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Due to the shortcomings of linear feature parameters in speech signals, and the limitations of existing time- and frequency-
domain attribute features in characterizing the integrity of the speech information, in this paper, we propose a nonlinear method
for feature extraction based on the phase space reconstruction (PSR) theory. First, the speech signal was analyzed using a
nonlinear dynamic model. /en, the model was used to reconstruct a one-dimensional time speech signal. Finally, nonlinear
dynamic (NLD) features based on the reconstruction of the phase space were extracted as the new characteristic parameters./en,
the performance of NLD features was verified by comparing their recognition rates with those of other features (NLD features,
prosodic features, andMFCC features). Finally, the Korean isolated words database, the Berlin emotional speech database, and the
CASIA emotional speech database were chosen for validation. /e effectiveness of the NLD features was tested using the Support
Vector Machine classifier. /e results show that NLD features not only have high recognition rate and excellent antinoise
performance for speech recognition tasks but also can fully characterize the different emotions contained in speech signals.

1. Introduction

Language is the most effective medium of human com-
munication. Language not only contains interpretable text
but also contains a large amount of paralinguistic infor-
mation that can reflect the emotional changes in a speaker.
Interpretation of human spoken language through tech-
nologies such as speech recognition and affective computing
have found a wide range of applications in diverse domains
such as vehicle navigation, video surveillance, network
video, and other human-computer interaction fields. Speech
recognition refers to the ability of machines to convert
spoken language into written text. To do this, a speech
recognition system often needs to take into consideration
the specific and nonspecific environment to recognize the
content of speech accurately. /erefore, feature extraction
and speech signal characterization are two important steps
for accurate speech recognition. Currently, the most im-
portant feature extraction techniques used in speech rec-
ognition can be divided into (a) prosodic features [1],

(b) phonetic features [2], (c) features based on the correlation
characteristics of the spectrum [3,4], and (d) feature fusion
[5]. /e above features are characterized by the piecewise
linearity of speech signals. However, studies have shown that
speech signal generation is neither a linear process, nor a
stochastic process, but rather a nonlinear process [6]. /us,
only using the piecewise linearity of speech signals in the time
and frequency domains to extract speech feature will lead to
the loss of some of the nonlinear features of speech signals,
making the information being extracted incomplete.

With recent development in nonlinear analysis methods,
they have been successfully applied in various fields [7–12].
Zbancioc [7] applied the Lyapunov index for the extraction
of spectral coefficients of MFCC and LPCC features and
achieved an emotion recognition accuracy of 75%;
Firoozet al. [8] evaluated nonlinear dynamic features by
reconstruction of speech signals using phase space recon-
struction to improve the accuracy of automatic speech
recognition. Spanish researcher Karmele Lopez applied the
study of the chaotic characteristic of natural speech for the
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detection of Alzheimer’s disease and pointed out detection
of the speaker’s lesions by extracting the fractal dimension
features in natural speech [9, 10]. Xiang and Tan of Beijing
Jiaotong University combined the chaotic features from
speech with other common features to detect fatigue among
automobile drivers [11]. Although some researchers have
studied the chaotic characteristics of speech signals, very few
studies have focused on the nonlinear dynamics and geo-
metric features of chaotic characteristics in speech signals.

Aerodynamic studies have shown that people generate
vortices in the channel boundary layer when they make
sounds, and this vortex can eventually form turbulence
[12]. /e nature of this turbulence is chaotic. To verify the
chaotic characteristics of speech signals, this paper explores
this chaotic mechanism of speech signal generation, from
three different analytical aspects: (a) power spectrum, (b)
principal component analysis, and (c) phase space re-
construction. /is research aims to provide a theoretical
basis for extracting nonlinear dynamic features based on
the chaotic characteristics of speech signals. By studying
and analyzing the two main parameters of phase space
during phase reconstruction of speech signals, the mini-
mum time and embedding dimension, we realize the op-
timal phase space reconstruction. /en, we extract the
nonlinear dynamics features from the phase space. By
designing experiments to contrast the dynamic features
and MFCC nonlinear features for speech recognition, we
verify that nonlinear dynamic features of speech signals not
only provide high accuracies and excellent noise cancel-
lation performance for speech recognition but also help in
identifying emotional cues in speech.

2. Chaos Theory and Verification of Chaotic
Characteristics in Speech

2.1. Chaos (eory. Chaos is a seemingly irregular, random
phenomenon that occurs in deterministic systems [13].
Although a chaotic system has no obvious cycle, and the
form of motion seems disorderly, the internal structure is
ordered, and it is a new existence form of nonlinear systems.

Nonlinear dynamics are mainly studied for describing a
system or time series. /e internal state of motion and the
law of transformation of a nonlinear system or time series
are analyzed qualitatively and quantitatively [6]. At present,
the method of nonlinear dynamic analysis of time series has
been maturing and has a relatively complete theoretical
research background, covering different nonlinear modeling
techniques and nonlinear representations [14], such as
fractal dimensions, Lyapunov index, and Kolmogorov en-
tropy, among others. /ese features can not only effectively
distinguish the signal sequence due to chaotic characteristics
but also effectively describe the motion state and variation of
the signal. /ese features absent in traditional analysis
methods give an advantage to nonlinear modeling.

2.2. Verification of Chaotic Characteristics in Speech.
/ere are two basic features which are used to describe chaotic
characteristics. /e chaotic attractor of high-dimensional

phase space reconstruction has (a) fractal dimension
characteristics and (b) initial conditions which have great
influence on the system [13]. If a time series has the above
two characteristics, we can say that the time series itself is
chaotic. Based on the above theory, this paper verifies the
chaotic characteristics of speech signals from three as-
pects: (a) power-spectrum analysis [13], (b) principal
component analysis [13], and (c) phase space recon-
struction [13].

2.2.1. Power-Spectrum Analysis Method. From the time-
domain waveform, we cannot intuitively determine whether
the time series is periodic or disordered. However, its power
spectrum can be used to identify these regularities. Analysis
of the power spectrum can help determine whether the time
series demonstrates chaotic characteristics. /is analysis is
based on two aspects: the number of peaks in the power
spectrum and the broad-spectrum characteristics. If there
are a finite number of peaks in the power spectrum, the time
series is said to have a periodic sequence. However, if there is
no obvious peak in the spectrum and it demonstrates a
“wide-spectrum” characteristic, we can say that the time
series is turbulent or chaotic. /erefore, power-spectrum
analysis has evolved as a theoretical basis for judging
whether the signal has chaotic characteristics.

