shown in Figure 5(a), the continuous time position r (the
thick black line) is obtained by the position planning
function [29] and it is shifted to the left by τ along the time
axis to obtain rff (the thick blue line), which realizes
rff � reτs. At the sampling time (t � nTs, n � 0, 1, 2, . . . , ),
rd (the fine black line) is r(t) � r(nTs), and rffd (the fine
blue line) is r(t + τ) � r(nTs + τ), which are the discrete
position signals received by the system. In fact, the desired
signal processed by the actual lead-time term is rlead (the
dotted red line), i.e., shifting rd to the left by τ, but each point
of rlead is not at the sampling time, which cannot be obtained.
Here, there are errors in approximating rlead with rffd, but
since the system runs periodically, the errors cannot be
eliminated. In [30], the position signal with lead time of
integer multiple of period is obtained first and then delayed
by means of calculation to realize the lead-time of non-
integer multiple of period. In comparison, the method by
path planning time-shift does not need delay calculation,
which is more convenient to implement in one step.+e lead
or lag is a relative relationship in time and can be converted
into each other. +us, rff � reτs can be realized by the delay
planning of r relative to rff; that is, r � rffe− τs. As shown in
Figure 5(b), at the sampling time t, rff is planned as r(nTs)

and r is planned as r(nTs − τ). +us, the lag of the reference
position signal is realized, and the same effect can be
achieved.+e lead time of the feedforward signal aff and vff

relative to the reference signal r can also be implemented by
this method to complete the feedforward control.

4. Simulation Analysis

In this section, the simulation is implemented to verify
whether the feedforward model obtained by the proposed
algorithm matches the inverse of the controlled plant. +ree
controlled plants with time-delay, a mass model, a mass
damping model, and a mass stiffness damping model, are
considered separately in the simulation, and the feedback-
feedforward control system is shown in Figure 1. +e
feedforward model is established, and the initial parameters
are given. +en, the Gauss–Newton iterative method based

on instrumental variable is used to identify and tune the
feedforward parameters with the measurement data of the
finite time task. Finally, the feedforward control model with
delay compensation is introduced into the system for control
performance improvement. Meanwhile, the parameter ac-
curacy of the proposed algorithm is compared with several
existing tuning algorithms.

4.1. Simulation 1. In simulation 1, a mass model with time-
delay is considered and the plant is given by

P �
1
s
2e

− 0.0017s
. (20)

It is introduced into the control loop, and the control
period is set as 1ms. +e feedback controller is a PID
controller, and Cfb � kp(1 + (2πfi/s) + (s/2πfd)), where
kp � 22000.0, fi � 5.0Hz, and fd � 10.0Hz, which enables
the system with bandwidth of 129.6Hz, phase margin of
35.6°, and amplitude margin of 6.3 dB.

4.1.1. Simulation Illustration of Feedforward Parameter
Tuning Method. Firstly, according to the parameterization
method in Section 2 and the model of plant, the feedforward
controller is parameterized as Cff � (θ2s2)eτs. +e initial
feedforward controller is C0

ff � (0.5s2)e0.0006s, and the initial
parameters are θ02 � 0.5 and τ0 � 0.0006, which are given
based on the rule that it should be smaller than the plant
parameters according to Appendix.

In a finite time task, the system reference position is a
third-order point-to-point motion path, as shown in Fig-
ure 6. Since C0

ff contains e0.0006s, r (the solid black line) is
delayed by 0.6ms relative to rff (the dashed blue line) by the
method of path planning in Section 3, so the acceleration aff

in feedforward control is advanced relative to r. +en, the
control system with acceleration and time-delay feedforward
is implemented.

+e task is executed, and the feedforward correction
parameters are identified based on the measured data. Since
the key step is the calculation of the feedforward correction
parameters θΔ in the proposed tuning method and the
existing IFT methods, θΔ is calculated by IV-GNI in the
proposed method and by NI and IV-LS in the existing IFT,

Cfb (s) P (s)r em
ym

Path planning

aff

vff

uff

rff

d/dt d/dteτs

θ0

θ1

θ2

+

+

+

+

+

+
+

–

Figure 4: Implementation of feedforward control with precise time-delay compensation.
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Figure 5: +e method to plan the position rff in advance relative to the reference r.
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Figure 6: +e position r, velocity v, acceleration a, and jerk j of the point-to-point motion in simulation 1.
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respectively. +en, the results are compared to elaborate the
applicability of these methods.

