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Data envelopment analysis (DEA) and inverted data envelopment analysis (inverted-DEA) are used so that the desirable and
undesirable outputs of decision-making units (DMUs) exist simultaneously. We developed a new approach based on the concept
of utilizing both DEA and inverted-DEA to enhance the discrimination power of DMUs with undesirable outputs. DMUs are
ranked by the Z-score method and classified based on the efficiency scores of DEA and inverted-DEA.-en, the characteristics of
the DMUs are analyzed based on the classification result. -is paper performs an efficiency evaluation of 21 industrial parks in
China in 2017 using this new approach. -e overall evaluation results indicate that the proposed new approach increases the
discrimination ability in this empirical study.

1. Introduction

Data envelopment analysis (DEA) was proposed by three
operational research experts, A. Charnes, W. Cooper, and
E. Rhodes, in 1978 [1]. DEA is a new systematic analysis
method used for evaluating the efficiency of similar decision-
making units (DMUs) with multiple inputs and outputs.
-is method does not need to restrict the production
function and can avoid the subjective decision and objective
factor dimensionality, and the impact of a unit’s impact on
evaluation results [2]. -e classic DEA models first identify
the production frontier for which the DMUs can be regarded
as efficient. DMUs, which are outliers in terms of low inputs
relative to the output level, map the efficient frontier. -e
DMUs on the frontier are efficient, and the DMUs not on the
frontier are inefficient. -ose inefficient DMUs are com-
pared with efficient DMUs to estimate their efficiency scores.
DEA provides users with information about the efficiency
scores and inefficiency scores and reference sets for ineffi-
cient units. One of the main features of DEA is to allow the
DMUs to select their weights, which is a favorable approach

for achieving maximum efficiency scores. However, this full
flexibility may considerably reduce the discrimination power
of DEA in the sense that too many DMUs often exist on the
frontier, and some DMUs cannot be further ranked in
standard DEA models.

To solve this problem, Allen et al. studied weight con-
straints and value judgments and concentrated on the im-
plications of weight restrictions on the efficiency, targets,
and comparisons of inefficient DMUs in DEA [3]. Addi-
tionally, Andersen and Petersen [4] employed a supereffi-
ciency DEA model to evaluate efficient DMUs; the model
excludes the DMU being evaluated from the reference set.
-is model was first used to identify outliers of observations
by Banker and Gillord [5]. -e model uses different refer-
ence sets to evaluate efficient and inefficient DMUs. Fur-
thermore, Banker and Chang [6] reported that Andersen
and Petersen’s [4] procedure using superefficiency scores to
rank efficiency observations yielded poor performance.
Some scholars have tried to solve problems by using cross-
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efficiencymethods. In such approaches, DMUs are evaluated
based on their characteristics and those of other DMUs
using a cross-efficiency matrix [7, 8]. Although the cross-
efficiency method is often beneficial, the concept of cross-
efficiency score methods is considerabe from the basic
principle of DEA.

Additionally, some scholars have attempted to construct
new evaluation methods using DEA and inverted-DEA
models. Amirteimoori [9] proposed the production possi-
bility set and the quasi-production possibility set and
constructed an alternative efficiency measure by using an
efficiency frontier composed of the boundary points of the
production possibility set and an antiefficient frontier
composed of the boundary points of the quasi-production
possibility set. However, this approach failed to solve the
identification problem that occurs when many DMUs are
efficient or inefficient. Zhang et al. [10] proposed an eval-
uation model of DMUs by using a good reference set and a
bad reference set from the best and worst perspectives. To
obtain the bad reference set, they simply treated the inputs
and outputs of DMUs as undesirable. Cao et al. [11] used the
evidential-reasoning (ER) approach to construct a perfor-
mance indicator for combining the efficiency and anti-
efficiency values obtained by DEA and inverted-DEA
models. Zhou et al. [12] used a DEA model without explicit
inputs (see, e.g., Liu et al. [13], Liu et al. [14], and Yang et al.
[15]) to combine efficient and antiefficient measures to rank
DMUs. However, Shen et al. [16] easily verified that their
approach could not significantly increase the discrimination
power of DEA models and constructed three intuitive DEA
performance indicators based on the distances to both the
efficient and antiefficient frontiers. Although each perfor-
mance indicator is useful for a specific sample size, no one
approach can be referred to as a complete solution to all
problems.