In this paper, we analyze the power spectrum of the
speech signals of a single word in the Korean isolated words
database [15]. /e analysis is done for four cases: “15 dB,
20 dB,”“25 dB,” and “clean.” From Figure 1, we can see that
the speech signals of the four SNR have a wide spectrum and
no special peak. /erefore, it can be verified that the isolated
speech signals are chaotic.

2.2.2. Principal Component Analysis. Principal component
analysis (PCA) is an effective method to identify a time series
which has chaotic characteristics. /e steps for the calcu-
lations are as follows.

Given a time series [x(1), x(2), . . . , x(N)], the appro-
priate embedding dimension m is chosen to construct the
matrix Xk×m(k � N − (m − 1)), which is represented as

Xk×m �
1
�
k
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. (1)

/en, the covariance matrix A(A ∈ Rm×m) of the tra-
jectory is calculated as

Am×m�
1
k

X
T
k×mXk×m. (2)

/en, the eigenvalues of the covariance matrix
A(A ∈ Rm×m) are solved to obtain λi(i � 1, 2, . . . , m). Next,
we calculate the sum of all the eigenvalues λ and then sort the
eigenvalues λi(i � 1, 2, . . . , m) in descending order. We
calculate and plot the main component spectrum using
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ln(λi/λ) − i as the coordinates for the simulation graphics. If
the principal component spectrum is a nearly straight line
with a negative slope, this indicates that the signal has
chaotic characteristics.

As shown in Figure 2, in this paper, we carry out the
principal component spectral analysis of the four
emotions—“happy,”“sad,”“neutral,” and “anger”—from se-
mantic speech signals taken from the Chinese Affective
Chinese database (CASIA) [16]. As can be seen from Fig-
ure 2, the covariance matrix is used to calculate the three
eigenvectors (i � 1, 2, 3), and the resulting value ln(λi/λ) is
calculated as a nearly straight line with a negative slope in the
graph. /erefore, it can be shown that the emotional speech
signals are chaotic.

2.2.3. Phase Space Reconstruction. Phase space reconstruc-
tion (PSR) is the first step to analyze nonlinear dynamic,
commonly used in the embedding theorem proposed by

Taken’s [17]. /e essence of this method is to construct an
m-dimensional space vector x(t), x(t + τ), . . . ,{ x(t + (m −

1)τ)} by selecting the corresponding appropriate delay time
τ and embedding dimension m from the one-dimensional
time series x(t). /e reconstructed high-dimensional space
is equivalent to the original space. Given the time series of
the one-dimensional emotional speech signals xi,
i � 1, 2, 3, . . . , N, we select the appropriate time delay τ and
embedding dimension m. /e sequence expression after
phase space reconstruction can be written as

xi
→

� xi, xi+τ , . . . , xi+(m− 1)τ . (3)

/e row vector xi
→ represents the location information of

each single attractor required for phase space reconstruc-
tion. /e definition of nonlinear dynamical systems indi-
cates that these vectors are connected by a column to form a
trajectory matrix. /is information can be used to create the
following PSR matrix:
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Figure 1: Power-spectrum analysis of isolated speech. Power spectrum of (a) 15 dB, (b) 20 dB, (c) 25 dB, and (d) 30 dB isolated speech
signals.
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X �
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. (4)

/e significance of a high-dimensional phase space is
that the internal structure of the signal can be expanded./e
signal can be projected onto a high-dimensional space, and
the qualitative properties of the signal can be obtained by
measuring and predicting the evolutionary trajectory in this
space.

/is paper reconstructs the phase space by measuring
different emotions in the same semantics of the Berlin
emotional speech database [18]. In this paper, we study the
overall structure and motion trajectory of the speech signals

under a one-dimensional time series and a three-dimen-
sional phase space reconstruction for four emotional states:
“happy,”“sad,”“neutral,” and “angry.” From Figure 3, we can
see that the differences between the four kinds of emotional
speech are mainly reflected in features such as the number of
peaks, the peak size, and the number of zero crossings in the
time-domain waveform. However, there are also significant
differences in the overall structure and motion trajectory
once the four kinds of emotional speech are reconstructed in
a three-dimensional phase space. /erefore, a nonlinear
dynamic model can be used to analyze the chaotic char-
acteristics of speech signals.

3. Nonlinear Dynamic Feature
Extraction from Speech

Phase space reconstruction is one of the key techniques used
to study time series with chaotic characteristics. Taken’s
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Figure 2: Principal component-spectrum analysis of different emotional speeches from CASIA emotional speech corpus. Principal
component-spectrum analysis of (a) happiness, (b) sadness, (c) neutral, and (d) anger.
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embedding theorem [14] states that as long as the appro-
priate time delay τ and the embedded dimension m are
appropriately selected, the one-dimensional emotional time
series X � [x1, x2, . . . , xN] can be mapped from a low-di-
mensional space to a high-dimensional space
X(ti) � [x(ti), x(ti + τ), . . . , x(ti + (m − 1)τ)] to realize
phase space reconstruction. Here, i � 1, 2, . . ., and ensure
that the reconstructed phase space and the original one-
dimensional voice signal retain information integrity. /e
emotional speech signals are analyzed under the recon-
structed phase space, and then, the following nonlinear
dynamic (NLD) features are extracted. /e algorithm flow is
shown in Figure 4.

3.1. Preprocessing. Since speech signals are nonstationary
and time-varying and have short-time stationary char-
acteristics, the following three steps are needed for the

processing and analysis of speech signals: ①endpoint
detection: the identification of the start and end points of
the speech signals based on energy and zero rate;
②preemphasis: a first-order digital filter is used to pre-
accentuate the high-frequency part of the speech signals;
③window framing: a Hamming window is used for frame
processing, with a frame length of 256 and a frame shift of
128.

