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A novel energy management system to improve the efficiency of renewable energy and storage system by scheduling various types
of household appliances is developed. *e end users schedule appliances optimally taking into account maximum utility (a
measure of the satisfaction level of user’s electricity consumption) as well as minimum user’s cost of energy as competitive
objectives. A random disturbance (reflecting an uncertainty) is introduced to describe the indeterminate amount of the electricity
produced from the renewable energy sources at the adjacent slots. By applying the probability theory, the uncertain optimization
model is transformed into a convex optimization problem. *en, the optimal solution is obtained using a quasi-Newton method.
*e rationality of our proposed model is verified through numerical simulations. According to the results of simulation studies, it
is demonstrated that our proposed model not only enhances users’ utility but also reduces energy consumption cost.

1. Introduction

1.1. Literature Review. *e energy shortage and aggravation
of environmental pollution are serious problems in a tra-
ditional power grid system. Power management is currently
undergoing through a dramatic transformation from a
traditional power system (TPS) into a smart grid [1]. *e
smart grid is an intellectualized power network system,
which is based on highly integrated two-way communica-
tion networks and information systems. It is reliable, eco-
nomical, and environmentally friendly and can be applied in
sensing technologies and control infrastructures. Compared
with traditional power grids, the smart grid has the ad-
vantages of flexible structure, excellent system performance,
and high quality, which can improve the social development.
*erefore, smart grid has become a beacon of development
in the direction toward a modern power system [2–4].

Demand side management (DSM) in smart grid is a kind
of management activity which can effectively promote and
mobilize the enthusiasm of users to change or transfer the
power consumption according to the dynamic prices (e.g.,

real-time pricing, time of use pricing, and inclining block
rates) [5]. It is a hot topic for how tomobilize the enthusiasm
of users to participate in their energy management. With
improving the technology of renewable energy sources
(RES) in recent years, many users are equipped with rooftop
solar panels or small wind turbines. *e RES is reducing the
reliance on the TPS and relieving the supply pressure of
power grids [6–9]. To alleviate the randomness and inter-
mittent characteristics of the RES, an energy storage system
(ESS) is being applied in smart grid, for example, popular
electric vehicles that require both energy availability and
storage power [10–13].

Scheduling the RES and ESS, power grids are becoming
more secure and efficient in the electricity market
[10, 14–22].

1.2. +e Motivation of the Work and Our Contributions.
Research on the management of RES and ESS are at their
infancy [23–26]. Moreover, in current studies, RES and ESS
have mainly focused on the foundation level of load
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prediction [10, 16, 18, 19, 27–33]. An optimization method
[10] based on teaching-learning and adaptive neuro-fuzzy
inference is used to estimate the maximum actual capacity of
a charging state. A charging and discharging strategy of a
future battery energy storage system was studied using an
open distribution system simulator software to predict the
daily load and photovoltaic (PV) generation curves [31]. *e
authors in [32], presented a simple method for determining
the optimal capacity of PV power generation with a battery
system based on the total annual solar radiation. *e grid
dependency can be obtained based on the total annual solar
radiation without considering the time-series waveform of
solar radiation. *e studies need to know the production
power distribution of the RES. However, in our model, a
random disturbance (reflecting an uncertainty) is intro-
duced to describe the indeterminate amount of the elec-
tricity produced from the RES at the adjacent slots. It is
unnecessary to know about the distribution of electricity
produced from the RES which is our first novelty.

Considering the RES or ESS, the classification of ap-
pliances is given in some studies [16, 34–42]. A cost min-
imization problem focusing on the uninterruptible
operation with an uncertainty of renewable energy gener-
ation at different time intervals was raised in [34]. In this
study, uninterruptible and immovable electrical appliances
were involved, whereas elastic appliances (such as air
conditioners and water heaters) and semielastic ones (such
as washing machines, dishwashers, and electric cookers)
were not. A user convenience model employing a heuristic
algorithm was proposed to minimize a user’s dissatisfaction
and the supplier’s cost [36]. *e model only involved ap-
pliances with beginning operation time and ending time. A
robust optimization technique for scheduling smart appli-
ances and electrical energy storage was applied to minimize
the electricity bill and the CO2 emissions [37]. Chen et al.
utilized a Lyapunov optimization approach to minimize the
total payment from the grid and also have focused on
semielastic appliances [38]. Similarly, authors in [39–42]
elaborated on multilevel management with various RES and
controllable loads, taking into account the energy saving and
comfortable lifestyle as objectives of a realistic smart home
energy management system.

Nevertheless, these works failed to consider the impacts
of RES and ESS by scheduling different types of smart ap-
pliances, which is our second novelty.

