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We propose a constrained linear curvature image registration model to explicitly control the deformation according to the
transformed Jacobian matrix determinant using point-by-point inequality constraints in this paper. In addition, an effective
numerical method is proposed to solve the resulting inequality constrained optimizationmodel. Finally, some numerical examples
are given to prove the obvious advantages of the curvature image registration model with inequality constraints.

1. Introduction

In image processing, people are interested not only in analyzing
an image but also comparing or combining information from
images which take different time, different places, different
viewpoints, or different modalities. (us, image registration is
one of the most useful and challenging problems in the field of
image processing. Its main idea is to find a geometric trans-
formation which aligns points in one view of one object with
corresponding points in another view of the same or similar
object. At present, there are a large number of application areas
which require image registration, such as computer vision,
biological imaging, remote sensing, and medical imaging. For
comprehensive surveys of these applications, refer to [1–5].

(e basic framework of image registration can be de-
scribed as follows: given two images of the same object,
which are called reference image R and template image T,
respectively, and our purpose is to find a vector value
transformation φ as defined below:

φ(u)(·): R
d⟶ R

d
,φ(u)(x): x⟶ x + u(x), (1)

or equivalently find the unknown displacement field u:

u: R
d⟶ R

d
, u: x⟶ u(x) � u1(x), u2(x), . . . , ud(x)( 

⊤
,

(2)

so that the transformed template image T(φ(x)) � T(x +

u(x))≜T(u) is as similar to the reference image R as
possible. Here, d ∈ N denotes spatial dimension of the given
images.

Without loss of generality, here we focus on d � 2
throughout this paper, but it is easy to generalize to d � 3
with some additional modifications.(e variational model is
an important tool for studying image registration and has
been widely concerned by many researchers [5–9]. (is
variational model treats the image registration problem as a
minimization problem of the joint energy functional in the
following form:

min
u

Jα[u] � D(u) + αS(u) , (3)

where

D(u) �
1
2


Ω

(T(u) − R)
2dΩ, (4)

where D(u) denotes distance measure which quantifies
distance or similarity of the transformed template image
T(u) and reference R, for other choices on D(u), refer to
[5, 7], S(u) is the deformation regularizer which constrains
u and ensures the well-posedness of the problem, and α> 0 is
a regularization parameter which balances similarity and
regularity of displacement.
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We all know that different regularizers will produce dis-
placement fields with different degrees of smoothness and the
selection of a regularizer is critical to the solution of the problem
and its properties; for more details, refer to [5]. Usually the
choice of regularizer can be classified into two main categories:
the first type is to limit the displacement field u(x) to the
parametric model [10–14], for example, rigid or affine trans-
formations (parameterized by rotation, scaling, and translation)
or linear combinations of a set of basis functions (B-splines)
[3, 5, 15–18]; the second type is based on the derivative of the
displacement field. At present, there are regularizers based on
first-order derivatives, such as elastic regularizer [19–21], dif-
fusion regularizer [22], total variational regularizer [23, 24],
modified total variational regularizer [25, 26], total fractional-
order regularizer [27], and the ones based on higher-order
derivatives, such as linear curvature [28, 29], mean curvature
[8, 30], and Gaussian curvature [31]. It has been proved that, in
many cases, the selection method of the first kind of a regu-
larizer is too strict, and the required transformation cannot be
guaranteed to be included in the parametric model. (erefore,
the second kind of method is a common method to select a
regularizer. For the second method, it is easy to implement for
low-order regularizers, while they are less effective than high-
order ones in producing smooth displacement fields which are
important in some applications including medical imaging.
Although the registration models based on a higher-order
regularizer can produce more satisfactory registration results
visually, they do not take into account mesh folding.

In fact, the regularity of the displacement field is also an
important measure in image registration [32]. In many
variational models (1) that currently exist, although they can
produce satisfactory registration results visually, they cannot
ensure that the transformation φ(x) � x + u(x) found is
reversible. (e irreversibility of the transformation means
that the displacement field is not regular. In this case, there
will be mesh folding during the registration process, which is
not allowed in practical applications. (erefore, it is nec-
essary to avoid mesh folding during the registration process.
Currently, a direct idea to avoid mesh folding is to use a
larger regularization parameter α. However, such a value will
cause the similarity between the transformed template image
and the reference image to become worse. In order to avoid
mesh folding phenomenon, some scholars have proposed to
add an additional regular term C(u) on the transformed
Jacobian matrix determinant in the objective function for-
mula (3) [33–36], i.e.,

min
u

Jα[u] � D(u) + αS(u) + β‖C(u) − 1‖
2

 , (5)

where C(u) � det(Id + ∇u) represents the determinant of
the Jacobian matrix of the transformation. However, this
method only penalizes the irregular displacement field as a
whole, while the local displacement field cannot be guar-
anteed to be regular [32]. In addition, this method is only
effective for the smaller regularizer parameter β, and in-
creasing the value of β usually leads to ill-posed optimization
problems [37]. To solve this problem, Haber and Moder-
sitzki proposed a new registration model by adding addi-
tional explicit volume inequality constraints [32]; however,

this constrained method usually leads to solving a large-scale
highly nonlinear inequality constrained optimization
problem. Other methods to ensure the regularity of the
displacement field can be found in the literature [20, 38–43].
However, some of them require more computation time due
to the complexity of the regularizer.

(ere are two purposes for image registration. One is to
enhance some similarities between two images by geomet-
rically transforming one of the given two images. (e other
is to ensure that this transformation is reasonable. In fact, it
is equivalent to find geometric transformation φ and the
displacement field u(x) in the framework of variational
model. If the displacement field is irregular, the transfor-
mation is considered unreasonable, and then the mesh
folding phenomenon will appear which is not allowed in
practical applications. In this paper, we propose a new image
registration model by integrating the evaluation criteria to
measure the registration results directly into the basic
framework of the variational model (3).

(e rest of the paper is organized as follows: in Section 2,
we propose a new constrained linear curvature image reg-
istration model. (en in Section 3, we discuss the numerical
method for solving the newmodel by using a combination of
the multiplier method and Gauss–Newton scheme with the
Armijos line search and further combine with a multilevel
method to achieve fast convergence. Next, some experi-
mental results from syntectic and real images are illustrated
in Section 4. Finally, conclusions and future work are
summarized in Section 5.