Furthermore, Entani et al. [17] employed both DEA and
inverted-DEAmodels to obtain the upper and lower bounds
of the interval efficiency of DMUs. -ey argued that if the
range of the interval efficiency is broad, then although the
DMUs perform well from an optimistic perspective, they
perform poorly from a pessimistic perspective. -en, they
used the interval efficiency to obtain a partial-order relation
for DMUs. -us, there has been a lack of clear distinctions
among evaluations, and explicitly, certain information is
difficult to obtain, providing little practical help to decision-
makers.

While the abovementioned techniques are useful in
specific research areas, no one method provides a complete
solution for all problems. People often have more than one
reference perspective in assessing DMUs.-e standard DEA
models have employed the best-practice DMUs to construct
the efficient frontier and have not fully taken advantage of
the information implied in the data, especially for DMUs
with undesirable outputs. In this paper, we explore a concept
that involves enhancing the discrimination ability of DEA.
In the case of the same inputs, the DEA model and the
inverted-DEAmodel are used to enhance the discrimination
ability of DMUs with desirable outputs and DMUs with
undesirable outputs, respectively. -e earliest work on the

antiefficient frontier can be traced to the inverted-DEA
model proposed by Yamada et al. [18]. Compared to the
standard DEA models that evaluate DMUs from the per-
spective of optimism, the inverted-DEA model evaluates the
performance from pessimism.

-e DEA method is not affected by the input and output
dimensions of the problem and can comprehensively
evaluate the data of different indicators. In particular, this
approach has distinct advantages in dealing with multiple
inputs and multiple outputs. However, most of the problems
addressed with traditional DEA models have assumed that
inputs and outputs are arbitrarily determined, the man-
agement activities of DMUs are controllable, and the output
of DMUs should be optimized. However, in the actual
production process, desirable and undesirable outputs may
exist simultaneously. For example, a defective product is an
undesirable output. In industrial production, economic
benefits will also result in pollution, such as waste or smoke
pollution, which is an undesirable output [19]. If the pro-
duction processes that yield final products that generate
wastes and pollutants are inefficient, the waste and pollutant
outputs will be undesirable and should be reduced to im-
prove performance. However, some wastes and pollutants
are inevitably produced and cannot be reduced. -us, the
typical assumption of DEA is invalid. As a result, the un-
desirable and desirable outputs should be differently treated
when DEA is used to evaluate the performance of DMUs.
-e most common approach is to consider only desirable
outputs and ignore undesirable outputs [20]. However, such
an evaluation method is overly simple and ignores essential
information. -erefore, performance evaluations based on
such methods are not comprehensive.

Some researchers have suggested that some undesirable
variables can be transformed [21]. For example, the ADD
method proposed by Koopmans multiplies the undesirable
output by −1 [19]. Similarly, it is also possible to add a
translation vector based on negative transformations to keep
the output data nonnegative [22]. Additionally, undesirable
variables can be transformed nonlinearly, such as by mul-
tiplicative inverse operations [18]. However, these trans-
formation methods may produce some unfavorable results
[23]. Notably, transformations are often nonlinear and
cannot retain convexity. In addition to applying transfor-
mationmethods, undesirable outputs can also be regarded as
inputs. If one treats the undesirable outputs as inputs, al-
though the method is simple and easy to implement, the
resulting DEA model does not reflect the actual production
process. Additionally, the constraint function in linear
programming can be adjusted, that is, the desirable and
undesirable outputs classified, the output constraint func-
tion of the traditional DEA model is divided into two
functions, and the desirable and undesirable outputs are
constrained [24]. Furthermore, the distance measure can be
adjusted to limit the range of undesirable outputs.

-e methods mentioned above for dealing with unde-
sirable outputs in DEA mostly involve adjusting variables or
models; notably, in the traditional model, undesirable
outputs are processed through mathematical methods, but
this approach does not reflect the actual situation. In this
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paper, we consider using an inverted-DEA to process un-
desirable outputs. Japanese scholar Yamada et al. proposed
inverted-DEA in 1994 to evaluate the inefficiency score of
DMUs, which is contrary to the concept of efficiency in
DEA. When a DMU is inefficient, the model considers
decreasing the output level and increasing the input level to
improve efficiency, which reflects the objective of mini-
mizing undesirable outputs under actual conditions.
-erefore, the use of an inverted-DEA model to address
undesirable outputs can reflect the actual production process
and is more straightforward and reasonable than other
methods.

-e remainder of the paper is organized as follows. In
Section 2, we present a comprehensive evaluation method
for DMUs utilizing both DEA and inverted-DEA. Section 3
discussed a category analysis of DMUs. Section 4 applied the
proposed method to an empirical data set consisting of 21
industrial parks in China in 2017. Finally, the discussion and
conclusions are given in Section 5.