To address these issues, an efficient model for demand
side management is proposed, wherein, not only it is un-
necessary to know about the distribution of electricity
produced from the RES but also the impacts of RES and ESS
are taken into account through managing various types of
household appliances. In this way, users can optimally
schedule operating set times of their smart home appliances
and reasonably equip with the ESS and RES to achieve their
energy management.

In our model, an expectation (caused by the uncertainty
of RES) users’ welfare maximization model is established.
*e users’ utility maximization and bill minimization
constitute the objective function. *e users can design their
electricity consumption mode according to the objective

function. *e constraint reflects the fluctuation (uncer-
tainty) of electricity caused by the intermittency of the RES.
*e objective function is transformed into a deterministic
problem and the constraint into the deterministic one. *e
model is then solved by applying the dual method. Finally,
the rationality of the model and the validity of the algorithm
are verified through numerical simulations. Our contribu-
tions are as follows:

(1) A random disturbance is introduced to describe the
intermittence and instability of the RES at the ad-
jacent slots. In this model, it is unnecessary to know
about the distribution of electricity produced from
the RES.

(2) An efficient model for demand side management is
proposed so that users can reasonably arrange dif-
ferent smart appliances and consume the electricity
supplied from the TPS, produced from the RES, or
stored in the ESS concerning the users’ utility
maximization and their bill minimization.

*e remainder of this paper is organized as follows. In
Section 2, the classification of different appliances and the
problem statement are formulated. We present the proposed
model in Section 3. *e results of numerical simulations are
provided in Section 4, and some concluding remarks are
given in Section 5.

*e list of abbreviations is shown in Appendix. *e
architecture of the proposed system model in time slot k is
illustrated in Figure 1.

2. Classification of Appliances and
Problem Statement

A system that includes a power supplier and multiple res-
idential users is considered. *e supplier and all users are
linked using a communication infrastructure to realize in-
formation exchange. An energy hub (a detailed description
given in [43]) of each user contains a rooftop solar panel, a
small wind turbine, several batteries and electrical vehicles,
some smart home appliances, and an electric quantity
controller (EQC) with a smart meter. *e smart meter not
only bears a function of information transmission but also
has the function of regulating and controlling household
electricity information. It transmits the information of
household electrical equipment consumption to users in
order to better control the consumption and cost of elec-
tricity and sends relevant information to the power supplier
to achieve load control and electricity price. *e electricity
price is given by the power supplier. Consumers can adjust
the mode of electricity consumption by smart meters to
achieve their maximum utility and minimum bill. In this
model, it is supposed that users cannot sell redundant energy
to the grid or other users, and thus the excess power from the
RES is discarded [36].

Within the scope of our model, the devices’ cost and the
reactive power are not considered, and frequency and
voltage stability are guaranteed [44]. *e appliances are
linked with the smart meter, where t is the initial time, and
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not is necessarily 1, K is the number of time slots, and K �

t, t + 1, . . . , K{ } is the entire cycle. *e indexes, functions
and variables, and parameters are listed in Tables 1–3, re-
spectively.*emodeling of the energy system components is
detailed as follows.

2.1.ClassificationofAppliances. Every user has three types of
appliances, namely, Ai, Bi, and Ci. *e first type of
household appliances, Ai, which are must-run appliances,
are those household electrical appliances that must be op-
erated. Owing to their inelasticity, this type of electrical
appliances does not depend on the change of electricity price.
For instance, lighting appliances, televisions, and refrigerators
are not controlled by an EQC unit. *e second category of
household appliances, Bi, includes elastic equipment, such as
air conditioners, water heaters, and other adjustable equip-
ment. *e use of these appliances is directly affected by the
electricity price. When the electricity price rises, the electricity
consumption decreases, and vice versa. *e last type of
household appliances, Ci, includes semielastic equipment, such
as washingmachines, dishwashers, electric cookers, and dryers.
*ese appliances all require a certain amount of working time
to complete an established task. Similar to elastic devices,
semielastic devices are affected by the electricity price, whereas
the working time of semielastic devices is fixed.

2.1.1. Must-Run Appliances. Let lak
u,i

denote the power
consumed by appliance au,i ∈ Ai ∪Bi ∪Ci of user i in time
slot k;Kau,i

denotes the running time of a must-run appliance
au,i ∈ Ai, which consumes rak

u,i
in time slot k; and Kau,i

⊆K.
Denote MAi

as the number of must-run appliances, and let

Eau,i
� 

MAi

u�1 lak
u,i

denote the total power consumption of
must-run appliances during an operation cycle.