2. Constrained Linear Curvature Image
Registration Model

Firstly, we briefly review the Fischer–Modersitzki’s linear
curvature image registration model [25, 27]. ChoosingS(u) in
(3) based on an approximation to the curvature of the surface of
the displacement field ul is given by the following form:

S
LC

(u) �
1
2



2

l�1

Ω
Δul( 

2dΩ. (6)

(ere are two major advantages to the particular choice of
the regularizer. Firstly, it can penalize oscillations; secondly,
without requiring an additional affine linear preregistration
step, it can produce visually more satisfactory registration re-
sults than a diffusion model and an elastic model for smooth
displacement fields. However, a mesh folding phenomenon is
not considered in this linear curvature model. In order to avoid
this, the evaluation criteria to measure the registration results
are directly integrated into the basic framework of the varia-
tional model (3), and we propose a constrained linear curvature
image registration model in the following form:

min
u

Jα(u) �
1
2


Ω

(T(u) − R)
2dΩ +

α
2



2

l�1

Ω
Δul( 

2dΩ
⎧⎨

⎩

⎫⎬

⎭

s.t. C(u)> 0,

(7)
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where

C(u) � det(J(φ(x)))

�
1 + u1( x u1( y

u2( x 1 + u2( y





� 1 + u1( x(  1 + u2( y  − u1( y u2( x.

(8)

Compared with model (5), our new model can ensure
that the displacement field is regular both globally. In ad-
dition, the new model prevents mesh folding even for very
small regularization parameters α. Finally, visually pleasing
registration results can be obtained by using our new model
with low computing time for smooth registration problems.
(e numerical solution of the new model (7) is given below.

3. Numerical Solution of the New Model

In general, it is difficult to solve the optimization problem (7)
by the analytic method. (us it is necessary to adopt the
numerical method and appropriate discretization. In this
paper, we choose the discretize-optimize method which aims
to take advantage of efficient optimization techniques. In
this section, we first discuss briefly the discretization we use
and then describe the details of numerical algorithms.

3.1. Finite Difference Discretization. Assume that given
discrete images have m1 × m2 pixels. For simplicity, the
image region is further assumed to be
Ω � [0, 1] × [0, 1] ⊂ R2, and then each side of these m1 × m2
cell-centered images has width hi � (1/mi), i � 1, 2. (us the
discrete domain can be denoted by

Ωh � x ∈ Ω | x � xi, yj 
⊤

� (i − 0.5)h1, (j − 0.5)h2( 
⊤

, i � 1, 2, . . . , n1; j � 1, 2, . . . , n2 . (9)

3.1.1. Discretization of Regularizer. (e discrete form of the
continuous displacement field u � (u1, u2)

⊤ can be repre-
sented by uh � (uh

1 , uh
2), where uh

1 and uh
2 are the discrete grid

functions defined on the discrete region Ωh. For conve-
nience, let (uh

l )ij � uh
l (xi, yj), i � 1, 2, . . . , m1, j � 1, 2,

. . . , m2, and l � 1, 2. Since the curvature regularizer is
expressed based on the Laplacian operator Δ which can be
regarded as the product of gradient operator ∇ and diver-
gence operator ∇, we introduce the symbols ∇h and ∇h· to
represent their discrete forms, respectively. (e discrete
gradient operator ∇h can be defined at each pixel (i, j) by the
following form:

∇huh
 

i,j
� ∇h

u
h
1 

i,j
, ∇h

u
h
2 

i,j
 

⊤
, (10)

where

∇h
u

h
l 

i,j
� z

h
xu

h
l 

i,j
, z

h
yu

h
l 

i,j
 

⊤
,

z
h
xu

h
l 

i,j
�

1
h1

u
h
l 

i+1,j
− u

h
l 

i,j
 , if i<m1;

0, if i � m1;

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

z
h
yu

h
l 

i,j
�

1
h2

u
h
l 

i,j+1 − u
h
l 

i,j
 , if j<m2;

0, if j � m2.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(11)

(e displacement field u satisfies the homogeneous
Neumann boundary conditions on the boundary zΩ of the
image region Ω:

zul

zν
� 0, l � 1, 2. (12)

(rough the analysis of continuous setting, we know that
the discrete divergence operator is the negative conjugate
transposition of the gradient operator, namely, ∇· � −∇∗.
(us, it can be defined by the following form:

(∇ · ω)i,j �

1
h1

ω1( i,j − ω1( i−1,j 

1
h1

ω1( i,j 

−
1
h1

ω1( i−1,j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+

1
h2

ω2( i,j − ω2( i,j−1 , if 1< i< n1, 1< j< n2;

1
h2

ω2( i,j , if i � j � 1;

−
1
h2

ω2( i,j−1, if i � n1, j � n2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

where ω � (ω1,ω2) is a vector. For the convenience of
calculation, the grid functions uh

1 and uh
2 can be changed into

column vectors uh
1 and uh

2 according to lexicographical
ordering, respectively:

u
h
1 � u

h
1,1,1, . . . , u

h
1,n1 ,1, u

h
1,1,2, . . . , u

h
1,n1 ,2, . . . , u

h
1,n1 ,n2

 
⊤

,

u
h
2 � u

h
2,1,1, . . . , u

h
2,n1 ,1, u

h
2,1,2, . . . , u

h
2,n1 ,2, . . . , u

h
2,n1 ,n2

 
⊤

.

(14)
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We can get uh
1 ∈ R

N, uh
2 ∈ R

N, and
Uh � (uh

1, uh
2)⊤ ∈ R2N, where N � n1n2. Discrete gradient

operator (∇huh
l )i,j can also be expressed as the product of

matrix A⊤k ∈ R
2×N(k � 1, 2, . . . , N) and the vector uh

l (l �

1, 2) in the following form:

A
⊤
k u

h
l �

uh
l 

k+1 − uh
l 

k
; uh

l 
k+n2

− uh
l 

k
 , if kmod n1 ≠ 0 and k + n2 ≤N;

0; uh
l 

k+n2
− uh

l 
k

 , if kmod n1 � 0 and k + n2 ≤N;

uh
l 

k+1 − uh
l 

k
; 0 , if kmod n1 ≠ 0 and k + n2 >N;

(0; 0), if kmod n1 � 0 and k + n2 >N.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

Let

A � A1, A2, . . . , AN(  � A1,1, A1,2, . . . , AN,1, AN,2  ∈ RN×2N
;

Ax � A1,1, A2,1, . . . , AN,1  ∈ RN×N
;

Ay � A1,2, A2,2, . . . , AN,2  ∈ RN×N
.