2. Methods

2.1. DEA. DEA is an approach for analyzing the relative
efficiency of peer DMUs that have multiple inputs and
outputs. -e evaluation of the DMU’s efficiency is carried
out by measuring the distance of this unit from the efficiency
frontier created on the basis of the best units in the group,
serving as benchmarks. In DEA, the maximum ratio of
outputs is assumed to be efficiency, which is calculated from
the optimistic perspective for each DMU. -e efficiency for
DMU0, which is analyzed as an object, is evaluated based on
the efficiency values of the other DMUs. -e following basic
DEA model evaluates the efficiency of DMU0 with s di-
mensional input vectors and m dimensional output vectors:

max
uTy0
vTx0

s.t.
uTyj

vTxj

≤ 1, j � 1, 2, . . . , n, u≥ 0, v ≥ 0,

(1)

where the decision variables are the weight vectors u and v;
xj and yj are the input and output vectors for DMUj, re-
spectively; and x0 and y0 are the input and output vectors for
DMU0 under evaluation, respectively. Each element of xj

and yj is positive. To address many inputs and outputs, we
consider the weighted sums of inputs and outputs as a
hypothetical input and a hypothetical output. -e efficiency
is obtained by maximizing the ratio of weighted sum of
outputs to that of inputs for DMU0 under the condition that
ratios for all DMUs are less than or equal to 1.

-is fractional programming problem is replaced with
the following LP problem, which is called the C2R model, by
limiting the denominator of the objective function to 1:

C2R􏼐 􏼑

max uTy0

s.t.

uTyj

vTxj

≤ 1, j � 1, 2, . . . , n

vTx0 � 1

u≥ 0, v ≥ 0.

(2)

For which the LP dual problem is

DC2R( 􏼁

min θ

s.t.

λTxj ≤ θx0, j � 1, 2, . . . , n

λTyj ≥ y0, j � 1, 2, . . . , n

λ≥ 0, λ≠ 0.

(3)

When the optimal value of the objective function is equal
to 1, DMU0 is considered efficient, and otherwise, it is not
deemed efficient. Specifically, “efficient” in this paper in-
cludes “weakly efficient.”

If we consider the slacks of inputs and outputs, we can
then introduce the variables s−

i and s+
r and transform model

(3) into the following model:

DC2R( 􏼁

min θ − ε 􏽘
s

r�1
s

+
r + 􏽘

m

i�1
s

−
i

⎛⎝ ⎞⎠

s.t.

􏽘

n

j�1
λjxij + s

−
i � θxi0, i � 1, 2, . . . , m

􏽘

n

j�1
λjyrj − s

+
r � yr0, r � 1, 2, . . . , s

λj ≥ 0, j � 1, 2, . . . , n

s
+
r ≥ 0, s

−
i ≥ 0, r � 1, 2, . . . , s, i � 1, 2, . . . , m,

(4)

where ε is a non-Archimedean infinitesimal and θ is the DEA
efficiency score.

Definition 1. A DMU0 is said to be DEA efficient if and only
if (a) θ∗ � 1 and (b) all optimum slack values in equation (4)
are zero.

2.2. Inverted-DEA. Since the inverted-DEA was first pro-
posed in Japanese [18], we will illustrate the inverted-DEA
method here. In contrast to DEA, which evaluates DMU0
from the optimistic perspective, inverted-DEA is formulated
as follows:
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max
vTx0
uTy0

s.t.
vTxj

uTyj

≤ 1, j � 1, 2, . . . , n

u≥ 0, v ≥ 0.

(5)

-is fractional programming problem is also replaced
with the following LP problem:

max vTx0

s.t.
vTxj

uTyj

≤ 1, j � 1, 2, . . . , n

uTy0 � 1

u≥ 0, v ≥ 0.

(6)

By using the duality principle of linear programming,
model (6) can be equivalently changed into the following
linear programming model:

minθ′

s.t. λ′Tyj ≤ θ′y0, j � 1, 2, . . . , n

λ′Txj ≥ x0, j � 1, 2, . . . , n

λ′ ≥ 0, λ′ ≠ 0,

(7)

where θ′ represents the inverted-DEA inefficiency score of
DMU0.

We can then introduce variables s′−i and s′+r and trans-
form model (7) into the following model:

minθ′ − ε 􏽘
s

r�1
s
′+
r + 􏽘

m

i�1
s
′−
i

⎛⎝ ⎞⎠

s.t. 􏽘
n

j�1
λj
′yrj + s

′+
r � θ′yr0, r � 1, 2, . . . , s

􏽘

n

j�1
λj
′xij − s

′−
i � xi0, i � 1, 2, . . . , m

λj
′ ≥ 0, j � 1, 2, . . . , n

s
′+
r ≥ 0, s

′−
i ≥ 0, r � 1, 2, . . . , s, i � 1, 2, . . . , m.