2.1.2. Elastic Appliances. Denote rmax
ak

u,i

and MBi
as the

maximum electricity consumed by elastic appliance au,i

and the number of elastic appliances, respectively, and

Rmax
ak

u,i

� 
MBi

u�1 rmax
ak

u,i

denotes the maximum electricity con-

sumed by all elastic appliances. *e working models of
these appliances are varied. *e total electricity con-
sumption 

MBi

u�1 lak
u,i
is given. Referring to this value, users

can make their own unique electricity consumption mode.
*is means that, for the same total electricity consump-
tion, the user has the opportunity to keep the water heater
at a higher temperature during the winter or turn an
electric fan on.

2.1.3. Semielastic Appliances. Semielastic appliances
complete a task within a fixed time interval. Every
household has MCi

semielastic appliances. Denote Eau,i
′ as

the total electricity of semielastic appliances. *e working
hours of these appliances are continuous. Once semie-
lastic appliances are operated, they need to complete their
tasks without stop. Here, Kau,i

′ is the working time of
semielastic appliances. *e beginning time of an electrical
appliance is αau,i

, and the end time is βau,i
. *e working time

can be expressed as αau,i
, αau,i

+ 1, . . . , βau,i
  ∈ Kau,i

′ . *e
satisfaction of the user will be seriously hindered if
semielastic appliances are interrupted during an
operation.

*e three types of appliances satisfy the available elec-
tricity consumption, as indicated in Table 4.

2.2. Power Sources

2.2.1. Traditional Power System. In this paper, TPS refers to
the electricity supplied from the power supplier. Let xk

i

denote the electricity supplied from a TPS in time slot k.

2.2.2. Renewable Energy Sources. *e RES are deemed as
significant generation alternatives in smart grid owing to
their nonexhausted nature and benign environmental ef-
fects. Both a stochastic approach and a robust one are
optimization methods for uncertain situations. *e RES
power generation is stochastic and intermittent and will be
disturbed by many independent random factors. In the
stochastic approach, the probability distribution of random
parameters is known; in the robust one, the probability
distribution of random parameters is unknown, but its
fluctuation range needs to be known. In our model, un-
necessary to know about the distribution of electricity
produced from the RES, a random disturbance ρk

i is in-
troduced to describe the uncertainty of the RES with ex-
pectation value E(ρk

i ) � μk
i and variance D(ρk

i ) � (σk
i )2.

*en,

y
k+1
i � y

k
i + ρk+1

i , ∀k ∈ K, (1)

where yk
i denotes the electricity produced from the RES in

time slot k.
By applying the Central Limit *eorem, when the

number of users is large enough or segmentation of time
slots is small enough, the sum of all random variables


n
i�1 

k
j�t+1 ρ

j
i is subject to a normal distribution:
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Figure 1: Architecture of the proposed systemmodel in time slot k.
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Table 1: List of indexes.

Indexes Description Unit
t Initial time h
K *e entire cycle h
k Index of time slot h
K Number of time slots h
i Index of users —
n Number of users —
Ai Set of must-run appliances —
Bi Set of elastic appliances —
Ci Set of semielastic appliances —
au,i Electrical appliance —
rak

u,i
Electricity consumed by must-run appliance au,i kWh

Kau,i
Running time of must-run appliance au,i ∈ Ai h

MAi
Number of must-run appliances Ai —

MBi
Number of elastic appliances Bi —

MCi
Number of semielastic appliances Ci —

Eau,i
Total electricity consumed by must-run appliance kWh

rmax
ak

u,i

Maximum electricity consumed by elastic appliance kWh

Rmax
ak

u,i

Maximum total electricity consumed by elastic appliances kWh

Eak
u,i

′ Total electricity of semielastic appliances kWh

αau,i
Beginning time of semielastic appliances h

βau,i
End time of semielastic appliances h

Kau,i
′ Working time of semielastic appliances h

Cb Capacity of the ESS kWh

gb Maximum value of the ESS kWh

− gb Minimum value of the ESS kWh
s0i Initial charging state of the ESS kWh
sk

i Charging state of the ESS kWh
X Set of electricity supplied from the TPS kWh
Y Set of electricity produced from the RES kWh
Z Set of electricity consumed in the ESS kWh
Gt Total electricity quantity of the power system kWh

Table 2: List of functions and variables.

Functions and variables Description Unit
xk

i Electricity supplied from the TPS kWh
yk

i Electricity produced from the RES kWh
zk

i Charging and discharging rates of the ESS kWh
U(lki ,ωk

i ) Utility function of user i $
pk Price Cents/kWh
lki Total power consumed by user i in time slot k kWh
lak

u,i

Electricity consumed by appliance au,i ∈ Ai ∪Bi ∪Ci kWh
P(lki ) Payment function of users $
Φ(x) Distribution function —

Table 3: List of parameters.