In order to verify the ability of the proposed identifi-
cation algorithm to tolerate the disturbance, the simulation
analysis is carried out in two cases:

(1) In the case of disturbance w � 0
No disturbance is introduced into the system, and
θΔIV− GNI (the black line in Figure 7(a)) is obtained by
IV-GNI. For comparison, the Gauss–Newton iter-
ation method is adopted to calculate ΔθΔm directly by
the measurement data and θΔGNI (the blue line) is
obtained by equation (14). +en, θΔNI (the magenta
line) and θΔIV− LS (the green line) are obtained by the
Newton iterative method and the least square
method based on instrumental variable in existing
IFT. Since the linear model is established in IV-LS,
the delay time cannot be calculated. +e results are
also shown in Table 1.

(2) In the case of w ≠ 0
+e disturbance w � H(s)ε is introduced into the
system. Similar to the disturbance as present in
[11, 12], ε is a normally distributed white noise with
zero mean and variance λ2ε � 0.02, and
H(s) � (0.05s + 1)/(10s + 1). θΔIV− GNI, θ

Δ
GNI, θ

Δ
NI, and

θΔIV− LS are calculated, and the results are shown in
Figure 7(b) and Table 2.

From the above results, we can get the following: (1)
when w � 0, each value in θΔIV− GNI converges to the corre-
sponding correct value, θΔ2 � 0.5 and τΔ � 0.0011, which are
the difference values between the plant parameters and the
initial feedforward parameters. It is shown that the opti-
mization scheme in Section 2 is effective and the IV-GNI
method is also applicable in the case without disturbance. As
the path planning time-shift method is employed to realize
e0.0006s in C0

ff, its validity is indirectly proved. θ
Δ
GNI and θΔNI

are equal to the accurate values, indicating that GNI and NI
can also be used in this case. +e stable value of θΔIV− LS is
0.483, the deviation from its accurate value is 0.017, and the
delay time cannot be calculated, which shows that IV-LS is
not suitable for the identification of the nonlinear system
with time-delay. (2) When w ≠ 0, the stable values of θΔ2 GNI,
θΔ2 NI, and θΔ2 IV− LS are 0.479, 0.485, and 0.484, and the
deviations from the accurate value are 0.021, 0.015, and
0.016. +e stable values of τΔGNI and τΔNI are 0.00929 and
0.00584, and the deviations from the accurate value are
0.00819 and 0.00474.+e stable values of θΔIV− GNI are equal to
the accurate values. It shows that GNI and NI cannot deal
with the disturbance, which will lead to the identification
deviation. +e stable values of θΔIV− LS with and without
disturbances are basically equal, which means that the in-
strumental variable eliminates the effect of disturbance, but
IV-LS cannot calculate the delay time. +e introduction of
IV in GNI is feasible, which has the ability to tolerate the
disturbance, and the unbiased estimation of θΔ can be
obtained.

Finally, the feedforward parameters are tuned. +e
feedforward controller is updated to C1

ff � (s2)e0.0017s

according to equation (5) with θΔIV− GNI, which is equal to the
inverse model of the plant in equation (20), so the feed-
forward tuning is completed and the effectiveness of the
feedforward parameter tuning method is verified.

4.1.2. Feedforward Control Results in Simulation 1. Based on
the realization method of the feedforward control in Section
3, the tuned feedforward controller C1

ff is introduced into
the system to obtain the position error without disturbance
w injection.

In Figure 8, the position error of the feedback control is
shown by the black line, and the position error after in-
troducing acceleration as well as velocity feedforward is
shown by the dashed blue line; it can be seen that the po-
sition error decreases obviously after the feedforward con-
trol is introduced and the maximum error is reduced from
3.292 × 10− 4 m to 4.172 × 10− 5 m.

In Figure 9, the position error without the time-delay
compensation in the feedforward control is shown by the
black line, and the position error with the time-delay
compensation is shown by the dashed blue line. It can be
seen that the tracking accuracy is further improved by
introducing the time-delay compensation. +e error of
nonzero jerk segment is greatly reduced, and the maxi-
mum error is reduced from 4.172 × 10− 5 m to
4.944 × 10− 6 m, which means the impact effect caused by
jerk segment is mitigated and the time-delay feedforward
compensation method in Section 3 is effective.

4.2. Simulation 2. In simulation 2, a mass damping model
with time-delay is considered and the plant is given by

P �
1

0.08s
2

+ 0.05s
e

− 0.0029s
. (21)

+e control period is set as 1 ms. +e feedback con-
troller is a PID controller and Cfb � kp(1 + (2πfi

/s) + (s/2πfd)), where kp � 900.0, fi � 5.0Hz, and
fd � 10.0Hz, which enables the system with a bandwidth
of 67.6 Hz, phase margin of 34.6°, and amplitude margin
of 7.2 dB.