(16)

By this notation, we can get

∇huh
1 �

A
⊤
x

A
⊤
y

⎡⎢⎣ ⎤⎥⎦uh
1 ≜Buh

1,

∇huh
2 �

A
⊤
x

A
⊤
y

⎡⎢⎣ ⎤⎥⎦uh
2 ≜Buh

2.

(17)

Let C � B⊤B, C �
C 0
0 C

 , and

B[u] � 
2

l�1
Δul( 

2
� Δu1( 

2
+ Δu2( 

2
. (18)

(en the discrete form of (18) is as follows:

B
h Uh
  � −B

⊤
Buh

1 
⊤

−B
⊤

Buh
1  + −B

⊤
Buh

2 
⊤

−B
⊤

Buh
2 

� −Cuh
1 
⊤

−Cuh
1  + −Cuh

2 
⊤

−Cuh
2  � uh

1 
⊤

· C
⊤

C( uh
1 + uh

2 
⊤

C
⊤

C( uh
2

� uh
1 
⊤

, uh
2 
⊤

 
C
⊤

C 0

0 C
⊤

C
⎡⎣ ⎤⎦

uh
1

uh
2

⎡⎢⎢⎣ ⎤⎥⎥⎦

� uh
1 
⊤

, uh
2 
⊤

 
C 0

0 C
 

T
C 0

0 C
 

uh
1

uh
2

⎡⎢⎢⎣ ⎤⎥⎥⎦

� Uh
 
⊤
C
⊤
CUh

.

(19)

According to the midpoint quadrature formula, the
linear curvature regularizer SLC(u) � (1/2)ΩB[u]dΩ has
the following discrete form:

S
h Uh
  �

1
2
hd Uh

 
⊤
C
⊤
CUh

, (20)

where hd � h1h2.

3.1.2. Discretization of Template T and Reference R. For a
given discrete image, if we want to know the gray value at
any spatial location other than the grid point, then image
interpolation is needed. In order to take full advantage of the
fast and effective optimization method, a smooth cubic
B-spline is used for interpolation. Next,T andR are used to
represent the continuous smooth approximation of template
image T and reference image R, respectively. Let

xc � x1,1, . . . , xn1 ,1, x1,2, . . . , xn1 ,2, . . . , x1,n2
, . . . , xn1 ,n2

 
⊤

,

yc � y1,1, . . . , yn1 ,1, y1,2, . . . , yn1 ,2, . . . , y1,n2
, . . . , yn1 ,n2

 
⊤

,

(21)

and Xh
c � [xc; yc].

(us the discrete reference image and transformed
template image can be represented by the following form,
respectively:

R
→

� R Xh
c , (22)

T
→

Uh
  � T Xh

c + Uh
 , (23)

and further we can get the Jacobian of T
→
:

T
→

Uh �
z T
→

zU
h

U
h

  �
zT

zUh
c

Uh
c , (24)

where Uh
c � Xh

c + Uh and the Jacobian of T
→

is a block matrix
with diagonal blocks.

3.1.3. Discretization of Distance Measure D. Although it is
in a continuous setting, it is not possible to compute inte-
grals analytically. (us it is necessary to use numerical in-
tegration. In discrete simulation, the midpoint quadrature
formula can be used to approximate the integral. According
to (22) and (23), the discrete form of distance measurement
D(2) can be written directly as follows:

D
h Uh
  �

1
2
h1h2 T

→
Uh

  − R
→

 
⊤

T
→

Uh
  − R

→
 . (25)

In addition, the derivative of the discrete functional
Dh(Uh) on Uh can also be calculated and has the following
form:
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dD
h Uh
  � h1h2 T

→
Uh 
⊤

T
→

Uh
  − R

→
 . (26)

Furthermore, we can calculate the second derivative
d2Dh(Uh) of the distance measurement Dh(Uh):

d
2
D

h Uh
  � h1h2 T

→
Uh 
⊤

T
→

Uh + h1h2 

N

i�1
di Uh

 ∇2di Uh
 ,

(27)

where d(Uh) � T
→

(Uh) − R
→
∈ RN. On one hand, it is con-

suming and numerically unstable to compute higher-order
derivatives (27) in registering two images for practical ap-
plications. On the other hand, the difference between T

→
(Uh)

and R
→

will become smaller if the template image is well
registered. To have an efficient and stable numerical algo-
rithm as proposed in work [5], d2Dh(Uh) can be approx-
imated by the following form:

d
2
D

h Uh
  � h1h2 T

→
Uh 
⊤

T
→

Uh . (28)

3.1.4. Discretization of Inequality Constraint Functional
C(u). In model (7), the inequality constraint functional
C(u) is defined by

C(u) � 1 + u1( x(  1 + u2( y  − u1( y u2( x. (29)

According to the previous analysis, the discrete form of
the partial derivative of the continuous displacement field
element ul can be expressed as follows:

uh
l 

x
� A
⊤
xu

h
l ≜ml;

uh
l 

y
� A
⊤
yu

h
l ≜wl,

l � 1, 2.

(30)

Obviously, ml ∈ RN, and wl ∈ RN, where N � n1 × n2.
Let

e � (1, 1, . . . , 1)
⊤ ∈ RN

,

c � e + m1( ⊛ e + w2(  − w1⊛m2,
(31)

where symbol ⊛ denotes the multiplication of the corre-
sponding elements of two vectors and c ∈ RN. For the
convenience of calculation, let ci denote the i-th element of c,
i � 1, 2, . . . , N. (erefore, the continuous inequality con-
straint function C(u) has the following discrete form:

C
h Uh
  � c1, c2, . . . , cN( 

⊤
. (32)

Since the first-order variation of the continuous in-
equality constraint function C(u) on continuous displace-
ment field u is as follows:

dC(u) � u2( xy − u2( yx, u1( yx − u1( xy 
⊤

. (33)

(us we can get the discrete form of the first-order
variation dC(u):

dC
h Uh
  �

0 A
⊤
y A
⊤
x − A

⊤
x A
⊤
y

A
⊤
x A
⊤
y − A

⊤
y A
⊤
x 0

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
uh
1

uh
2

⎡⎢⎢⎣ ⎤⎥⎥⎦≜AUh
.