Parameters Description Unit
αi Preset parameter —
ωk

i Elastic coefficient —
mk, nk Differentiated prices Cents/kWh
bk Energy consumption threshold in time slot k kWh
ρk

i Random disturbance to describe the indeterminate load produced by the RES —
ε, η Positive numbers —
λ, θ, c Lagrangian multipliers —
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n

i�1


k

j�t+1
ρj

i ∼ N μ, σ2 , (2)

where N(·) denotes a normal distribution function,
μ � 

n
i�1 

k
j�t+1 μ

j
i , and σ2 � 

n
i�1 

k
j�t+1 (σj

i )
2.

Let w � (− 
n
i�1 

k
j�t+1 ρ

j
i + μ)/σ, the standardization of

the normal distribution can be obtained as follows:
w ∼ N(0, 1); therefore, the distribution of all random var-
iables is known why a stochastic approach is chosen instead
of a robust one in our study.

2.2.3. Energy Storage System. Electric vehicles and batteries
can be classified as the ESS, which can be charged or dis-
charged. Cb is denoted as the capacity of the ESS. In time slot
k, the charge rate zk

i is positive and the discharge rate zk
i is

negative. In addition, gb and − gb denote the maximum and
minimum capacity values of the ESS, − gb ≤ zk

i ≤gb, sk
i is

denoted as the capacity of the ESS at the beginning time slot
k, and s0i is the initial charging state of the ESS. At every time
slot, the stored energy cannot exceed the storage capacity:

s
k
i � s

0
i + 

k− 1

j�1
z

j
i , 0≤ s

k
i ≤Cb. (3)

2.3. Real-Time Pricing. *e existing price forms mainly
include fixed pricing, step pricing, time of use pricing
(TOU), real-time pricing (RTP), and inclining block rates
(IBR). Among them, RTP and IBR models have been ex-
tensively studied. It refers to the cost occurring at a certain
moment during electricity sales, which reflects the charac-
teristics of electricity prices with respect to time. Practically,
power suppliers design the real-time price considering the
time of demand and the power availability. Contrastingly in
the IBR pricing model, as time goes on, prices remain
unchanged, while incurring an increase when the energy
consumption of a user reaches a predetermined threshold
[19].

In our model, combining RTP and IBR price tariffs, the
price pk is denoted as follows (see [45]):

pk l
k
i  �

mk, 0≤ lki ≤ bk,

nk, lki > bk,

⎧⎨

⎩ (4)

where mk and nk are differentiated prices, in which mk ≤ nk;
lki denotes the total electricity consumption of user i in time
slot k; and bk is the energy consumption threshold in time
slot k.

2.4. Utility Function of a User. *e concept of a utility
function in microeconomics is widely used to characterize a
user’s satisfaction with a certain amount of electricity
consumption.*e existing studies have shown that the user’s
response can be expressed by a utility function. *e elec-
tricity demand varies with each individual and depends
upon the time of a day, climate, and price.*e value of utility

function denotes the satisfaction level of each user after
using the electricity purchased. U(lki ,ωk

i ) is the utility
function of user i, lki denotes the amount of consumed
energy, and ωk

i is an elastic coefficient and is a known pa-
rameter, and the utility value is expressed in a monetary
form. Different utility functions represent different types of
users and are distinguished by different elastic coefficients.
Under the same conditions, the larger the ωk

i value is, the
higher the user’ satisfaction. Usually, the general utility
functions satisfy the following basic assumptions:

(1) *e utility function is a nondecreasing function, i.e.,
zU(l)/zl≥ 0.

(2) Marginal utility is nonincreasing, i.e., the utility is a
concave function. *us, z2U(l)/zl2 ≤ 0.

(3) When the user does not consume electricity, the
utility is zero, that is, U(0) � 0.

In this paper, utility functions are considered as follows:

U l
k
i ,ωk

i  �

ωk
i lki −

αi

2
l
k
i 

2
, 0≤ lki ≤

ωk
i

αi

,

ωk
i( 

2

2αi

, lki >
ωk

i

αi

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where αi is a preset parameter, and ωk
i and lki are the elastic

coefficient and power consumed by user i in time slot k,
respectively.