4.2.1. Simulation Illustration of Feedforward Parameter
Tuning Method. Firstly, the feedforward controller is pa-
rameterized as Cff � (θ2s2 + θ1s)eτs. +e initial feedforward
controller is C0

ff � (0.05s2 + 0.02s)e0.0013s. In a finite time
task, the system reference position is a third-order point-to-
point motion path, as shown in Figure 10. SinceC0

ff contains
e0.0013s, r (the solid black line) is delayed by 1.3ms relative to
rff (the dashed blue line) by the method of path planning in
Section 3, so the acceleration aff and velocity vff in feed-
forward control are advanced relative to r. +en, the control
system with acceleration, velocity, and time-delay feedfor-
ward is implemented.

+e task is executed, and the feedforward correction
parameters are identified based on the measured data.
Similar to simulation 1, θΔ are calculated by IV-GNI in the
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proposed method and by NI and IV-LS in the existing IFT,
respectively. +e simulation analysis is also carried out in
two cases with and without disturbance.

No disturbance is introduced into the system, and the
results of θΔIV− GNI, θΔGNI, θΔNI, and θΔIV− LS are shown in
Figure 11(a) and Table 3.+en, the disturbancew � H(s)ε is

0
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1 2 3 4 50
Iterations
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θ2
∆ τ∆
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(a)
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×10–3
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GNI
NI
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Iterations
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Iterations

θ2
∆ τ∆

IV-LS
True value

(b)

Figure 7: Iterative calculation results of feedforward parameters correction in simulation 1: (a) the results without disturbance; (b) the
results under disturbance.

Table 1: Iterative calculation results of feedforward parameters
correction without disturbance in simulation 1.

θΔ2 (1× 10− 1) τΔ (1× 10− 3)
Iterations IV-GNI GNI NI IV-LS IV-GNI GNI NI

1 5.00 5.00 5.02 4.83 1.08 1.10 0.216
2 5.00 5.00 5.00 4.83 1.09 1.10 1.09
3 5.00 5.00 5.00 4.83 1.09 1.10 1.10
4 5.00 5.00 5.00 4.83 1.09 1.10 1.10
5 5.00 5.00 5.00 4.83 1.09 1.10 1.10

Table 2: Iterative calculation results of feedforward parameters
correction under disturbance in simulation 1.

θΔ2 (1× 10− 1) τΔ (1× 10− 3)
Iterations IV-GNI GNI NI IV-LS IV-GNI GNI NI

1 5.01 4.79 4.94 4.84 1.09 9.13 1.22
2 5.00 4.79 4.86 4.84 1.10 9.29 5.75
3 5.00 4.79 4.85 4.84 1.10 9.29 5.84
4 5.00 4.79 4.85 4.84 1.10 9.29 5.84
5 5.00 4.79 4.85 4.84 1.10 9.29 5.84
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introduced into the system and ε is a normally distributed
white noise with zero mean and variance λ2ε � 0.005 and
H(s) � (0.05s + 1)/(10s + 1). +e results are shown in
Figure 11(b) and Table 4.

From the above results, we can get the following: (1)
when w � 0, each value in θΔIV− GNI converges to the corre-
sponding correct value: θΔ1 � 0.03, θΔ2 � 0.03, and
τΔ � 0.0016. It is shown that the optimization scheme in
Section 2 is effective and the IV-GNI method is also ap-
plicable in the case without disturbance. As the path
planning time-shift method is employed to realize e0.0013s in

C0
ff, its validity is indirectly proved. θΔGNI and θΔNI are ba-

sically equal to the accurate values, indicating that GNI and
NI can also be used in this case. +e stable values of θΔ1 IV− LS
and θΔ2 IV− LS are 0.0107 and 0.0330, and the deviations from
the accurate values are 0.0193 and 0.003; the delay time
cannot be calculated, which shows that IV-LS is not suitable
for the identification of the nonlinear system with time-
delay. (2) When w ≠ 0, the stable values of θΔ1 GNI, θ

Δ
1 NI, and

θΔ1 IV− LS are 0.0410, 0.0401, and 0.0109, and the deviations
from the accurate values are 0.0110, 0.0101, and 0.0191. +e
stable values of θΔ2 GNI, θ

Δ
2 NI, and θ

Δ
2 IV− LS are 0.0259, 0.0265,

and 0.0328, and the deviations from the accurate values are
0.0041, 0.0035, and 0.0028. +e stable values of τΔGNI and τΔNI
are 0.00761 and 0.00624, and the deviations from the ac-
curate values are 0.00601 and 0.00464. +e stable values of
θΔIV− GNI are basically equal to the accurate values. It shows
that GNI and NI cannot deal with the disturbance, which
will lead to the identification deviation. +e stable values of
θΔIV− LS with and without disturbance are basically equal,
which means that the instrumental variable eliminates the
effect of disturbance, but IV-LS cannot calculate the delay
time.+e introduction of IV in GNI is feasible, which has the
ability to tolerate the disturbance, and the unbiased esti-
mation of θΔ can be obtained.