3.2. C-C Algorithm. /e purpose of phase space recon-
struction is to extend the dynamic one-dimensional speech
signals into a high-dimensional space to completely reveal
the implicit information in the time series. However, we
observed that the significant parameter delay time τ of the
reconstruction phase space is strongly correlated with the
embedded dimension m. /erefore, this paper chooses the
C-C [18] method to calculate the delay time τ and the
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Figure 3: Time-domain waves and phase space reconstruction of the Berlin-DB emotional speech corpus. /e time-domain wave of
(a) happiness, (b) sadness, (e) neutral, and (f) anger. Phase space reconstruction of (c) happiness, (d) sadness, (g) neutral, and (h) anger.
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window delay time τw. /is paper also further obtains the
embedded dimension m which is a part of the implicit
information in the time series. In view of the current spatial
coordinates, the geometric information is limited to a two-
or three-dimensional space. /is paper improves the C-C
method and extends its speech time series to two- and three-
dimensional phase spaces to extract five nonlinear geometric
features (NLD-2) from the structural trajectory contours.
/e specific calculations are performed in the following
steps:

(1) As shown in equation (5), the time series
X � [x1, x2, . . . , xN] is divided into t disjoint time
subsequences:

x1 � x1, xt+1, x2t+1, . . . , xN− t+1 ,

x2 � x2, xt+2, x2t+2, . . . , xN− t+2 ,

⋮

xt � xt, x2t, x3t, . . . , xN ,

(5)

where the length is l � (N/t).
(2) /e associated integral of the embedded time series

is defined by the following function:

C(m, N, r, t) �
2

M(M − 1)


ι≤i≤j≤M
θ r − dij , r> 0,

(6)

where M � N − (m − 1)τdij � ‖Xi − Xj‖, and when
x< 0, θ(x) � 0, and x≥ 0, θ(x) � 1.

(3) /e S(m,N,r,t) of the subsequence xi is defined using
the associated integral C(m, l, r, t) function:

S(m,N,r,t) �
1
t



t

s�1
Cs(m, l, r, t) − C

m
s (1, l, r, t) . (7)

When N⟶∞, S(m,r,t) � (1/t)t
s�1[Cs (m, r, t) − Cm

s

(1, r, t)](m � 2, 3, . . .). If the time series is indepen-
dently distributed, then for fixed m, t, when N⟶∞,
for all r, S(m, r, t) is equal to zero. But the actual se-
quence is limited, and the sequence elements may be
related, we actually get S(m, r, t) which is generally not
equal to zero so that the local maximum time interval
can be located at the zero point of S(m, r, t) or at the
minimum time point for all the differences between the
radii. Since this implies that these points are almost
uniformly distributed, the maximum and minimum
radii of the corresponding values are selected, and the
difference ΔS(m,N,t) can be written as

ΔS(m,N,t) � max S m, N, rj, t  − min S m, N, rj, t . (8)

/e above formula measures the maximum devia-
tion of the radius r.

(4) To calculate the time delay τ and the window delay
time τW, we must first calculate the following three
components:

St �
1
4



3

m�2


2

j�1
S m, N, rj, t ,

ΔSt �
1
2



3

m�2
ΔS(m,N,t),

Scor(t) � ΔSt + St


,

(9)

where rj is rj � (jσ/2) and σ is the mean square of
the time series time delay. τ is the first value of St or
the first minimum of ΔSt corresponding to the value
of the input t. /e window delay time τW is the value
of the input t corresponding to the minimum value
of Scor(t).

(5) /e embedded dimension m is calculated:

m �
τW

τ
+ 1 . (10)

3.3. Nonlinear Attribute Feature Extraction

(1) Minimum delay timethe known speech signal is
represented as [x(1), x(2), . . . , x(N)]. Here, we use
the mutual information function to calculate the
mutual information between the speech signals x(i)

and x(j) at different time intervals. At the points
where the mutual information of these two speech
time series reaches the minimum, the correlation
between the two variables is also minimal. /is
corresponding time interval is the minimum delay
time τ. As shown in equation (11), this paper uses the
average mutual information (MI) [19] to calculate
the minimum delay timeτ:

I(τ) � 
i,j

pi,j(τ) ln
pi,j(τ)

pipj(τ)
 , (11)

where pi and pj, respectively, represent the proba-
bility of the sequence amplitude falling in the ith and
jth segments, respectively. pi,j denotes the joint
probability of the two-point amplitude of the

Speech
signal

Database

Endpoint
detection Preemphasis Window

framing

Pretreatment

C-C
method

Delay time
+

embedded
dimension

Phase space
reconstruction

Nonlinear dynamic
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Figure 4: Flow chart of feature extraction algorithm.
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sequence at time interval τ. /e minimum delay
which quantifies the disorder between two discrete
variables corresponds to the moment of the first local
minimum of the obtained mutual information
function curve.

(2) Correlation dimension:the correlation dimension is
a nonlinear representation of chaotic dynamics. It is
used to describe the property of the dynamics and
self-similarity of the structure of high-dimensional
spatial speech and provides a quantitative analysis of
the complexity of its structure. /e more complex
the corresponding system structure is, the greater
will be the correlation dimension. /e correlation
dimension is calculated using the G-P algorithm
[20]. As shown in equation (12), the G-P algorithm is
a method proposed by Grassberger and Procaccia for
calculating the correlation dimension:

D(m) �
lnC(r, m)

ln r
, (12)

where D(m) is the relational dimension and C(r, m) is
the correlation integral function. C(r, m) is the ratio of
the phase point between any (Xi,Xj) in the m-di-
mensional reconstruction space which is less than r, the
ratio of all phases, and is defined as

C(r, m) �
1

M(M − 1)


N

i,j�1,i≠j
θ r − Xi − Xj

�����

����� . (13)

In Equation (13), the corresponding lnC(r, m)

⟶ ln r curve is obtained by taking the minimum
embedded dimension of m, and the correlation di-
mension can be obtained by fitting the local line of
the curve.

(3) Kolmogorov entropy: it is a physical quantity used to
accurately describe the degree of confusion in a time-
series distribution. Grassberger and Procaccia pro-
posed the correlation dimension analysis method.
/ey demonstrated that the K entropy can be ap-
proximated using the K2 entropy. /e relationship
between K2 entropy and the correlation integral
function C(r, m) can be expressed as

K2 �
1

mτ
log2

C(r, m)

C(r, m + 1)
. (14)

/is entropy calculated in equation (14) is the
Kolmogorov entropy.

(4) Largest Lyapunov exponent: the Lyapunov exponent
is used to quantify the average change in the rate of
local convergence or divergence of adjacent orbits in
the phase space. /e maximum Lyapunov exponent
x represents the degree of convergence or divergence
of the orbit. When λ1 > 0, as the value of λ1 increases,
the value of the orbital divergence and the chaos also
increases. /e paper uses the Wolf method [21] to
obtain the maximum Lyapunov exponent. Here, we

take the initial pointXi in the phase space and find its
nearest neighbor point Xi′

. /e distance between
them is represented as L0. /is distance is tracked
over time as the adjacent orbits in the phase space
converge or diverge. A point is retained when the
distance Li between the two points meets the set
value ε after n iterations of tracking. Once this
condition is met, the next moment is tracked.
When tracking the overlay M times, we can obtain
the maximum Lyapunov exponent using the fol-
lowing equation:

λ1 �
1

Mn


M

i�0
ln

Li

L0
. (15)

Compared with other algorithms, this algorithm has
advantages of fast computation, robustness to em-
bedded dimension m, delay time τ , and noise.