(34)

Obviously, dCh(Uh) ∈ R2N, 0 ∈ RN×N, and
A ∈ R2N×2N.

3.2. Solving theDiscreteOptimization Problem. According to
the above analysis, inequality constrained functional (7) has
the following discrete form:

min
Uh

Jα Uh
  � D

h Uh
  + αSh Uh

  

s.t. C
h Uh
 > 0.

(35)

Below we use the multiplier method to numerically solve
the inequality constrained optimization problem (35). (e
basic idea of this method is to transform the original
problem into a series of unconstrained optimization
problems to solve and simultaneously estimate the La-
grangian multiplier. For more details on multiplier scheme,
see [37]. Before solving (35), let us briefly review the
multiplier method of inequality constrained optimization.

3.2.1. Multiplier Method for Inequality Constrained
Problems. Consider the following inequality constrained
optimization problem:

min f(x),

s.t. gi(x)≥ 0, i � 1, 2, . . . , m.
(36)

Let yi ≥ 0, and the above inequality constraint can be
transformed into the following equivalent equality con-
straint problem:

min f(x),

s.t. gi(x) − y
2
i � 0, i � 1, 2, . . . , m.

(37)

In this case, the augmented Lagrange function can be
expressed as

φ(x, y, λ, σ) � f(x) − 
m

i�1
λi gi(x) − y

2
i  +

σ
2



m

i�1
gi(x) − y

2
i 

2
.

(38)

In order to eliminate the auxiliary variables y, the
minimization of φ with respect to variable y can be con-
sidered. According to the first-order necessary condition, let

∇yφ(x, y, λ, σ) � 0. (39)

We can get

2yiλi − 2σyi gi(x) − y
2
i  � 0, i � 1, 2, . . . , m. (40)

Namely,

yi σy
2
i − σgi(x) − λi(   � 0, i � 1, 2, . . . , m. (41)

(erefore, when σgi(x) − λi > 0,
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y
2
i �

1
σ

σgi(x) − λi  σgi(x) − λi > 0

0 σgi(x) − λi ≤ 0

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

, i � 1, 2, . . . , m;

(42)

that is to say,

gi(x) − y
2
i �

λi

σ
σgi(x) − λi > 0

gi(x) σgi(x) − λi ≤ 0

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

, i � 1, 2, . . . , m.

(43)

(us when σgi(x) − λi ≤ 0, we have

−λi gi(x) − y
2
i  +

σ
2

gi(x) − y
2
i 

2
� −λigi(x) +

σ
2

gi(x) 
2

�
1
2σ

σgi(x) − λi( 
2

− λ2i .

(44)

And when σgi(x) − λi > 0, we can obtain

−λi gi(x) − y
2
i  +

σ
2

gi(x) − y
2
i 

2
� −

1
σ
λ2i +

1
2σ

λ2i � −
1
2σ

λ2i .

(45)

According to the above two cases,

− λi gi(x) − y
2
i  +

σ
2

gi(x) − y
2
i 

2

�
1
2σ

min 0, σgi(x) − λi  
2

− λ2i .

(46)

Substituting it into formula (38), we can get the cor-
responding augmented Lagrange function of (36):

ϕ(x, λ, σ) � min
y

ψ(x, y, λ, σ)

� f(x) +
1
2σ



m

i�1
min 0, σgi(x) − λi  

2
− λ2i .

(47)

Since the multiplier vector needs to be updated to solve
the inequality constrained optimization problems (36) by
using the multiplier method, next we derive the multiplier
iterative formula. Firstly, fix the penalty parameter σ to some
value σk > 0 at its k-th iteration, and fix λ at the current
estimate λk. Secondly, perform minimization with respect to
x. Using xk to denote the approximate minimizer of
φ(x, y, λ, σ), then we can get by the optimality conditions for
unconstrained minimization that

0 ≈ ∇xφ xk, y
k
, λk

, σk  � ∇f xk( 

− 
m

i�1
λk

i − σk gi xk(  − y
k
i 

2
  ∇ gi xk(  − y

k
i 

2
 .

(48)

Let (x∗, y∗, λ∗) satisfy the KKTconditions for (37), then
we have

∇f x
∗

(  − 
m

i�1
λ∗i ∇ gi x

∗
(  − y

∗
i( 

2
  � 0. (49)

By comparing (48) with (49), we can deduce that

λ∗i ≈ λ
k
i − σk gi xk(  − y

k
i 

2
 , i � 1, 2, . . . , m. (50)

According to (50), to improve the current estimate λk of
the Lagrange multiplier vectors, the multiplier iteration
formula can be given by the following form:

λk+1
i � λk

i − σk gi xk(  − y
k
i 

2
 . (51)

(en, taking (43) into the multiplier iteration formula
(51), we have

λk+1
i �

0, σkgi xk(  − λk
i > 0,

λk
i − σkgi xk( , σkgi xk(  − λk

i ≤ 0.

⎧⎨

⎩ (52)

Furthermore, it can be written as

λk+1
i � max 0, λk

i − σkgi xk(  ≥ 0, i � 1, 2, . . . , m. (53)

Similarly, take (43) into the termination criterion



m

i�1
gi xk(  − y

k
i 

2
 

2
⎛⎝ ⎞⎠

(1/2)

≤ ε. (54)

We can get



m

i�1
min gi xk( ,

λk
i

σk

  

2

⎛⎝ ⎞⎠

(1/2)

≤ ε. (55)

3.2.2. Multiplier Method for Solving Model. Next, we use the
multiplier method to solve the model (35). Firstly, we
construct the augmented Lagrange function for solving
model (35):

ψ Uh
, λ, σ  � Jα Uh

  +
1
2σ



N

i�1
min 0, σC

h
i Uh
  − λi  

2
− λ2i .

(56)

(e corresponding multiplier iteration formula has the
following form:

λk+1
i � max 0, λk

i − σkC
h
i Uh(k)
  . (57)

And the corresponding stopping criterion is

βk � 
N

i�1
min C

h
i Uh(k)
 ,

λk
i

σk

  

2

⎛⎝ ⎞⎠

(1/2)

≤ ε. (58)

Although the augmented Lagrangian function (57) of the
model (35) contains the min function, it is still continuously
differentiable; for details, see [37, 44]. (e detailed steps of
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the multiplier method for solving the model (35) can be
summarized by Algorithm 1.