Finally, the feedforward parameters are tuned. +e
feedforward controller is updated to C1

ff � (0.08s2

+0.05s)e0.00293s according to equation (6) with θΔIV− GNI,
which is basically equal to the inverse model of the plant in
equation (21), so the feedforward tuning is completed and
the effectiveness of the feedforward parameter tuning
method is verified.

4.2.2. Feedforward Control Results in Simulation 2.
Based on the realization method of the feedforward control
in Section 3, the tuned feedforward controller C1

ff is in-
troduced into the system to obtain the position error without
disturbance w injection.

In Figure 12, the position error of the feedback control
decreases obviously after the acceleration and velocity
feedforward control is introduced, and the maximum error
is reduced from 3.431 × 10− 4 m to 5.231 × 10− 5 m.

In Figure 13, the tracking accuracy is further improved
by introducing the time-delay compensation. +e error of
nonzero jerk segment is greatly reduced, and the maximum
error is reduced from 5.231 × 10− 5 m to 7.707 × 10− 6 m,
which means the impact effect caused by jerk segment is
mitigated and the time-delay feedforward compensation
method in Section 3 is effective.

4.3. Simulation 3. In simulation 3, a mass stiffness damping
model with time-delay is considered and the plant is given by

P �
1

2s
2

+ 5s + 7
e

− 0.0013s
. (22)

+e control period is set as 1ms. +e feedback controller
is a PID controller and Cfb � kp(1 + (2πfi/s) + (s/2πfd)),
where kp � 57000.0, fi � 5.0Hz, and fd � 10.0Hz, which
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Figure 8: Comparison of position errors with and without feed-
forward control in simulation 1.
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Figure 9: Comparison of position errors with and without time-
delay feedforward compensation in simulation 1.
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enables the system with a bandwidth of 151.5Hz, phase
margin of 36.2°, and amplitude margin of 6.28 dB.

4.3.1. Simulation Illustration of Feedforward Parameter
Tuning Method. Firstly, the feedforward controller is pa-
rameterized as Cff � (θ2s2 + θ1s + θ0)eτs. +e initial feed-
forward controller is C0

ff � (0.8s2 + 2.0s + 5.0)e0.0007s. In a
finite time task, the system reference position is a third-order
point-to-point motion path, as shown in Figure 14. Since
C0

ff contains e0.0007s, r (the solid black line) is delayed by
0.7ms relative to rff (the dashed blue line) by the method of
path planning in Section 3, so the acceleration aff, velocity
vff, and position rff in feedforward control are advanced
relative to r. +en, the control system with acceleration,
velocity, position, and time-delay feedforward is
implemented.

+e task is executed, and the feedforward correction
parameters are identified based on the measured data.
Similar to simulation 1, no disturbance is introduced into
the system, and the results of θΔIV− GNI, θ

Δ
GNI, θ

Δ
NI, and θΔIV− LS

are shown in Figure 15(a) and Table 5.+en, the disturbance
w � H(s)ε is introduced into the system and ε is a normally
distributed white noise with zero mean and variance
λ2ε � 0.04, and H(s) � (0.05s + 1)/(10s + 1). +e results are
shown in Figure 15(b) and Table 6.

From the above results, we can get the following: (1)
when w � 0, θΔIV− GNI, θ

Δ
GNI, and θΔNI are basically equal to

the correct values, θΔ0 � 2.0, θΔ1 � 3.0, θΔ2 � 1.2, and
τΔ � 0.0006, indicating that IV-GNI, GNI, and NI can be
used in the case without disturbance. As the path planning
time-shift method is employed to realize e0.0007s in C0

ff , its
validity is indirectly proved. +e stable values of θΔ0 IV− LS,
θΔ1 IV− LS, and θΔ2 IV− LS are 2.64, 2.56, and 1.25, and the
deviations from the accurate values are 0.64, 0.44, and
0.05; the delay time cannot be calculated, which shows
that IV-LS is not suitable for the identification of the
nonlinear system with time-delay. (2) When w ≠ 0, the
stable values of θΔ0 GNI, θ