(5) Hurst exponent: the Hurst exponent (H) measures
the long-term memory of a time series. H lies within
the range of 0-1. If H> 0.5, it indicates that the time
series displays a long-term autocorrelation and the
time series is highly correlated. /is paper uses the
rescaled-range analysis method [22] to calculate the
H value. /e rescaled-range is a nonparametric
statistical method, which is not affected by the dis-
tribution of the time series. /e method divides the
one-dimensional speech signal with emotional
content [x(1), x(2), . . . , x(N)] into M adjacent
subsequences C of equal lengths. By calculating the
cumulative deviation zu and the standard deviation
Su for each subsequence and then calculating the
weight difference of each sub-sequence Ru/Su, we
obtain the Hurst exponent using Ru � max zu−

min zu. /e calculation is as follows:
RM

SM

� bH
M

. (16)

Here, b is a constant. By taking the logarithm of both
sides of equation (16), we can obtain the value of H

which is the Hurst exponent. For different emotional
states contained in a speech signal, the changes in the
value H are different./e Hurst exponent feature of the
extracted emotional speech reflects the correlation
between the emotion and the change.

3.4. Nonlinear Geometric Feature Extraction. After the one-
dimensional speech signal is mapped to a high-dimensional
space using phase space reconstruction, the speech signal is
analyzed in the high-dimensional space. Next, the geometric
features—which are the five trajectory-based descriptor
contours—of the phase space reconstruction for different
speech states are extracted. /ese five descriptors are de-
tailed as follows:

(1) /e first contour: the distance from the attractor to
the center is expressed as a � [|a1

→
|, |a2

→
|, . . . , |aN

�→
|]:

Mathematical Problems in Engineering 7



ai


 �

������������

a2
i + ai + τi( 

2


,
����������������������

a2
i + ai + τi( 

2
+ ai + 2τi( 

2


.

⎧⎪⎪⎨

⎪⎪⎩
(17)

Among them, the two-dimensional space under the
attractor is defined as ai

→
� (ai, ai + τi), and the

three-dimensional space under the attractor is de-
fined as ai

→
� (ai, ai + τi, ai + 2τi).

(2) /e second contour: the length of the continuous
trajectory between the attractors is expressed
asl � [| l1

→
|, | l2

→
|, . . . , |lN− 1

���→
|]:

li


 � ai+1
��→

− ai
→

. (18)

(3) /e third contour: the trajectory of the continuous
path between the attractors is expressed as
θ � [θ1, θ2, . . . , θN− 2]:

θi �
ai
→

− ai+1
��→

(  · ai+1
��→

− ai+2
��→

( 

li
→

 li+1
��→



. (19)

(4) /e fourth contour: the distance from the attractor to
the marker line is expressed as d � [d1, d2, . . . , dN]:

di �

(1, 1)⊗ ai, ai + τi( 
�
2

√ ,

(1, 1, 1)⊗ ai, ai + τi, ai + 2τi( 
�
3

√ .

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(20)

For the time delay τ � 1, when the original waveform
x(t) is lagged, there will be a small difference between
the two samples x(t − 1) and x(t − 2). /is can be
expressed as the identity [20]:

x(t) � x(t − 1) � x(t − 2). (21)

From formula (20), we can observe that the upper
form will not hold when the three attractors are
different. Since the dynamic factors of the chaotic
system are interactive, the data points produced in
time will also be correlated [23]. /erefore, formula
(21) represents the labeling line. /e differences be-
tween the attractors can be obtained by analyzing the
distances between the attractors and the labeling line.

(5) /e fifth contour: the total length of the trajectory of
the attractor is expressed as S:

S � 
N

i�1
|ai|. (22)

4. Experimental Preparation

4.1. Speech Corpora

4.1.1. Korean Isolated Words Database [15]. /e isolated
words database was used for performing speaker-

independent, isolated word recognition from neutral
(nonemotional) speech. /e vocabulary sizes used in the
experiments were 10 words, 20 words, 30 words, 40 words,
and 50 words. /e corpus consisted of ten digits and 40
command words with 16 speakers thrice repeating each
word. For our experiment, we used the recording of the
utterances of 9 speakers as the training set and the utterances
of the remaining 7 speakers as the test set.

4.1.2. CASIA Database [16]. /e CASIA database is a
Chinese database developed in the Institute of Automation,
Chinese Academy of Sciences. /e recordings consisted of
six acted (simulated) emotions (Neutral, Anger, Fear,
Happiness, Sadness, and Surprised) by four professional
speakers (2 females and 2 males). Each emotion category
consists of 300 identical texts and 100 different texts. Re-
cordings of readings of the same text with different emotions
are useful for the comparison of acoustics and prosodic
performance for different emotional states. Another 100
different texts with emotional content that matched the
emotion being expressed made it easier for the articulating
person to express their feelings better. /e recordings were
performed with a sampling rate of 16 kHz and a 16-bit
resolution and were stored in PCM format.

4.1.3. Berlin Database [17]. /e Berlin database is a German
database recorded in an anechoic chamber at the Technical
University Berlin. /e database consists of 10 actors (5 fe-
males and 5 males) who simulated seven emotions (Neutral,
Anger, Fear, Happiness, Sadness, Disgust, and Boredom).
Each emotion category contains ten German sentences. /e
recordings were performed with a sampling frequency of
48 kHz and later downsampled to 16 kHz with high-quality
recording equipment. In our experiments, we use happy,
sad, neutral, and angry as the four basic emotions from the
German Berlin speech library.

Taking into account the effect of the length of speech on
the recognition results, this paper filters the database to
obtain 363 German sentences and 1000 Chinese sentences
with approximate speech length of five seconds. /e results
of the division of emotional speech into the training and test
set are shown in Table 1.