In Algorithm 1, the Gauss–Newton method is used to
solve the unconstrained subproblem (56). And its main idea
is to use a quadratic function ψ instead of ψ near the iteration
value Uh(k) of the previous step by the Taylor expansion
given below:

ψ Uh(k)
+ δUh  ≈ ψ Uh(k)

+ δh
U  � ψ Uh(k)

 

+ dψ Uh(k)
 δUh +

1
2
δ⊤UhHδUh ,

(59)

where dψ(Uh(k)) is the Jacobian matrix of ψ atUh(k) andH is
the approximation of its Hessian. Due to d2Dh(Uh(k)

), C⊤C
and (M(Uh(k)))⊤M(Uh(k)) are both positive semidefine,
and it is easy to prove that H is also positive semidefinite.
(us, we know that ψ is convex. In this way, the nonconvex
problem can be transformed into a convex problem to be
solved. For further detailed description, see [37]. (e de-
tailed steps are described below.

Given the initial value Uh(k), the Jacobian matrix
dψ(Uh(k)) and the Hessian matrix H are calculated by the
following forms:

dψ Uh(k)
  � dD

h Uh(k)
  + αhd C

⊤
CUh(k)

+ M Uh(k)
  

⊛ σC
h Uh(k)
  − λ ,

(60)

H � d
2
D

h Uh(k)
  + αhdC

⊤
C + M Uh(k)

   M Uh(k)
  

⊤
,

(61)

and in each outer iteration step, respectively, where
M(Uh(k)) � dCh(Uh) ∈ R2N is defined by (34). In formula
(59), the disturbance value δUh can be obtained by finding
the stability point of the quadratic function ψ, namely,

HδUh � −dψ Uh(k)
 . (62)

Usually,H is the positive definite.(us the equation (62)
can be solved by the preconjugate gradient method. To
ensure that the objective function (59) is descending, the
standard Armijo line search method can be used. (e
specific steps for the Armijos line search can be summarized
by using Algorithm 2. And the Gauss–Newton method
mentioned above is described by using Algorithm 3. In order
to provide a good initial value, the Gauss–Newton method
with Armijo line search and the multilevel method are
combined to solve model (56), which can reduce the risk of
getting trapped at an unwanted minimizer and save com-
puting time. Firstly, we use the initial value Uh(0) and the
Gauss–Newtonmethod with the Armijos line search to solve
(56) on the coarsest level. Secondly, the solution on the
coarsest level is interpolated to the next finer level; next it is
used as the initial value, and the samemethod is used to solve
the model (56) on the finer level, where bilinear interpo-
lation operator Ih

H is used. Finally, this process is repeated
until the loop terminates. We summarize the multilevel
method using Algorithm 4.

4. Numerical Experiments

In this part, we use three experiments to show that our new
model (CLC) has good performance by comparing it with
diffeomorphic demons (DDemons) [43], linear curvature
model (LC) [28], mean curvature model (MC) [8],
hyperelastic regularizer (Hyper) [20], and Zhang–Chen
model (ZC) [42]. In order to illustrate the capabilities of our
model, we select two pairs of artificial images. In addition,
considering the important application of image registration
in biomedical images, we also use a pair of medical lung
images for experiments.

In order to quantify the quality of the registered image,
the relative reduction ε of the dissimilarity, which is given by
[7], is shown as follows:

ε �
D(u)

Dstop
× 100%. (63)

And the minimum value F of the determinant of the
Jacobian matrix J of the transformation φ

J �
1 + u1x u1y

u2x 1 + u2y

⎡⎣ ⎤⎦,

F � min(det(J)),

(64)

are used, where D(u) is defined by equation (4), u is the
current iteration, and Dstop is the value of D(u) at u � 0.

4.1. Test 1: A Pair of Lena Images. In the first experiment, we
used a pair of Lena images with a size of 256 × 256. (e test
images and registered ones using our new model are shown
in Figure 1. (e transformed template image obtained using
the other five models and the image difference after regis-
tration are represented by Figure 2. For Example 1 shown in
Figures 1(a) and 1(b), the registration results using our new
model and linear curvature (LC [28]) model and other four
models are recorded in Tables 1 and 2, respectively. For a
smaller regularizer parameter α � 3.12e − 3, from Figures 1
and 2, we can see that our new model and hyperelastic
regularizer-, linear curvature-, and mean one-based image
registration models can produce visually satisfactory reg-
istration results. However, we find that the latter two have
mesh folding by Tables 1 and 2. Although the demons-based
registration model and ZC model do not produce folding,
the registration effects are relatively poor. From Tables 1 and
2, we can further see that for the same image with different
sizes, our new model can give very satisfactory registration
results without folding.

In order to analyze how much our model will be affected
when changing the regularizer parameter α, we use Algo-
rithm 4 to test Example 1, and the corresponding quanti-
tative measurement values are recorded in Tables 3–5. From
Tables 3 to 5, we find that the registration quality becomes
worse and worse with the increase of the regularizer pa-
rameter α. However, when alpha is greater than or equal to
3.12 × 10− 3, our new model does not produce folding for
Example 1. For this example, our new model is able to
produce better registration results, especially when the
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Step 1: input the initial value: Uh(0) ∈ R2N, the objective function Jα(Uh) and its gradient dJα(Uh), inequality constrained vector
Ch(Uh), and the transpose of its Jacobian matrix dCh(Uh); let max k: � 10, σ1: � 1, ε: � 10− 5, ϑ: � 0.3, η: � 0.2, k: � 0,
λ1: � (10− 3, 10− 3, . . . , 10− 3)⊤ ∈ RN, and βk: � 10.
Step 2: solving the subproblem. With Uh(k− 1) as the initial point, solve the minimum value Uh(k) of the unconstrained subproblem
(51) by using the Gauss–Newton scheme with Armijo line search.
Step 3: check the termination condition. If βk ≤ ε or k>max k, where βk is defined by (57), the iteration is stopped, andUh(k) is output
as the approximate minimum of the original problem; otherwise, go to Step 4.
Step 4: update penalty parameters. If βk ≥ ϑβk−1, let σk+1: � ησk; otherwise, set σk+1: � σk.
Step 5: update multiplier vector. Calculate λk+1

i � max 0, λk
i − σkCh

i (Uh(k)) , i � 1, 2, . . . , N.