Δ
0 NI, and θΔ0 IV− LS are 1.88, 1.89,

and 2.79, and the deviations from the accurate values are
0.12, 0.11, and 0.79. +e stable values of θΔ1 GNI, θ

Δ
1 NI, and
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Figure 10: +e position r, velocity v, acceleration a, and jerk j of the point-to-point motion in simulation 2.
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θΔ1 IV− LS are 3.07, 3.07, and 2.46, and the deviations from
the accurate values are 0.07, 0.07, and 0.54. +e stable
values of θΔ2 GNI, θ

Δ
2 NI, and θΔ2 IV− LS are 1.18, 1.18, and 1.26,

and the deviations from the accurate values are 0.02, 0.02,
and 0.06. +e stable values of τΔGNI and τΔNI are 0.0014 and
0.00128, and the deviations from the accurate values are
0.0008 and 0.00068. θΔ0 , θ

Δ
1 , and θΔ2 of method GNI and NI

are close to the real values, but τΔ is quite different from
the real value. +e deviation between θΔIV− LS and the

accurate value is large. +e stable values of θΔIV− GNI are
basically equal to the accurate values. It shows that GNI
and NI cannot deal with the disturbance, which will lead
to the identification deviation. +e introduction of IV in
GNI is feasible, which has the ability to tolerate the dis-
turbance, and the unbiased estimation of θΔ can be
obtained.

Finally, the feedforward parameters are tuned. +e
feedforward controller is updated to C1

ff � (2.00s2 + 5.01s +
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Figure 11: Iterative calculation results of feedforward parameters correction in simulation 2: (a) the results without disturbance; (b) the
results under disturbance.

Table 3: Iterative calculation results of feedforward parameters correction without disturbance in simulation 2.

θΔ1 (1× 10− 2) θΔ2 (1× 10− 2) τΔ (1× 10− 3)
Iterations IV-GNI GNI NI IV-LS IV-GNI GNI NI IV-LS IV-GNI GNI NI

1 3.00 2.95 2.91 1.07 3.00 3.01 3.06 3.30 1.59 1.55 0.04
2 3.00 2.99 3.00 1.07 3.00 3.00 3.00 3.30 1.60 1.59 1.57
3 3.00 2.99 3.00 1.07 3.00 3.00 3.00 3.30 1.60 1.59 1.60
4 3.00 2.99 3.00 1.07 3.00 3.00 3.00 3.30 1.60 1.59 1.60
5 3.00 2.99 3.00 1.07 3.00 3.00 3.00 3.30 1.60 1.59 1.60
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6.98)e0.000130s according to equation (6) with θΔIV− GNI, which
is basically equal to the inverse model of the plant in
equation (22), so the feedforward tuning is completed and

the effectiveness of the feedforward parameter tuning
method is verified.

4.3.2. Feedforward Control Results in Simulation 3.
Based on the realization method of the feedforward control
in Section 3, the tuned feedforward controller C1

ff is in-
troduced into the system to obtain the position error without
disturbance w injection.

In Figure 16, the position error of the feedback control
decreases obviously after the acceleration, velocity, and
position feedforward control is introduced and the maxi-
mum error is reduced from 2.481 × 10− 4 m to 2.36 × 10− 5 m.

In Figure 17, the tracking accuracy is further improved
by introducing the time-delay compensation. +e error of
nonzero jerk segment is greatly reduced, and the maximum
error is reduced from 2.36 × 10− 5 m to 1.338 × 10− 6 m,
which means the impact effect caused by jerk segment is
mitigated and the time-delay feedforward compensation
method in Section 3 is effective.

5. Experimental Verification

In this section, we verify whether the feedforward model
obtained by the proposed algorithm matches the inverse of
the plant on a precise air floating motion control experiment
platform, and the parameter accuracy of the proposed op-
timization scheme is compared with several existing tuning
algorithms.

5.1. Experimental Setup. +e experimental setup is shown in
Figure 18, which is a H-type precision air floating platform
and has two degrees of freedom in the XY direction. In this
work, the method is only tested in the Y direction. In the Y
direction, the platform is driven directly by a single per-
manent magnet linear synchronous motor (PMLSM). +e
controller communicates with the motor driver through
EtherCAT bus, and the position signal is measured by a
grating ruler and fed back to the controller to realize the
closed-loop control. +e system software includes a moni-
toring software (Twincat 3.0 Scope View) and a real-time
control software (Twincat 3.0 eXtended Automation Engi-
neering). +e control algorithm is implemented by using C/
C++ code-based modules, and the sampling period is 1ms.