4.2. Feature Extraction. Previous studies have demonstrated
that prosodic features [24] and MFCC features [24] are
highly efficient for distinguishing between different emo-
tional states. In this paper, we first perform a series of
preprocessing operations on the speech signals. /en, we
extract the prosodic features and MFCC features for each
speech frame. We also extract the NLD-1 and NLD-2 fea-
tures based on the phase space reconstruction method de-
scribed earlier in this paper. /en, we calculate the statistical
functions for the above features. /ese statistical functions
include the maximum and the minimum values, the mean,
the variance, the median, the deviation, and the kurtosis.
Finally, as shown in Table 2, we end up with a feature set of
150 dimensions. /e normalized method of linear function
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transformation is used to eliminate the influence of different
types of affective features, and then, the objective perfor-
mance is evaluated synthetically.

4.2.1. Prosodic Feature Extraction. Prosodic features mainly
describe the nonverbal information in the emotional speech
signal, including the level, the length, the speed, the severity of
speech, and the fluent speech information. /erefore, the
prosodic feature, also known as the “supersegmental feature,”
is also recognized for its ability to recognize emotions./er-
efore, we use speech speed, average zero-crossing rate, energy,
fundamental, and formant as the prosodic feature.

4.2.2. MFCC Feature Extraction. /e ability of the human
ear to perceive the sound intensity is related to the frequency
of the sound. At low frequencies, the perceived sound
perception of a human ear is linear with the sound fre-
quency. At high frequencies, due to the masking effect, the
perception of the human ear to the sound is nonlinear with
the frequency of the sound, so Mel frequencies are intro-
duced to simulate auditory properties. /is paper uses the
expression: fmel � 1125∗ ln((1 + f)/700). /e ordinary
frequency is converted to Mel frequency, and the first 12
steps of MFCC are extracted.

4.3. Classification. Constructing a reasonable and efficient
speech recognition model is the most important research
challenge in the field of speech recognition technology. It

requires learning from a large training corpus, which can be
used to explore a variety of acoustic features for mapping the
corresponding path of the speech signals to achieve the
correct identification. Currently, for speech recognition
tasks, both linear and nonlinear classifiers are used. /e
linear ones include Naı̈ve Bayes Classifier, Linear ANN
(artificial neural network), and Linear SVM (support vector
machine)./e nonlinear ones include Decision Trees, k-NN
(k-nearest neighbor algorithm), and Nonlinear ANN.
Nonlinear classifiers also include SVMs, GMM (Gaussian
mixture model), HMM (hidden Markov model), and sparse
means classifiers, among others. Researchers have experi-
mented with different model classifiers for improving speech
recognition. /e most widely used classifiers for speech
recognition are HMM [25,26], GMM [27,28], ANN [29,30],
and SVM [31,32]. In this paper, to improve the separability
of data, the SVM classifier is used to generate a nonlinear
mapping of the original features to a high-dimensional
space; the choice of kernel function is Radial Basis Function
(RBF).

5. Experimental Setup and Analysis of Results

To verify the validity and robustness of the proposed NLD
feature set, we design the following two experiments. /e
first experiment consists of an analysis of the influence of
PSR parameter selection on the NLD feature set. /e second
experiment verifies the validity of NLD features for speech
recognition by comparing them with traditional acoustic
features.

Table 1: Corpus setting for emotional speech experiment.

Database Berilin-DB CASIA
Emotion Happy Sadness Neutral Anger Fear Happy Sadness Neutral Anger Fear
Training 47 42 53 55 46 132 132 132 132 132
Test 24 20 26 27 23 68 68 68 68 68
Sum 71 62 79 82 69 200 200 200 200 200

Table 2: Statistics of feature parameters extracted from speech.

Features Dimensions Statistics

Prosodic features 38

Speed
Average zero-crossing rate

Energy and its 1st-order maximum, minimum, and mean values
Fundamental frequency and its 1st-order maximum, minimum, and mean values

First formant and its 1st-order maximum, minimum, and mean values
Second formant and its 1st-order maximum, minimum, and mean values
/ird formant and its 1st-order maximum, minimum, and mean values

MFCC 60
/e skewness, kurtosis, mean, variance, and median of the first 12 steps of MFCC
/e maximum, minimum, mean, median, and variance of the hurst exponent

/e maximum, minimum, mean, median, and variance of the minimum delay time

NLD-1 (nonlinear attribute features) 59

Correlation dimension’s maximum, minimum, mean, median, and variance
Kolmogorov entropy’s maximum, minimum, mean, median, and variance

/e mean, median, and variance of the largest Lyapunov index
/e first, second, and third contours

NLD-2 (nonlinear geometric features) 23
/emaximum, minimum, mean, variance, standard deviation, skewness, and kurtosis

/e maximum, minimum, skewness, and kurtosis of the fourth contour
/e fifth contour
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5.1. Influence of PSR Parameter Selection on NLD-2 Features.
We design two experiments to verify the validity of two
important parameters of phase space reconstruction and
discuss the results under different parameters:

Experiment 1: first, we generate the phase space re-
construction of speech signals using the delay time τ and
the embedding dimension m(τ � 1, m � 3) as set in the
document [20]. Next, the phase space reconstruction of
speech signals is also carried out using the delay time τ
and the embedding dimension m for each frame of the
speech signal extracted using the improved C-Cmethod.
Finally, we compare the results of the two experiments.
Experiment 2: in view of the current research on spatial
coordinates, the geometric information is limited to the
two- or three-dimensional space [13]. /erefore, we set
the value of the embedded dimension as m � 3 and the
delay time τ � 1, 2, . . . , 5. /is is done to compare the
experimental results for the delay times and embedding
dimensions.

We reconstruct the phase space, based on the above two
sets of experimental parameters. Next, we extract five kinds
of NLD-2 features from the corresponding phase space of
the Berlin-DB for the recognition of five basic emotions. /e
experimental results are shown in Table 3 and Figure 5.

From Table 3, we can observe the task of recognition of
emotional speech, and we obtain a higher accuracy (75%) for
the delay time and the embedded dimensions than those
reported in the literature [20]. Our system demonstrates an
increase of 33.3%, for the happiness category, while the
recognition rates for sadness, anger, and fear are relatively
low. However, from the perspective of average recognition
rate, using NLD features extracted by our method based on
the parameters of this paper, we obtain a recognition rate
which is 2.5% higher.

According to the experimental results shown in Figure 5,
the NLD-2 features based on the method of parameter
setting cannot achieve the optimal recognition rate for the
recognition of each emotion speech category. However, the
overall recognition trend is relatively smoother than other
approaches. At the same time, we are also able to achieve an
optimal value for the average recognition rate. /is indicates
that the five NLD-2 features used to solve the delay time τ
and the embedding dimension m are valid based on the
method of improving the C-C. /is also proves that com-
pared with setting fixed values for the delay time τ and
embedding dimension m, the method of using C-C to set the
delay time τ and the embedding dimension m for each frame
of the speech signal’s phase space reconstruction yields
better results for recognition of emotional speech signals.