(8)

Definition 2. A DMU0 is said to be inverted-DEA inefficient
if and only if (a) θ′∗ � 1 and (b) all optimum slack values in
equation (8) are zero.

We use one-dimensional input and two-dimensional
output data to illustrate the difference between DEA and
inverted-DEA. Figure 1 shows the processed data, the effi-
cient frontier based on DEA, and the inefficient frontier
based on inverted-DEA.

2.3. Comprehensive Evaluation. Using the DEA model and
inverted-DEA model, an efficiency analysis of DMUs is
conducted with both desirable and undesirable outputs.
Next, we will introduce four indicators (DEA analysis and
inverted-DEA analysis for DMUs with inputs/desirable
outputs and DEA analysis and inverted-DEA analysis for
DMUs with inputs/undesirable outputs), which constitute a
new efficiency measure, and rank DMUs according to this
efficiency measure.

For n production units, or DMUs, we denote the input
vector of DMUj as xj (j � 1, . . . , n), where xj ∈ Em, and the
output vectors of DMUj with desirable outputs and unde-
sirable outputs as yg

j and yb
j , where yg

j , yb
j ∈ Es. We denote

the efficiency scores of the DMUs with desirable outputs and
undesirable outputs as θg and θb, respectively. Similarly, we
denote the inefficiency score of the DMUs with desirable
outputs and the inefficiency score of the DMUs with un-
desirable outputs as θ′g and θ′b, respectively.

Using model (4), the DEA efficiency scores of each DMU
with desirable and undesirable outputs are calculated as θg

and θb, respectively. Similarly, by using model (8), the
inverted-DEA inefficiency scores of each DMU with de-
sirable and undesirable outputs are calculated as θ′g and θ′b,
respectively.

According to the properties of models (1) and (5), we
obtain 0≤ θg, θb, θ′g, θ′b ≤ 1. In the sense of evaluating the
efficiency of DMUs, larger values of θg and θ′b are preferred,
and small values of θb and θ′g are ideal. -us, the new model
is as follows:

e0 �
θgθ′b + θ′b 1 − θ′g􏼐 􏼑 + 1 − θ′g􏼐 􏼑 1 − θb

􏼐 􏼑 + 1 − θb
􏼐 􏼑θg

4
.

(9)

It can be verified that e0 is invariant to the units of the
data. Furthermore, it holds that 0≤ e0 ≤ 1.

Based on the information above, we can obtain the
following definitions.

0

A

A′

A″

DEA

Inverted-DEA

y2/x1

y1/x1

Figure 1: DEA and inverted-DEA.
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Definition 3. A DMU0 is full efficient if e0 � 1.

Definition 4. A DMU0 is full inefficient if e0 � 0.
-e comprehensive evaluation index e0 can increase the

discrimination power of DEA. For example, if the index scores
of a DMU are (θg, θb, θ′g, θ′b) � (0.45, 0.55, 0.35, 0.70), then
e0 � 0.316. Efficiencies and inefficiencies are shown in Fig-
ure 2. Each index score of a DMU is marked on the corre-
sponding coordinate axis, and these points are connected to
form a planar geometric graph.-e corresponding shaded area
of the graph is the comprehensive evaluation score of the
DMU.

3. Category Analysis of DMUs

In the section, two critical steps are performed. First, all of
the DMUs are categorized based on the ranks obtained
with equation (9). Second, all of the DMUs are categorized
by using θg, θb, θ′g, and θ′b.

To compare the production level of several production
units under similar conditions, the same type of experiment for
multiple production units must be performed to evaluate the
production skills by comparing the results of the experiments.
For such joint detection, an evaluation rule is required. A
general evaluation rule is based on the following factors: (a)
expert opinions; (b) rules confirmed by authoritative depart-
ments; and (c) minimizing the influence of extreme values.

In this paper, the results are compared by using the
previous result set, which is the Z-score-based method of
evaluation.

If the data of zj (j � 1, . . . , n) follow a normal distri-
bution, the Z-score is calculated using the quartile method
according to the following steps.

Step 1: rank the obtained sample zj (j � 1, . . . , n) by
ascending sorting.
Step 2: obtain the values of a quarter of zN1
(N1 � (n/4) + 0.5), two quarters of zN2
(N2 � (2n/4) + 0.5) and three quarters of zN3
(N3 � (3n/4) + 0.5).
Step 3: calculate the Z-score of the measurement value
zj according to

Zj �
zj − μ
σ

, (10)

where μ is the criterion value and σ is the standard
deviation.