+e frequency response curve of the controlled plant is
shown by the fine black line in Figure 19. In the frequency
range below 100Hz, the amplitude-frequency characteristic
indicates that the controlled plant can be identified as a second-
order rigid-body model approximately. +e phase-frequency

Table 4: Iterative calculation results of feedforward parameters correction under disturbance in simulation 2.

θΔ1 (1× 10− 2) θΔ2 (1× 10− 2) τΔ (1× 10− 3)
Iterations IV-GNI GNI NI IV-LS IV-GNI GNI NI IV-LS IV-GNI GNI NI

1 3.05 4.09 3.68 1.09 2.99 2.59 2.89 3.28 1.58 7.39 0.12
2 3.05 4.10 3.99 1.09 2.98 2.59 2.66 3.28 1.63 7.60 5.91
3 3.05 4.10 4.01 1.09 2.98 2.59 2.65 3.28 1.63 7.61 6.24
4 3.05 4.10 4.01 1.09 2.98 2.59 2.65 3.28 1.63 7.61 6.24
5 3.05 4.10 4.01 1.09 2.98 2.59 2.65 3.28 1.63 7.61 6.24
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Figure 12: Comparison of position errors with and without
feedforward control in simulation 2.
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Figure 13: Comparison of position errors with and without time-
delay feedforward compensation in simulation 2.
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characteristic does not remain − 180° but decreases linearly
with the increase in the frequency and the slope is constant,
which is considered to be caused by the time-delay [23].

+e feedback controller is a PID controller, and
Cfb � kp(1 + (2πfi/s) + (s/2πfd)), where kp � 900.0,
fi � 5.0Hz, and fd � 10.0Hz, which enables the system
with a bandwidth of 64.7Hz, phase margin of 29.6°, and
amplitude margin of 5.6 dB.

5.2. Experimental Verification of Feedforward Parameter
Tuning Method. Firstly, the feedforward control model is
established. +e air floating guide in the platform eliminates
the influence of friction, and the plant is a second-order
rigid-body motion model with time-delay, so the feedfor-
ward controller is parameterized as Cff � (θ2s2)eτs.

In the finite time task, the system reference position is a
third-order point-to-point motion path, as shown in Fig-
ure 20, and the maximum values for position, velocity, ac-
celeration, and jerk are 0.1m, 0.1m/s, 1m/s2, and 10.0m/s3.

+en, the feedforward correction parameters are cal-
culated. +e initial feedforward controller is set to C0

ff � 0,
so the initial task is executed without the feedforward
control. e0m and y0m are measured, and the objective function

is established.+e same as the simulation, θΔIV− GNI, θ
Δ
GNI, θ

Δ
NI,

and θΔIV− LS are calculated by four algorithms, respectively.
+e results are shown in Figure 21 and Table 7. In θΔIV− GNI,
θΔ2IV− GNI converges to 0.080 and τΔIV− GNI converges to 0.0029.

Finally, the feedforward parameters are tuned. With
the contribution of θΔIV− GNI, the new feedforward controller
is obtained as C1

ff � (0.08s2)e0.0029s. +e inverse model of
C1

ff is (1/0.08s2)e− 0.0029s, and the frequency response curve
is shown as the thick blue line in Figure 19, which is
consistent with the plant. So the tuning of the feedforward
parameters is completed, and the stable values of θΔIV− GNI
are correct. +e stable values of θΔ2 GNI, θ

Δ
2 NI, and θΔ2 IV− LS

are 0.074, 0.075, and 0.084, and the stable values of τΔGNI
and τΔNI are 0.00717 and 0.00637, which means that the
results of θΔGNI, θ

Δ
NI, and θΔIV− LS are biased. +e cable forces

and other unknown disturbances during the experiment
are not dealt within GNI and NI, which leads to the bias of
θΔGNI and θ

Δ
NI. +e results of θΔIV− LS indicate that IV-LS is not

applicable to nonlinear systems, and the identification
accuracy of dynamic parameters is affected. +e GNI based
on IV can achieve unbiased estimation under disturbance
and can be applied to feedforward parameter tuning with
time-delay.
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Figure 14: +e position r, velocity v, acceleration a, and jerk j of the point-to-point motion in simulation 3.
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Figure 15: Iterative calculation results of feedforward parameters correction in simulation 3: (a) the results without disturbance; (b) the
results under disturbance.

Table 5: Iterative calculation results of feedforward parameters correction without disturbance in simulation 3.