5.2. Validity and Verification of Robustness of the NLD
Features. In this paper, we used three methods to verify the
validity of the extracted features.

5.2.1. Experimental Scheme 1: Speech Recognition of Isolated
Words. /e ten types of NLD features based on the PSR

theory are combined with the MFCC features to identify
isolated speech vocabulary. /e experimental results are
shown in Table 4 and Figure 6. /ese results verify the
validity and robustness of the NLD features based on phase
space theory.

/e experimental results show that using different vo-
cabulary and different values of signal-to-noise ratio (SNR),
the recognition rate can be improved by the combination of
NLD features and traditional linear speech acoustic features.
Compared with the above four types of feature combination
methods, from Table 4, we can see that the complementary
effect of NLD-2 features is better than that of NLD-1 fea-
tures. /e effect of combination of the NLD features and the
MFCC features yields optimal results. From the results, it
can be seen that the recognition rate of the feature set
comprising of the fusion of traditional linear acoustics with
NLD features increases with the increase in the vocabulary
size. /is can be attributed to an increase in the training set.
/erefore, the effective information from the speech signals
can be better described by combining or complementing the
NLD features with the traditional linear features of speech
signals. But the overall recognition rate decreases with an
increase in the number of words. /is is because the fusion
of the above features is not suitable for large words.
/erefore, new features must be considered to improve the
recognition effect for large vocabulary speech recognition.

5.2.2. Experimental Scheme 2: Single Language Emotion
Recognition. /e prosodic features, MFCC features, NLD-1
features, and NLD-2 features are combined to recognize
single emotional speech from Berlin-DB and CASIA in two
languages. /e results of the recognition are shown in Ta-
bles 5 and 6.

/e confusion matrix of the Chinese emotional speech
recognition is provided in Table 5.We can see that compared
with MFCC, NLD-1, and NLD-2, prosodic features achieve
the best recognition rate for the happy emotional state. From
the perspective of misjudgment, the misclassification of
happiness and anger is the lowest for prosodic features. /is
indicates that prosodic features can effectively distinguish
between happy and angry emotional states. From the overall
recognition results, the overall recognition performance of
MFCC is higher than that of the other three features and the
recognition results for the anger class are optimal. NLD-1
features have better recognition effect for the neutral
emotional voice, and NLD-2 has a better recognition for
sadness and fear./e recognition performance of NLD alone
is not optimal. /is can be explained as that for emotional
speech, NLD is used for effectively recognizing the effect of
local emotion recognition only. It also indicates that the
nonlinear feature can make up for the lack of speech chaos
observed in previous studies.

In Table 6, we can see the confusion matrix of the Berlin
German emotional speech corpus. /e recognition effect of
NLD-2 is better than that obtained using prosody, MFCC,
and NLD-1. For happiness, NLD-2 correctly classifies 50
instances which is higher than the number of instances
recognized using the other feature sets. From the
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recognition results of fear, the recognition performances of
NLD-1 and MFCC reach the optimum values. From the
overall recognition results, the recognition performance
obtained using MFCC is superior to the other three types of
features. /is is because the MFCC features extracted for
the sadness, neutral, anger, and fear yield the best recog-
nition results. Comparing the results of emotion recog-
nition in two languages, we can see that recognition result
of emotional speech is not only related to the language type
of the speech database but also has a close relationship with
the features. /e same feature yields different results for the

representation of emotional information in different
languages.

In Figure 7, we compare the results for single language
emotional speech recognition for German and Chinese. We
can see that for the recognition of the emotional speech, only
prosodic features yield slightly better results in Chinese than
in German./is is because in Chinese, we obtain the highest
recognition rate for happy emotional speech. From the
results of the recognition rate of the different features, the
dominant features based on the recognition performance
can be sorted as follows: MFCC>NLD-2>NLD-1>prosodic

Table 3: Emotional speech recognition using different phase space parameters (%).

/e choice of τ and m Happy Sadness Neutral Anger Fear Average
Literature [20] sets τ � 1 and m � 3 41.7 90.0 73.1 88.9 73.9 73.3
/e paper sets τ and m � 3 75.0 85.0 73.1 81.5 65.2 75.8

Happiness sadness Neutral
Emotional state

Anger Fear Average

τ = 1
τ = 2
τ = 3

τ = 4
τ = 5
The proposed method
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Figure 5: Comparison of emotional speech recognition results under different parameter settings.

Table 4: Recognition results of the two features for different SNR (dB).

Word no. Feature type
SNE (dB)

15 20 25 30 Clean Average

10

MFCC 91.90 91.90 91.90 93.81 94.76 92.85
NLD-1 +MFCC 93.33 94.29 93.33 94.29 95.71 94.19
NLD-2 +MFCC 93.33 94.29 93.33 94.29 95.71 94.19
NLD+MFCC 92.85 95.24 92.38 95.24 95.71 94.28

20

MFCC 91.19 93.38 91.67 92.86 92.14 92.25
NLD-1 +MFCC 92.38 92.81 93.57 93.10 92.86 92.94
NLD-2 +MFCC 91.19 93.81 93.57 92.86 92.61 93.04
NLD+MFCC 92.14 93.81 93.10 94.05 92.62 93.14

30

MFCC 87.62 89.68 91.27 92.22 89.05 90.32
NLD-1 +MFCC 90.79 90.79 91.27 92.63 89.79 91.54
NLD-2 +MFCC 87.62 91.11 92.06 92.22 90.79 90.76
NLD+MFCC 88.73 91.11 92.06 92.63 91.27 91.16

40

MFCC 86.90 88.69 90.31 90.00 88.33 88.85
NLD-1 +MFCC 87.14 90.35 91.31 90.36 88.69 89.57
NLD-2 +MFCC 87.14 90.35 91.79 90.36 88.69 89.67
NLD+MFCC 87.86 89.88 90.36 90.24 88.93 89.45

50

MFCC 84.29 87.71 88.95 78.76 85.82 85.11
NLD-1 +MFCC 85.81 87.90 88.48 78.81 85.05 85.21
NLD-2 +MFCC 85.52 87.52 89.05 78.76 85.52 85.27
NLD+MFCC 85.52 87.52 89.05 88.10 87.71 87.58
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features. /is is verified for both Chinese and German
emotional speech corpus. /erefore, we can state that the
NLD-1 and NLD-2 features extracted in this paper can ef-
fectively characterize the emotional information in speech
signals.