According to the relation of the standard deviation σ,
quartile, and IQR (interquartile range), the following
equation can be obtained:

IQR � zN3 − zN1( 􏼁 � 2 × 0.6745σ � 1.349σ. (11)

-us,

σ � 0.7413 × IQR � 0.7413 × zN3 − zN1( 􏼁. (12)

In equation (10), if μ � zN2, the Z-score of zj is as
follows:

Zj �
zj − zN2

0.7413 × zN3 − zN1( 􏼁
. (13)

Regarding the production units evaluated, we obtain two
evaluation criteria based on equation (13) and |Z| � 3:

Z � −2.2239 zN3 − zN1( 􏼁 + zN2, (14)

􏽢Z � 2.2239 zN3 − zN1( 􏼁 + zN2, (15)

where Z and 􏽢Z are the reference values of Z-score Zj

corresponding to Z � −3 and Z � 3, respectively.
According to Z and 􏽢Z, the Z-score can be divided into

three categories: “excellent,” “ordinary,” and “pending
improvement.”

Next, we categorize all of the DMUs by using θ∗ and θ′∗.
-is category analysis includes analyzing DMUs with de-
sirable outputs and undesirable outputs.-e specific method
involves finding the appropriate thresholds α and β and
dividing the DMUs into four categories according to the
efficiency scores of DEA and inefficiency score of inverted-
DEA. -e specific categories are shown in Table 1. For a
DMU with desirable outputs and undesirable outputs, the
category analysis based on DEA/inverted-DEA is shown in
Figure 3.

According to the category analysis of DMUs based on
DEA/inversed DEA, combined with the comprehensive
score of DMUs obtained using e0, the category of the DMU
can be determined.

11 θg

0.45

0.65

0.70

0.45
0

θ′b

1 – θ′g

1 – θb

Figure 2: Efficiencies and inefficiencies for crisp data.
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4. Case Study

We use the DEA model and the inversed DEA model to
calculate the efficiency and inefficiency scores of 21 indus-
trial parks, all of which are the first batch of circular
economy pilot parks in China in 2017. Relevant data of the
study come from research reports and statistical yearbooks
of the samples.

-e input and output variables are defined as follows.
-e input variables are divided into four classes: resources
(X1), energy (X2), land (X3), and water resources (X4). -e
output variables are divided into two classes: desirable
outputs (D) and undesirable outputs (U). -e desirable
outputs include the resource output rate (D1) and total
production value (D2), which reflect the economic output
per unit input of material resources and the value of all final
products and services produced by the park economy during
a certain period. -e undesirable outputs include sulfur
dioxide emissions (U1), industrial solid waste emissions
(U2), and industrial wastewater discharge (U3). -is paper
selects 21 industrial parks in China for analysis: the ZJ
Technology Development Zone (DMU1), BJ Technology
Development Zone (DMU2), LG Technology Development
Zone (DMU3), BX Technology Development Zone (DMU4),
CF Economic Development Zone (DMU5), DH Industrial
Park (DMU6), DY Technology Development Zone (DMU7),
GX Technology Development Zone (DMU8), GA Tech-
nology Development Zone (DMU9), GY Technology De-
velopment Zone (DMU10), HN Industrial Park (DMU11),
HB Development Zone (DMU12), JX Industrial Park
(DMU13), NB Technology Development Zone (DMU14), NX
Economic Technology Development District (DMU15), QD
Technology Development Zone (DMU16), TJ Technology
Development Zone (DMU17), TL Technology Development
Zone (DMU18), WL Technology Development Zone
(DMU19), ZJT Industrial Park (DMU20), and CS Demon-
stration Base (DMU21). -e input and output data for 21
industrial parks in 2017 are shown in Table 2.

According to the data from 21 industrial parks in Table 2
and model (4) and model (8), the relative efficiency scores
and inefficiency scores of DMUs can be obtained (see
Table 3).

As shown in Table 3, for the desirable outputs, the
relative efficiency scores of nine DMUs have reached 1 for
model (4); that is, nine DMUs are efficient based on DEA.
Similarly, for the undesirable outputs, we have two in-
efficient DMUs based on the inverted-DEA and model (8).
As the fourth and fifth columns of the table indicate, for
the undesirable outputs, ten DMUs lie on the efficient
frontier, so the efficiency scores of these units are equal to
1. Conversely, five DMUs lie on the antiefficient frontier,
so the inefficiency scores of these units are equal to 1.
Among them, DMU2 and DMU10 are not only DEA ef-
ficient but also inverted-DEA inefficient, which means
that these two DMUs have efficient economic outputs but
also produce efficient waste discharge. Many DMUs exist
on the frontier that cannot be further ranked in standard
DEA models and the inverted-DEA model. Additionally,
the DMUs on both frontiers will have the same

performance scores, which cannot be differentiated in
traditional DEA methods.