θΔ0 θΔ1 θΔ2 τΔ (1×10–4)
Iterations IV-GNI GNI NI IV-LS IV-GNI GNI NI IV-LS IV-GNI GNI NI IV-LS IV-GNI GNI NI

1 2.00 2.00 2.02 2.64 3.00 3.00 2.99 2.56 1.20 1.20 1.21 1.25 5.97 5.99 0.0
2 2.00 2.00 2.00 2.64 3.00 3.00 3.00 2.56 1.20 1.20 1.20 1.25 5.97 5.98 5.95
3 2.00 2.00 2.00 2.64 3.00 3.00 3.00 2.56 1.20 1.20 1.20 1.25 5.97 5.98 5.98
4 2.00 2.00 2.00 2.64 3.00 3.00 3.00 2.56 1.20 1.20 1.20 1.25 5.97 5.98 5.98
5 2.00 2.00 2.00 2.64 3.00 3.00 3.00 2.56 1.20 1.20 1.20 1.25 5.97 5.98 5.98

Table 6: Iterative calculation results of feedforward parameters correction under disturbance in simulation 3.

θΔ0 θΔ1 θΔ2 τΔ (1× 10− 4)
Iterations IV-GNI GNI NI IV-LS IV-GNI GNI NI IV-LS IV-GNI GNI NI IV-LS IV-GNI GNI NI

1 1.98 1.88 1.93 2.79 3.01 3.07 3.04 2.46 1.20 1.18 1.20 1.26 6.01 13.8 0.0
2 1.98 1.88 1.89 2.79 3.01 3.07 3.07 2.46 1.20 1.18 1.18 1.26 5.97 14.0 12.6
3 1.98 1.88 1.89 2.79 3.01 3.07 3.07 2.46 1.20 1.18 1.18 1.26 5.97 14.0 12.8
4 1.98 1.88 1.89 2.79 3.01 3.07 3.07 2.46 1.20 1.18 1.18 1.26 5.97 14.0 12.8
5 1.98 1.88 1.89 2.79 3.01 3.07 3.07 2.46 1.20 1.18 1.18 1.26 5.97 14.0 12.8
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5.3. Experimental Results. According to the realization
method of feedforward control with precise time-delay
compensation, the new feedforward controller C1

ff is in-
troduced into the control system, and the following ex-
periments are carried out to obtain the position error.

In Figure 22, the position error under the feedback control is
the black line and the position error under the feedback and
acceleration feedforward control is the dashed blue line, we can
see that the tracking performance of nonuniform velocity sec-
tion is improved obviously under the acceleration feedforward
control, and the maximum error is reduced from
3.085 × 10− 5 m to 4.028 × 10− 6 m. In Figure 23, the feedback
control signal ufb under the feedback control is shown as the

black line. In Figure 24, the feedback control signal ufb and the
feedforward control signal uff under the feedback and accel-
eration feedforward control are shown as the black line and blue
line, respectively. After the introduction of the feedforward
control, the thrust required for systemmotion is provided by the
sum of ufb and uff. As shown in Figure 24, uff provides most
of the thrust required in the acceleration section, soufb is greatly
reduced in this region correspondingly. Since the position error
is processed by the controller to get ufb, the position error is also
greatly reduced.

Based on the acceleration feedforward, the position
errors with and without the time-delay feedforward are
shown as the black line and dashed blue line in Figure 25,
respectively, and the feedback control signal ufb is shown
in Figure 26. Since the time-delay feedforward is realized by
the delay planning of the reference position, the feedfor-
ward control signal uff under the two feedforward control
are the same and shown by uff in Figure 24. It can be seen
that the position error caused by the impact of jerk segment
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Figure 16: Comparison of position errors with and without feedforward control in simulation 3.
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Figure 20: +e position r, velocity v, acceleration a, and jerk j of the point-to-point motion in experiment.
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Figure 21: Iterative calculation results of the feedforward parameters correction in experiment.
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Figure 25: Comparison of position errors with and without the time-delay feedforward compensation in experiment.
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is further reduced under the time-delay feedforward and
the maximum error is reduced from 4.028 × 10− 6 m to
2.057 × 10− 6 m, and the fluctuation of ufb decreases in this
region, which shows that the time-delay compensation
method in Section 3 is effective. We can see that ufb still
exists after the introduction of acceleration and time-delay
feedforward, which should be the compensation signal
generated by the control loop for the cable force and other
disturbances in the system.

+e experimental results show that the proposed
method can be applied in the precision motion control
system with unknown time-delay. +e feedforward pa-
rameters and delay time can be identified by IV-GNI based
on the measurement data of a single finite time task

without detailed knowledge of the plant, and the time-
delay can be compensated with path planning time-shift,
which can obviously improve the control performance of
the system.