5.2.3. Experiment Scheme 3: Speech Recognition of Mixed
Language Emotion. Prosodic features, MFCC features,
NLD-1 features, and NLD-2 features are used to recognize
the cross-emotional speech from the Berlin-DB and
CASIA in two languages. /e recognition results are
shown in Table 7./is further validates the efficiency of the

extracted features for recognition of emotional states from
speech.

From Table 7, we can draw the following conclusions:
from the average recognition results with single use of four
feature types (prosodic features, MFCC, NLD-1, NLD-2, and
NLD-2), the average recognition rate is the highest for NLD-
2 and the lowest for the prosodic features. We can conclude
that prosodic features are superior for the task of recognition
of emotional speech in a single language. Evaluating the
results for each individual emotion, we observe that MFCC
has a better discriminative power for detecting sadness;
NLD-1 can better differentiate neutral emotions; However,
NLD-2 provides better distinction between happiness,
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Figure 6: Comparison of speech recognition result of different isolated words.

Table 5: Confusion matrix for the CASIA emotional speech
recognition for four feature types.
Prosody Detected emotion
Emotional state Happy Sadness Neutral Anger Fear

True emotion

Happy 152 22 19 1 6
Sadness 29 93 18 19 41
Neutral 20 21 113 29 17
Anger 7 24 34 112 23
Fear 12 51 26 19 92

NLD-1
Emotional state Happy Sadness Neutral Anger Fear

True emotion

Happy 137 12 34 17 0
Sadness 35 90 22 18 35
Neutral 13 11 128 22 26
Anger 11 20 19 124 30
Fear 0 49 29 24 98

MFCC
Emotional state Happy Sadness Neutral Anger Fear

True emotion

Happy 137 4 48 8 3
Sadness 17 90 7 10 76
Neutral 49 10 121 16 4
Anger 11 12 18 148 11
Fear 3 75 7 19 96

NLD-2
Emotional state Happy Sadness Neutral Anger Fear

True emotion

Happy 147 12 30 11 0
Sadness 39 95 21 16 55
Neutral 11 14 118 20 37
Anger 8 19 21 116 36
Fear 0 51 14 27 108

Table 6: Confusion matrix for the Berlin-DB emotional speech
recognition for four feature types.
Prosody Detected emotion
Emotional state Happy Sadness Neutral Anger Fear

True emotion

Happy 35 1 6 23 6
Sadness 35 46 12 1 1
Neutral 2 8 56 3 10
Anger 14 1 2 64 1
Fear 11 5 13 15 25

NLD-1
Emotional state Happy Sadness Neutral Anger Fear

True emotion

Happy 34 0 4 18 5
Sadness 0 47 14 0 1
Neutral 0 3 67 0 9
Anger 20 0 0 59 3
Fear 7 5 8 4 45

MFCC
Emotional state Happy Sadness Neutral Anger Fear

True emotion

Happy 48 0 0 17 6
Sadness 0 59 3 0 0
Neutral 2 2 71 0 4
Anger 12 0 0 69 1
Fear 11 5 7 1 45

NLD-2
Emotional state Happy Sadness Neutral Anger Fear

True emotion

Happy 50 0 6 8 7
Sadness 3 48 8 0 3
Neutral 8 4 54 0 13
Anger 16 0 0 64 2
Fear 14 4 7 7 37
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anger, and sadness. /erefore, we can state that NLD
demonstrates a better distinction between different emo-
tions of great intensity, such as sadness, neutral, happiness,
and anger. From the perspective of feature fusion, we ob-
serve that addition of NLD features effectively compensates
the chaotic characteristics of the emotional speech signals
compared to traditional acoustic linear features. In addition,
we also observe that it is partial to using NLD features for
characterizing the emotional difference in speech signals.
/is is because NLD features are obtained by treating the
speech signals as a one-dimensional time series and com-
pletely ignoring the acoustic features of the emotional speech
signals. /erefore, when the NLD features and acoustic
features are combined, the effective information in the
emotional speech signals can be better described.

6. Conclusion and Further Study

In this paper, based on the chaotic characteristics in the
nonlinear generation mechanism of speech signal, aiming at
the deficiency of linear feature parameters in speech signal
and the limitation of existing time-domain and frequency-
domain attribute features in characterizing the integrity of
speech information, a nonlinear feature extraction method
based on phase space reconstruction theory is proposed, and
the chaotic characteristics of speech signal are verified from
three aspects: power-spectrum analysis, principal compo-
nent analysis, and phase space reconstruction./e nonlinear
dynamic model is applied for the extraction of speech
features. /is paper also extracts and evaluates the contri-
bution of NLD features from speech signals. /e speech
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Figure 7: Comparison of different features for single language emotional speech recognition.

Table 7: Four types of features used to obtain a confusion matrix for the mixed language emotional speech recognition task.

Feature type Emotional state CASIA-Chinese Berlin-German Average

Prosody

Happiness 42.65 66.67 54.66
Sadness 52.94 70.00 64.47
Neutral 48.53 69.23 58.88
Anger 69.12 62.96 66.04
Fear 44.12 17.39 33.76

Average 51.47 57.50 54.49

MFCC

Happiness 55.88 54.17 55.03
Sadness 52.94 80.00 66.47
Neutral 75.00 76.92 75.96
Anger 69.12 85.19 77.16
Fear 38.26 34.78 36.52

Average 58.24 66.67 62.46

NLD-1

Happiness 50.00 54.17 52.09
Sadness 47.06 60.00 53.53
Neutral 76.47 80.77 78.62
Anger 73.53 77.78 76.65
Fear 44.12 69.57 56.85

Average 55.29 69.17 62.23

NLD-2

Happiness 52.94 70.83 61.89
Sadness 48.53 80.00 64.27
Neutral 44.12 69.23 56.68
Anger 79.41 85.19 82.30
Fear 54.11 73.91 64.01

Average 55.88 75.83 65.86

Prosody +MFCC+NLD

Happiness 75.00 72.06 73.53
Sadness 76.09 72.06 74.08
Neutral 77.78 73.53 75.66
Anger 86.96 79.41 83.19
Fear 79.17 70.59 74.88