To solve the above problem, we use the performance
indicators proposed in Table 3 to calculate the compre-
hensive evaluation scores of 21 industrial parks based on
model (9). -e computed results are shown in Table 4.

To use the quartile method to categorize the data in
Table 4, the distribution of these data must be analyzed. -e
analysis results are shown in Figure 4.

Because the comprehensive evaluation scores tend to be
normal distribution, we can use the quartile method to
calculate the Z-score and categorize the overall evaluation
scores according to the Z-score. -e specific steps are as
follows.

Step 1: rank the comprehensive evaluation scores zj

(j � 1, . . . , n) by ascending sorting. -e ranked results
are shown in Table 5.
Step 2: the Z-score Zj of zj is calculated according to
equation (13). From the comprehensive evaluation
scores, find the values for a quarter of z6 � 0.027, two
quarters of z11 � 0.165, and three quarters of
z16 � 0.339 of the population.
Step 3: the evaluation criteria (Z � −0.528 and
􏽢Z � 0.859) are determined using equations (14) and
(15). According to Z and 􏽢Z, the Z-scores are divided
into three categories, namely, “excellent” (Zj <Z) for
DMUs 2, 4, 6, 10, and 20; “ordinary” (Z<Zj < 􏽢Z) for
DMUs 1, 3, 5, 7, 8, 9, 16, 17, 18, and 21; and “pending
improvement” (􏽢Z<Zj) for DMUs 11, 12, 13, 14, 15,
and 19. -e computed results are shown in Table 5.

-e next steps involve categorizing all of the DMUs
using θg, θb, θ′g, and θ′b in Table 3. -e results are shown in
Figure 5. A comprehensive feature analysis of DMUs is
performed according to the category assessment standard
given in Table 1. Table 6 gives the location of each DMU.

Table 6 and Figure 5 show that the “excellent” DMUs in
Table 5 are mostly distributed in the “excellent” area of
Table 6, especially DMU10, which is “exemplary” in both the
DEA evaluation and inverted-DEA evaluation because the
input/output scale is small compared to that of other DMUs.
Additionally, the two undesirable outputs (sulfur dioxide
emissions and industrial solid waste emissions) are small
(the sulfur dioxide emissions are 0). -e “pending im-
provement” DMUs in Table 5 are mostly distributed in the

Table 1: Category analysis of DMUs.

DMUs Desirable outputs Undesirable outputs
θ∗ ≥ α
θ′∗ ≤ β Excellent DMUs Pending improvement

DMUs
θ∗ < α
θ′∗ < β Ordinary DMUs Personality DMUs

θ∗ ≥ α
θ′∗ ≥ β Personality DMUs Ordinary DMUs

θ∗ < α
θ′∗ ≥ β

Pending improvement
DMUs Excellent DMUs
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“pending improvement” area of Table 6. In particular,
DMU15 is “pending improvement” in terms of evaluation of
the desirable outputs of DEA and undesirable outputs of
inverted-DEA because the input indexes (energy and land)
are high (in comparison with the average) and the desirable
output indexes (resource output rate and the total pro-
duction value) are relatively low; moreover, the undesirable

output indexes (industrial solid waste emissions and in-
dustrial wastewater discharge) are relatively high. Addi-
tionally, DMU3 is in the “ordinary” area in terms of the
desirable output evaluation based on DEA and undesirable
output evaluation based on inverted-DEA, and it is also in
the middle position in the rankings in Table 5. For DMU3, in
addition to the high resource input (compared to the

DEA

Inverted-DEA

Personality
DMUs

Pending 
improvement 

DMUs 

Ordinary 
DMUs

Excellent 
DMUs

α

β

(a)

DEA

Inverted-DEA

Ordinary
DMUs 

Excellent 
DMUs

Personality
DMUs

Pending 
improvement 

DMUs

α

β

(b)

Figure 3: Category analysis of desirable and undesirable outputs. (a) DMUs with desirable outputs. (b) DMUs with undesirable outputs.

Table 2: Input and output data of 21 industrial parks.