Step 6: set k: � k + 1, and go to Step 1.

ALGORITHM 1: Multiplier scheme.

Step 1: input initial value: Uh(k) ∈ R2N; δUh ∈ RN, ψ(Uh(k)), and dψ(Uh(k)) are calculated by (56) and (60), respectively. Set t: � 1,
maxIter: � 10, η: � 10− 4, and k: � 0.
Step 2: set Uh(k)

t : � Uh(k) + tδUh , and compute ψ(Uh(k)
t ).

Step 3: check the termination condition. If ψ(Uh(k)
t )<ψ(Uh(k)) + tη(dψ(Uh(k)))⊤δUh , then the iteration is stopped; otherwise, go to

Step 4.
Step 4: Set t: � t/2; k: � k + 1; and go to Step 2.

ALGORITHM 2: Armijo line search method.

Step 1: set k: � 0, maxIter: � 10, and ε � 2.2e − 13; input initial value: Uh(k) ∈ R2N.
Step 2: compute ψ(Uh(k)), dψ(Uh(k)), and H by using (56), (60), and (61), respectively.
Step 3: check the termination condition. If dψ(Uh(k))≤ ε or k≥maxIter, stop, and (Uh(∗)): � Uh(k) is the output.
Step 4: Solve the Quasi–Newton equation (62) by Preconjugate Gradient method. If the equation (61) has a solution δUh which meets
dψ(Uh(k))δUh < 0, then go to Step 5; otherwise, set δUh � −dψ(Uh(k)), and go to Step 5.
Step 5: the step factor t is solved by the Armijos line search technique.
Step 6: set Uh(k)

t : � Uh(k) + tδUh , k: � k + 1; then go to Step 2.

ALGORITHM 3: (e Gauss–Newton method.

Step 1: given initial values: Maxlevel: � ceil(log 2(min(m1, m2))) and Minlevel: � 3; given multilevel representation of the
reference image R and the template image T.
Step 2: set Uh(0) � 0 on the coarsest level l � Minlevel, then solve (51) by using Algorithm 1; otherwise, go to Step 3.
Step 3: the initial value Uh(0) on the finer level is obtained by interpolation operator Ih

H.
Step 4: set l: � l + 1; then go to Step 2.

ALGORITHM 4: Multilevel method.

(a) (b) (c)

Figure 1: Continued.
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Figure 1: Registration results of testing Lena images using our new model. (a) Reference image, (b) template image, (c) the transformed
template image using our new model, (d) image difference before registration (ε � 100%), (e) the transformation x + u(x), and (f) image
difference after registration (ε � 0.36%).
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Figure 2: Continued.
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Figure 2: Registration results for a pair of Lena images with a size of 256 × 256 using other five models. (e transformed template image
T(x + u(x)) from (a) the LC model [28], (b) Hyper model [20], and (c) DDemons model [43]. (e image difference after registration from
(d) the LCmodel (ε � 1.48%) [28], (e) Hypermodel [20] (ε � 0.52%), and (f) DDemonsmodel [43] (ε � 2.12%).(e transformed template
image T(x + u(x)) from (g) the ZC model [42] and (h) MC model [8]. (e image difference after registration from (i) the ZC model [42]
(ε � 3.48%) and (j) MC model [8] (ε � 1.41%).

Table 1: Quantitative measurements using our new model and LC model [28] for processing Example 1 shown in Figures 1(a) and 1(b).

Layer

Model
LC CLC

α � 3.12e − 3 α � 3.12e − 3
ε(%) N F ε(%) N F

h � (1/256) 1.48 315 −1.2228 0.36 0 0.5791
h � (1/128) 1.16 92 −0.8856 0.22 0 0.4997
h � (1/64) 1.04 20 −0.7184 0.39 0 0.5946
h � (1/32) 0.66 4 −0.3730 0.40 0 0.0168
h � (1/16) 1.23 1 −0.5629 1.04 0 0.0486
N represents the number of mesh folding of the transformation x + u(x). F> 0 means that the transformation does not include folding or cracking.

Table 2: Quantitative measurements using the DDemons model [43], ZC model [42], Hyper model [20], and MC model [8] for processing
Example 1 shown in Figures 1(a) and 1(b).

Layer

Model
DDemons ZC Hyper MC

σfluid � 1, σdiff � 0.756 α � 3.12e − 3 α � 3.12e − 3 α � 3.12e − 3
ε(%) N F ε(%) N F ε(%) N F ε(%) N F

h � (1/256) 2.12 0 0.0434 3.48 0 0.0649 0.52 0 0.3038 1.41 8 −0.1055
h � (1/128) 4.63 0 0.1764 3.29 0 0.0660 1.05 0 0.6497 1.14 1 −0.0273
h � (1/64) 11.99 0 0.5432 6.43 0 0.1191 4.12 0 0.7116 3.04 0 0.1613
h � (1/32) 23.69 0 0.6899 10.33 0 0.0440 15.84 0 0.7193 2.91 2 −0.2810
h � (1/16) 48.14 0 0.8650 28.45 0 0.3792 85.55 0 0.8247 2.17 0 0.1656
N represents the number of mesh folding of the transformation x + u(x). F> 0 means that the transformation does not include folding or cracking.

Table 3: Dependent results of our new model on the regularizer parameter α by testing Example 1 (Figures 1(a) and 1(b)).

α � e− 3 3.12 4 5 8 10 30
ε (%) 0.3574 0.3734 0.3876 0.4169 0.4307 0.4996
F 0.5791 0.5968 0.6119 0.6387 0.6493 0.6826
F> 0 means that the transformation does not include folding or cracking.

Table 4: Dependent results of our new model on the regularizer parameter α by testing Example 1 (Figures 1(a) and 1(b)).

α � e− 3 80 100 200 300 400 500
ε (%) 0.5836 0.6118 0.7488 0.8903 1.0380 1.1914
F 0.6736 0.6719 0.6678 0.6669 0.6679 0.6699
F> 0 means that the transformation does not include folding or cracking.
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regularizer parameter α is taken in an appropriate range
[3.12 × 10−3, 3 × 10−1].