Average 79.17 73.53 76.35
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recognition experiments are designed to combine the fea-
tures of traditional linear acoustics with the NLD features to
verify whether this combination can improve the perfor-
mance of the recognition. From the experimental results for
the recognition of isolated words, the addition of nonlinear
dynamical features is able to effectively compensate for the
chaotic features neglected by the traditional acoustic fea-
tures. /is proves that merging NLD features with acoustic
features can better describe the effective information con-
tained in speech signals. From the recognition results of
emotional speech, we can observe that while the perfor-
mance of nonlinear features alone is ideal, we can obtain
better recognition rates through feature fusion. For the
experimental designed in this paper, the recognition net-
work was developed by combining NLD features with
acoustic features./rough our experiments, we demonstrate
that while NLD features efficiently compensate for the
chaotic characteristics of the emotional speech signals, they
are also biased to represent the differences in the emotional
speech alone. In future research, we would like to explore the
research direction of integrating NLD and acoustic features
to generate the strongest combination of the features. Ad-
ditionally, in view of the high efficiency of NLD features for
emotion recognition in mixed languages, the study of cross-
database emotion recognition using NLD features is another
research direction that needs to be further explored.
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et al., “Feature selection for automatic analysis of emotional
response based on nonlinear speech modeling suitable for
diagnosis of Alzheimer’s disease,” Neurocomputing, vol. 150,
pp. 392–401, 2015.

[11] L. Xiang and N. Tan, “Method of applying speech multi-
features to detect driver fatigue,” Chinese Journal of Scientific
Instrument, vol. 34, no. 10, pp. 2231–2237, 2013.

[12] J. A. Gómez-Garćıa, J. I. Godino-Llorente, and G. Castellanos-
Dominguez, “Non uniform embedding based on relevance
analysis with reduced computational complexity: application
to the detection of pathologies from biosignal recordings,”
Neurocomputing, vol. 132, no. 7, pp. 148–158, 2014.

[13] T. Lin and Y. G. Yang, “Chaotic time series analysis and its
application research,” Journal of Wuhan University of Tech-
nology, vol. 32, no. 19, pp. 189–192, 2010.

[14] F. Takens, Detecting Strange Attractors in Turbulence. Dy-
namical Systems and Turbulence, Warwick 1980, Springer,
Berlin, Germany, 1981.

[15] Z. Jiao, Improved Feature Extraction Algorithm for ZCPA
Speech Recognition, Taiyuan University of Technology,
Taiyuan, China, 2005.

[16] J. Tao, J. Yu, and Y. Kang, “An expressive mandarin speech
corpus,” in Proceedings of the Conference of Oriental
COCOSDA, Kyoto, Japan, 2005.

[17] H. S. Kim, R. Eykholt, and J. D. Salas, “Nonlinear dynamics,
delay times, and embedding windows,” Physica D: Nonlinear
Phenomena, vol. 127, no. 1-2, pp. 48–60, 1999.

[18] F. Burkhardt, “A database of german emotional speech,” in
Proceedings of the INTERSPEECH 2005—Eurospeech, Euro-
pean Conference on Speech Communication and Technology,
pp. 1517–1520, Lisbon, Portugal, September 2005.

14 Mathematical Problems in Engineering

http://emodb.bilderbar.info/docu/#home
http://emodb.bilderbar.info/docu/#home
http://www.chineseldc.org/
http://www.chineseldc.org/
http://doi.org/10.13039/501100004480
http://doi.org/10.13039/501100004480


[19] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis,
pp. 30–150, Cambridge University Press, Cambridge, UK,
2004.

[20] G. Zhao and Y. Shi, “Computing fractal dimension and the
Kolmogorov entropy from chaotic time series,” Chinese
Journal of Computational Physics, vol. 16, no. 3, pp. 310–315,
1991.

[21] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “De-
termining Lyapunov exponents from a time series,” Physica D:
Nonlinear Phenomena, vol. 16, no. 3, pp. 285–317, 1985.

[22] H. E. Hurst, R. P. Black, and Y. M. Simaika, “Long-term
storage: an experimental study,” Journal of the Royal Statis-
tical Society, vol. 129, no. 4, pp. 591–593, 1965.

[23] J. Krajewski, S. Schnieder, D. Sommer, A. Batliner, and
B. Schuller, “Applying multiple classifiers and non-linear
dynamics features for detecting sleepiness from speech,”
Neurocomputing, vol. 84, no. 3, pp. 65–75, 2012.

[24] Y. Sun, H. Yao, and X. Zhang, “Feature extraction of emo-
tional speech based on chaotic characteristics,” Journal of
Tianjin University, vol. 48, no. 8, pp. 681–685, 2015.

[25] S. S. Vijayarajsolomon, V. Parthasarathy, and N. /angavelu,
“Exploiting acoustic similarities between Tamil and Indian
English in the development of an HMM-based bilingual
synthesiser,” Iet Signal Processing, vol. 11, no. 3, pp. 332–340,
2017.

[26] R. M. Kiran and K. Sreenivasa, “Robust pitch extraction
method for HMM-based speech synthesis system,” IEEE
Signal Processing Letters, vol. 24, no. 8, pp. 1133–1137, 2017.

[27] L. Wang, S. Nakagawa, and Z. Zhang, “Spoofing speech de-
tection using modified relative phase information,” IEEE
Journal of Selected Topics in Signal Processing, vol. 11, no. 4,
pp. 660–670, 2017.

[28] Z. Ma, Y. Liang, and J. Zhu, “An optic-fiber fence intrusion
recognition system using mixture Gaussian hidden Markov
models,” IEICE Electronics Express, vol. 14, no. 5, 2017.

[29] Z. Qawaqneh, A. A. Mallouh, and B. D. Barkana, “Age and
gender classification from speech and face images by jointly
fine-tuned deep neural networks,” Expert Systems with Ap-
plications, vol. 85, pp. 76–86, 2017.

[30] H. M. Fayek, M. Lech, and L. Cavedon, “Evaluating deep
learning architectures for speech emotion recognition,”
Neural Networks, vol. 92, pp. 60–68, 2017.

[31] E. Zarrouk, Y. Benayed, and F. Gargouri, “Hybrid SVM/
HMM model for the recognition of Arabic triphones-based
continuous speech,” in Proceedings of the 10th International
Multi-Conferences on Systems, Signals & Devices 2013
(SSD13), Hammamet, Tunisia, 2013.

[32] W. Zhang, D. Zhao, and Z. Chai, “Deep learning and SVM
based emotion recognition from Chinese speech for smart
affective services,” Software Practice & Experience, vol. 47,
no. 8, pp. 1127–1138, 2017.

Mathematical Problems in Engineering 15