DMU

Inputs Desirable outputs Undesirable outputs

X1 million
metric tons

X2 million
metric tons

X3 million
hectares

X4
(108m3)

D1 ten
thousand yuan/

ton

D2 100
million

U1 million
metric tons

U2 million
metric tons

U3 million
cubic meters

DMU1 2.1953 344.68 0.21 4.43 1.68 368.81 0.98 0.2302 4.2482
DMU2 1.5732 137.77 0.51 0.35 6.13 964.37 0.00 0.0890 13.0000
DMU3 21.5504 367.70 0.31 0.35 0.12 247.83 1.14 0.0103 9.8010
DMU4 1.4433 27.76 0.10 0.01 0.50 72.16 0.08 0.0000 0.1875
DMU5 5.4718 99.43 0.16 0.11 1.49 815.29 0.29 0.1629 4.6500
DMU6 0.6564 97.25 0.08 0.36 2.00 131.29 0.08 0.0004 0.9000
DMU7 1.5244 354.61 0.29 0.31 3.28 500.00 0.38 0.0000 15.0000
DMU8 12.6172 283.17 0.05 0.14 0.25 312.91 1.06 0.0000 8.5100
DMU9 6.6667 455.37 0.25 0.71 0.38 250.00 0.25 0.11000 2.8796
DMU10 0.2635 71.66 0.80 0.36 8.35 220.00 0.01 0.0000 1.5504
DMU11 155.0398 1903.78 1.32 38.42 0.14 211.30 0.03 1.3.90 24.3110
DMU12 4.0597 937.16 0.33 1.24 0.84 340.00 0.96 3.4500 21.2600
DMU13 1.0072 58.19 0.11 0.40 0.78 78.56 0.33 0.1200 0.7930
DMU14 1.83114 606.38 0.99 1.87 0.40 739.78 2.26 6.4200 55.1000
DMU15 12.3134 1155.87 3.71 0.38 0.27 330.00 5.21 0.0000 3.9000
DMU16 50.0000 1398.60 2.74 3.20 0.40 2000.00 1.80 0.0000 14.0000
DMU17 4.6512 393.18 1.50 1.20 6.45 3000.00 0.00 0.5600 29.0000
DMU18 6.5574 400.00 0.36 0.60 0.61 400.00 0.40 0.0500 18.0000
DMU19 3.9859 15.87 0.16 0.04 0.51 203.28 0.08 0.3368 1.9916
DMU20 0.4836 36.29 0.50 1.49 9.56 462.28 0.05 0.0020 6.3875
DMU21 48.0531 4395.10 1.89 0.41 1.50 720.70 0.08 0.0500 3.6000
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average), the three input indexes (energy, land, and water
resources) are generally low, and the two desirable output
indexes (resource output rate and total production value) are
relatively low; moreover, the three undesirable output in-
dexes are relatively high, except for sulfur dioxide emissions.
-e other two indexes (industrial solid waste emissions and
industrial wastewater discharge) of DMU3 are low, especially
industrial solid waste emissions (0.0103), for which the value
is much lower than the average (0.6148).

It is also worth noting that DMU11 and DMU19 are
“pending improvement” DMUs in Table 5. In Table 6,
DMU19 is in the “excellent” area for desirable outputs
based on DEA and the “pending improvement” area for
undesirable outputs based on inverted-DEA. -e scenario
for DMU11 is the opposite of that for DMU19. -e four
input indexes of DMU11 are higher than the average, and
the desirable output indexes are lower than the average, so
the efficiency score of inverted-DEA is high (1.00), and the
efficiency score of DEA is very low (0.030). For the un-
desirable output indexes, except for higher sulfur dioxide
emissions (compared with the average), other industrial
solid waste emissions and industrial wastewater discharge
are low, so the efficiency score of DEA of DMU11 is high

Table 3: Efficiency and inefficiency scores of 21 industrial parks.

DMU
Desirable output Undesirable output

Efficiency score (θg-rank 1) Inefficiency score (θ′g-rank 2) Efficiency score (θb-rank 3) Inefficiency score (θ′b-rank 4)
DMU1 0.671 0.104 1.000 0.106
DMU2 1.000 0.048 1.000 1.000
DMU3 0.153 0.255 0.789 0.524
DMU4 1.000 0.133 0.687 0.650
DMU5 1.000 0.021 0.918 0.036
DMU6 1.000 0.089 0.389 0.260
DMU7 0.857 0.085 1.000 0.151
DMU8 1.000 0.100 1.000 0.429
DMU9 0.230 0.202 0.258 0.097
DMU10 1.000 0.327 0.525 1.000
DMU11 0.030 1.000 0.247 1.000
DMU12 0.356 0.306 1.000 0.017
DMU13 0.373 0.144 1.000 0.028
DMU14 0.212 0.202 1.000 0.011
DMU15 0.154 1.000 1.000 0.086
DMU16 0.208 0.539 0.294 1.000
DMU17 1.000 0.045 0.851 0.545
DMU18 0.317 0.125 0.874 0.116
DMU19 1.000 0.081 1.000 0.056
DMU20 1.000 0.104 1.000 0.803
DMU21 0.237 0.677 0.147 1.000

Table 4: -e comprehensive evaluation scores.