4.2. Test 2: A Pair of Medical Lung Images. In this part, we
select a pair of medical lung images with a size of 256 × 256
for testing. For each model, we choose the optimal pa-
rameters. (e test images and the corresponding registered
ones are shown in Figures 3 and 4, respectively. (e reg-
istration results on different layers are recorded in Tables 6
and 7, respectively. According to Figures 3 and 4, we can
observe that the other five models can produce visually
relatively satisfactory registration effects except the DDe-
mons model. From the image difference after registration
and the results recorded in Tables 6 and 7, we find that
although our model requires slightly more computing time
than the LC model and MC model when the resolution
(256 × 256) is larger, it produces more satisfactory regis-
tration effects than them. In addition, from the above tables
we can also see that when the resolution (≤ 128 × 128) of the
image is relatively small, our model can produce more
satisfactory registration effects than the other models in a
relatively short time. Although the ZC model and Hyper
model produce slightly better results than our newmodel for

the image with the size of 256 × 256, our new model is more
robust with respect to mesh parameter h. As can be seen
from Tables 8–10, with the increase of the regularizer pa-
rameter α, the registration effects gradually become worse.
But when α is taken in a certain range [0.02846, 0.1], our
model can still produce satisfactory registration effects.
From the tables above, we also find that when the resolution
of the image changes and the regularizer parameter α is
taken in a certain range, the change of registration results
generated by our new model is not particularly significant.
(is shows that our new model is more robust.

4.3. Test 3:APair ofArtificial Image. A pair of artificial image
with a size of 256 × 256 is used in the third experiment. For
each model, we still choose its optimal parameters. Figure 5
represents the test images and registration results using our
new model (CLC). (e transformed template images and
image differences after registration from all other models are
shown in Figure 6.(e registration results on different layers
using our new model (CLC) and LC model [28] and other
four models are summarized in Tables 11 and 12, respec-
tively. In Figures 5 and 6, we can see that all five models
except the DDemons model are fine in producing

Table 5: Dependent results of our new model on the regularizer parameter α by testing Example 1 (Figures 1(a) and 1(b)).

α � e− 3 1e3 2e3 3e3 4e3 5e3 6e3
ε (%) 2.0285 3.8424 5.6738 7.4549 9.200 10.8363
F 0.6895 0.7350 0.7534 0.7688 0.7798 0.7878
F> 0 means that the transformation does not include folding or cracking.
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Figure 3: Registration results of testing a pair of medical lung images using our new model. (a) Reference image, (b) template image, (c) the
transformed template image using our newmodel, (d) image difference before registration (ε � 100%), (e) the transformation x + u(x), and
(f) image difference after registration (ε � 1.23%).
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Figure 4: Registration results for a pair of lung images with size of 256 × 256 using other five models. (e transformed template image
T(x + u(x)) from (a) the LC model [28], (b) Hyper model [20], and (c) DDemons model [43]. (e image difference after registration from
(d) the LCmodel [28] (ε � 2.41%), (e) Hyper model [20] (ε � 1.01%), and (f) DDemonsmodel [43] (ε � 16.74%).(e transformed template
image T(x + u(x)) from (g) the ZC model [42] and (h) MC model [8]. (e image difference after registration from (i) the ZC model [42]
(ε � 1.22%) and (j) MC model [8] (ε � 2.15%).
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Table 7: Quantitative measurements using the DDemons model [43], ZC model [42], Hyper model [20], and MC model [8] for processing
Example 2 shown in Figures 3(a) and 3(b).

Layer

Model
DDemons ZC Hyper MC

σfluid � 2, σdiff � 2.336 α � 2, β � 8 α � 10, β � 260 α � 8e − 2
ε(%) T F ε(%) T F ε(%) T F ε(%) T F

h � (1/256) 16.74 12.1 0.2791 1.22 52.1 0.0013 1.01 13.6 0.0215 2.15 15.4 0.0080
h � (1/128) 16.17 6.7 0.0719 1.68 9.4 0.0029 1.14 3.6 0.4266 1.52 5.6 0.0844
h � (1/64) 22.72 3.8 0.4960 2.38 4.6 0.0091 1.46 1.7 0.4859 0.87 3.1 0.2770
h � (1/32) 20.29 4.3 0.8279 4.34 1.0 0.0148 3.18 1.2 0.5913 0.50 2.0 0.4201
h � (1/16) 35.67 3.0 0.9464 16.48 0.4 0.0459 26.01 0.3 0.6572 0.37 1.2 0.5814
T represents the total run time which includes the output of the image(seconds).F> 0 means that the transformation does not include folding or cracking.

Table 8: Dependent results of our new model on the regularizer parameter α by testing Example 2 (Figures 3(a) and 3(b)).

α 0.02846 0.03 0.04 0.05 0.06 0.07
ε (%) 1.2282 1.2364 1.3463 1.4268 1.4926 1.5496
F 0.0186 0.0042 0.0894 0.1836 0.2524 0.3152
F> 0 means that the transformation does not include folding or cracking.

Table 9: Dependent results of our new model on the regularizer parameter α by testing Example 2 (Figures 3(a) and 3(b)).

α 0.1 0.2 0.5 1 5 10
ε (%) 1.6850 1.9600 2.3250 2.6287 3.6470 4.3160
F 0.4019 0.5192 0.6901 0.7352 0.8425 0.8998
F> 0 means that the transformation does not include folding or cracking.

Table 10: Dependent results of our new model on the regularizer parameter α by testing Example 2 (Figures 3(a) and 3(b)).

α 50 100 500 1000 5000 10000
ε (%) 6.9837 8.9523 15.3188 18.2166 21.3379 23.6637
F 0.9903 0.9887 0.9832 0.9818 0.9820 0.9802
F> 0 means that the transformation does not include folding or cracking.

Table 6: Quantitative measurements using our new model and LC model [25] for processing Example 2 shown in Figures 3(a) and 3(b).