6. Conclusions

+is paper proposes an iterative tuning method of feed-
forward parameters considering the time-delay. +e key
essentials of the proposed method lie in the following: (1) a
nonlinear objective function with time-delay suitable for
iterative feedforward tuning is established; (2) the
Gauss–Newton iterative method and instrumental variables
are combined to optimize the nonlinear objective function,
and the unbiased estimation of the feedforward parameters
and delay time are obtained in the presence of disturbance;
and (3) the precise time-delay compensation can be realized
in feedforward control with accurate path planning time-
shift. +e Newton iterative method and the least square
method based on instrumental variable in existing IFT and
the conventional GNI are compared with the proposed IV-
GNI scheme. +e identification results of the feedforward
parameters in the simulation and experiment on an air
floating precision motion platform show that the proposed
method can be applied to the nonlinear system with time-
delay and realize the unbiased parameter estimation with
disturbance and noise. +e results of feedforward control in
simulation and experiment prove that the control perfor-
mance of the precision system can be obviously improved
with the proposed method.

+is method can be extended to precision motion
control MIMO systems, the decoupling method is needed to
make the coupling MIMO become decoupled multiple SISO
systems, and the corresponding controlled plant should have
a mathematical model without zero.

Appendix

Proof of convexity of the objective function

+e controlled plant is assumed to be P � e− τ∗s/(􏽐
n
i�0 θ
∗
i si)

and θ ∗i , and τ∗ are the true values. In the tuning procedure,
the feedforward parameters should satisfy θk

i , τk ∈
0≤ θk

i ≤ θ
∗
i ,􏽮 0≤ τk ≤ τ∗}. A new objective function is

established by the polynomial on the right side of equation
(8):
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which is equivalent to the original objective function J(θΔ).
In the interval D � θΔi , τΔ | − θk

i ≤ θ
Δ
i ≤ θ
∗
i − θk

i , − τk ≤ τΔ ≤􏽮

τ∗ − τk}, J1(θ
Δ) is differentiable. When choosing and

θΔi + ΔθΔi , τΔ + ΔτΔ ∈ D, we can obtain

Table 7: Iterative calculation results of feedforward parameters
correction in experiment.

θΔ2 (1× 10− 2) τΔ (1× 10− 3)
Iterations IV-GNI GNI NI IV-LS IV-GNI GNI NI

1 8.0 7.4 8.1 8.4 2.70 6.84 0.015
2 8.0 7.4 7.6 8.4 2.90 7.17 5.59
3 8.0 7.4 7.5 8.4 2.90 7.17 6.25
4 8.0 7.4 7.5 8.4 2.90 7.17 6.37
5 8.0 7.4 7.5 8.4 2.90 7.17 6.37
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Figure 26: Comparison of feedback control signals with and
without the time-delay feedforward compensation in experiment.
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. (A.2)

+e derivative of J1(θ
Δ) to θΔ is multiplied by ΔθΔ to get
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N
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k
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1
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2e
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. (A.3)

In equations (A.2) and (A.3), we can obtain

􏽘
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θ∗i s
i

s
n

⎛⎝ ⎞⎠2e
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s
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+ e
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i�0

2θk
i + 2θΔi + ΔθΔi􏼐 􏼑s

i

s
n

⎛⎝ ⎞⎠≥ 0.

(A.4)

Using the first-order Taylor expansion with Lagrange
remainder, e− ΔτΔs � 1 − ΔτΔs + s2e− ΔτΔθs · ((ΔτΔ)2/2), θ ∈
(0, 1), so (1 − e− ΔτΔs)/s2 � (ΔτΔs)/s2 − e− ΔτΔθs · (ΔτΔ)2/2≤
(ΔτΔs)/s2; we can get

1
s
2e

τ∗− τk+τΔ( )[ ]s
· ΔτΔs

≥
1
s
2 e

τ∗− τk+τΔ( )[ ]s
− e

τ∗ − τk+τΔ+ΔτΔ( )[ ]s
􏼒 􏼓≥ 0.

(A.5)

+en, J1(θ
Δ + ΔθΔ) − J1(θ

Δ)≥∇J1(θ
Δ) · ΔθΔ can be

obtained, so J1(θ
Δ) and J(θΔ) are the convex functions in

the interval D. D contains the extreme point θΔi � θ ∗i −

θk
i and τΔ � τ∗ − τk that makes the derivative zero. In the
iterative calculation, the initial value is θΔi � 0, τΔ � 0 ∈ D,
which can converge to the extreme point.
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