DMU Comprehensive evaluation scores (zj) Rank (j)
DMU1 0.042 7
DMU2 0.488 20
DMU3 0.165 11
DMU4 0.449 19
DMU5 0.059 8
DMU6 0.416 18
DMU7 0.067 9
DMU8 0.203 12
DMU9 0.215 13
DMU10 0.617 21
DMU11 0.013 5
DMU12 0.005 3
DMU13 0.009 4
DMU14 0.003 1
DMU15 0.003 2
DMU16 0.287 15
DMU17 0.339 16
DMU18 0.072 10
DMU19 0.027 6
DMU20 0.380 17
DMU21 0.260 14
-e comprehensive evaluation scores in Table 4 indicate that the proposed
models increase the discrimination ability in this empirical study.
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Figure 4: -e distribution of the comprehensive evaluation scores.
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(1.00), and the efficiency score of inverted-DEA is defi-
cient (0.056). -us, DMU11 should reduce the related
inputs according to these findings and increase the related
desirable outputs; specifically, reducing the level of sulfur
dioxide emissions should be prioritised. -e four input

indexes of DMU19 are lower than the average values, and
the output indexes, whether desirable or undesirable, are
lower than the average index values, so the efficiency
scores of DEA are all 1 and the efficiency scores of
inverted-DEA are 0.081 and 0.056 (lower than the

Table 5: -e Z-scores of DMUs.

DMU Comprehensive evaluation scores (zj) Z-score (Zj)
DMU14 0.003 −0.702
DMU15 0.003 −0.700
DMU12 0.005 −0.695
DMU13 0.009 −0.677
DMU11 0.013 −0.657
DMU19 0.027 −0.598
DMU1 0.042 −0.535
DMU5 0.059 −0.461
DMU7 0.067 −0.425
DMU18 0.072 −0.403
DMU3 0.165 0
DMU8 0.203 0.166
DMU9 0.215 0.218
DMU21 0.260 0.409
DMU16 0.287 0.521
DMU17 0.339 0.751
DMU20 0.380 0.931
DMU6 0.416 1.085
DMU4 0.449 1.229
DMU2 0.488 1.396
DMU10 0.617 1.954
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Figure 5: Category analysis of DMUs with desirable outputs and undesirable outputs. (a) DMUs with desirable outputs. (b) DMUs with
undesirable outputs.
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average). Although the three undesirable output indexes
of DMU19 are lower than the average values, the values of
the desirable output indexes are relatively high. For
DMU19, while improving the inputs, efforts should be
made to improve the desirable output indexes and reduce
the undesirable outputs.

5. Conclusion

Based on the concept of using inverted-DEA to process
DMUs with undesirable outputs, this paper proposes a
method for the comprehensive evaluation of DMUs with
both desired and undesired outputs using a DEA model
and an inverted-DEA model. -is approach enhances the
recognition capabilities of DEA.-e DMUs are sorted and
categorized by the quartile method. Based on this category
analysis, combined with the efficiency scores of DEA and
inverted-DEA, the overall rank of DMUs is characterized.
Finally, this paper uses the proposed method to evaluate
the efficiency of 21 industrial parks in China in 2017, and
the characteristics of some individual industrial parks are
evaluated based on the input and output indicators. -e
findings highlight the advantages of the proposed method,
which provides an improved discrimination evaluation
approach compared to existing methods by utilizing DEA
and inverted-DEA.

Data Availability

-e data used to support the findings of this study are
available from the corresponding author upon request.

Additional Points

Highlights. (i) A new performance evaluation model based
on both DEA and inverted-DEA is developed to improve the
recognition capability of DEA. (ii) An effective method is
proposed to address DMUs with undesirable outputs based
on inverted-DEA. (iii) -e quartile method is used to cat-
egorize the ranked DMUs. (iv) -e DMUs are categorized
using the efficiency score of DEA and the inefficiency score
of inverted-DEA. (v) -e proposed method is validated
based on an empirical analysis of 21 industrial parks in
China.
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