Layer

Model
LC CLC

α � 4.84e − 2 α � 2.846e − 2
ε(%) T F ε(%) T F

h � (1/256) 2.41 14.5 0.0006 1.23 44.1 0.0186
h � (1/128) 1.96 7.6 0.0910 0.76 8.9 0.2540
h � (1/64) 1.17 4.0 0.1363 0.43 2.6 0.4581
h � (1/32) 1.07 2.6 0.2579 0.29 1.1 0.5437
h � (1/16) 0.81 1.2 −0.3257 0.13 0.5 0.6884
T represents the total run time which includes the output of the image (seconds).F> 0 means that the transformation does not include folding or cracking.
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satisfactory registration results. According to Tables 11
and 12, we find that although our new model requires
slightly more computing time when the resolution (256 ×

256) is large, it has the best value of ε. We also find that LC
model and MC model have mesh folding during the
registration process. In addition, our new model is more

robust than the ZC model and Hyper model with the
change of grid parameter h. For this example, an accurate
regularizer parameter α is also not needed. From Ta-
bles 13 to 15, we also find our proposed new model can
produce acceptable registration results for any α between
0.1 and 1.
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Figure 5: Registration results of testing a pair of artificial images using our new model. (a) Reference image, (b) template image, and (c) the
transformed template image using our new model (CLC). (e image difference (d) before registration (ε � 100%), (e) the transformation,
and (f) after registration using our new model (CLC) (ε � 0.07%), respectively.
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Figure 6: Registration results for a pair of lung images with size of 256 × 256 using other five models. (e transformed template image
T(x + u(x)) from (a) the LC model [28], (b) Hyper model [20], and (c) DDemons model [43]. (e image difference after registration from
(d) the LCmodel [28] (ε � 0.73%), (e) Hyper model [20] (ε � 0.10%), and (f) DDemons model [43] (ε � 5.26%). (e transformed template
image T(x + u(x)) from (g) ZC model [42] and (h) MC model [8]. (e image difference after registration from (i) the ZC model [42]
(ε � 0.12%) and (j) MC model [8] (ε � 0.19%).
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5. Conclusions

Avoiding mesh folding is a key issue to ensure the invert-
ibility of transformation in the image registration model. In
this paper, we propose a constrained linear curvature image
registration model by integrating the evaluation criteria to

measure the registration results directly into the basic
framework of the variational model. In order to solve the
new model, we use a combination of the multiplier method
and Gauss–Newton scheme with the Armijos line search and
further combine with a multilevel method to achieve fast
convergence. To illustrate the good performance of our new

Table 11: Quantitative measurements using our new model (CLC) and LC model [25] for processing Example 3.

Layer

Model
LC CLC

α � 4.2 α � 1e − 1
ε(%) T F ε(%) T F

h � (1/256) 0.73 11.0 0.4683 0.07 44.0 0.4410
h � (1/128) 0.88 5.1 0.4903 0.08 10.5 0.4554
h � (1/64) 1.58 4.0 0.5074 0.18 2.3 0.2405
h � (1/32) 9.40 2.6 −0.5134 0.23 1.1 0.3042
h � (1/16) 9.43 1.7 −0.0834 1.38 0.4 0.2617
T represents the total run time which includes the output of the image(seconds).F> 0 means that the transformation does not include folding or cracking.

Table 12: Quantitative measurements using the DDemons model [43], ZCmodel [42], Hyper model [20], and MCmodel [8] for processing
Example 3 shown in Figures 5(a)–5(c).

Layer

Model
DDemons ZC Hyper MC

σfluid � 1, σdiff � 0.4 α � 35, β � 40 α � 240, β � 300 α � 4e − 1
ε(%) T F ε(%) T F ε(%) T F ε(%) T F

h � (1/256) 5.26 29.6 0.0581 0.12 1.8 0.1436 0.10 3.3 0.4233 0.19 9.5 0.4524
h � (1/128) 1.96 24.1 0.0499 0.38 1.2 0.1376 0.52 2.3 0.5167 0.19 5.6 0.4416
h � (1/64) 1.39 4.7 0.3079 2.35 0.9 0.0541 1.62 1.8 0.5216 0.78 3.8 −0.5506
h � (1/32) 9.34 7.4 0.4454 7.24 0.6 0.0633 6.04 0.6 0.5640 0.67 2.5 −0.5497
h � (1/16) 5.44 6.3 0.6979 12.17 0.5 0.0682 36.82 0.5 0.5940 0.66 1.6 0.1492
T represents the total run time which includes the output of the image (seconds).F> 0 means that the transformation does not include folding or cracking.

Table 13: Dependent results of our new model on the regularizer parameter α by testing Example 3 (Figures 5(a)–5(c)).

α 0.1 0.2 0.3 0.4 0.5 0.6
ε (%) 0.0673 0.1104 0.1398 0.1634 0.1839 0.2025
F 0.4410 0.4508 0.4566 0.4610 0.4647 0.4679
F> 0 means that the transformation does not include folding or cracking.

Table 14: Dependent results of our new model on the regularizer parameter α by testing Example 3 (Figures 5(a)–5(c)).

α 0.7 0.8 0.9 1.0 2.0 3.0
ε (%) 0.2198 0.2364 0.2523 0.2678 0.4118 0.5519
F 0.4707 0.4732 0.4717 0.4705 0.4674 0.4690
F> 0 means that the transformation does not include folding or cracking.

Table 15: Dependent results of our new model on the regularizer parameter α by testing Example 3 (Figures 5(a)–5(c)).

α 4.0 5.0 6.0 10.0 20.0 30.0
ε (%) 0.6938 0.8386 0.9859 1.5980 3.0317 5.0536
F 0.4711 0.4717 0.4721 0.4771 0.4791 0.5214
F> 0 means that the transformation does not include folding or cracking.
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model, we compare it with five representative models based
on the LC model [28], MCmodel [8], DDemons model [43],
Hyper model [20], and ZCmodel [42] using three numerical
examples. Numerical experiments show that our proposed
model is more efficient and robust than the competing
models. Future works will consider the use of homotopy
method to solve the corresponding inequality constraint
registration model.

Data Availability

(e image datasets used to support the findings of this study
are included within the article.

Conflicts of Interest

(e author declares no conflicts of interest.

Acknowledgments

(is research work was supported by the Natural Science
Foundation of China (NSFC) (No. 11801249) and Natural
Science Foundation of Shandong Province (No.
ZR2017BA034).

References

[1] L. G. Brown, “A survey of image registration techniques,”
ACM Computing Surveys, vol. 24, no. 4, pp. 325–376, 1992.

[2] A. A. Goshtasby, 2-D and 3-D Image Registration: For
Medical, Remote Sensing, and Industrial Applications, Wiley-
Interscience, New Jersey, NY, USA, 2006.
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