2.5. Payment Function of Users. *e term P(lki ) denotes a
user’s payment function. In our model, the devices’ cost is
not considered. Based on the price shown in (4), for a total
load lki in time slot k, the user’s cost P(lki ) is determined as
the maximum of two intersecting lines [45]:

P l
k
i  � pkl

k
i � mkl

k
i ,

P l
k
i  � pkl

k
i � nkl

k
i + mk − nk( bk.

(6)

*e user’s payment function is obtained from the fol-
lowing equation:

P l
k
i  � pkl

k
i � max mkl

k
i , nkl

k
i + mk − nk( bk . (7)

3. Expectation Welfare Maximization Model

3.1. Problem Formulation. In our model, based on sched-
uling household appliances and considering the fluctuation
of electricity produced from the RES, an expectation model
of users’ welfare maximization is taken as follows:

(P1)

maxE 
K

k�t



n

i�1
U l

k
i ,ωk

i  − P l
k
i  ⎡⎣ ⎤⎦, (8)

subject to
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0≤ lak
u,i
≤ r

max
ak

u,i
, ∀k ∈ K,∀au,i ∈ Bi, (9a)

0≤ lak
u,i
≤ r

max
ak

u,i
, ∀k ∈ Kau,i

′ ,∀au,i ∈ Ci, (9b)

lak
u,i

� 0, ∀k ∉ Kau,i
′ ,∀au,i ∈ Ci, (9c)



k∈Kau,i
′

lak
u,i

� Eau,i
′ , ∀au,i ∈ Ci, (9d)

l
k
i � Eak

u,i
+ 

au,i∈Bi

lak
u,i

+ 
au,i∈Ci

lak
u,i

, ∀k ∈ K, (9e)

y
k+1
i � y

k
i + ρk+1

i , ∀k ∈ K, (9f)

z
k
i ∈ − gb, gb ,

s
k
i � s

0
i + 

k− 1

j�1
z

j
i , 0≤ s

k
i ≤Cb,∀k ∈ K,

(9g)

E 
n

i�1
l
k
i

⎡⎣ ⎤⎦≤Gk, ∀k ∈ K, (9h)

l
k
i � x

k
i − y

k
i + z

k
i 

+
, (9i)

where U(lki ,ωk
i ) and P(lki ) are the utility function and

payment function of user i in time slot k, respectively,
ωk

i (reflecting the satisfaction level of each user after using the
electricity purchased) is an elastic coefficient and is a known
parameter, xk

i is the amount of electricity supplied from the
TPS, yk

i is the amount of electricity produced from the RES,
and zk

i is the electricity charged or discharged in the ESS. In
addition, xk

i , yk
i , and zk

i are variables which the amount is
eight hundred and forty and Gk is the total electricity
quantity of a power system.

*e constraints (9a) and (9b)–(9d) characterize the
electric performance of elastic and semielastic appliances,
respectively. *e compositions and sources of a user’s
electricity consumption are expressed as constraints (9e) and
(9i). Constraint (9f ) is the power fluctuation generated from
the RES between two time slots.*is constraint on the RES is
not considered in [46]. Besides, determining the relationship
between yk

i and yt
i , yk

i can be expressed as follows:

y
k
i � y

t
i + 

k

j�t+1
ρj

i . (10a)

Constraint (9g) describes the electric performance of the
ESS. Constraint (9h) shows that the expected total electricity
consumption of users does not exceed the electricity pro-
duction, which reflects the correlation and coupling between
the electricity consumption of users. Samadi et al. do not
take the constraint into account [35].

3.2. Convex Optimization Problem Formulation. *e trans-
formation of the objective function and constraint (9h) are
shown as Appendixes A and B.

According to Appendixes A and B, a convex optimi-
zation problem from problem (P1) is obtained as

(P2)

max
K

k�t



n

i�1

U l
t
i ,ω

k
i  − P l

k
i  , (11)

subject to (9a)–(9e), (10a), (9g), and (9i)



n

i�1
x

t
i − y

t
i + z

t
i 

+
≤Gt, k � t, (12a)



n

i�1
x

t
i − y

t
i + z

k
i 

+
≤Gk + φ(k), k � t + 1, . . . , K, (12b)

in which,

Ui l
t
i ,ω

k
i  �

ωk
i lti −

αi

2
l
t
i 

2
− ωk

i 

k

j�t+1
μj

i + αil
t
i 

k

j�t+1
μj

i −
αi

2


k

j�t+1
μj

i
⎛⎝ ⎞⎠

2

−
αi

2


k

j�t+1
σj

i
⎛⎝ ⎞⎠

2

, 0≤ lti ≤
ωk

i

αi

,

ωk
i( 

2

2αi

− ωk
i 

k

j�t+1
μj

i + αil
t
i 

k

j�t+1
μj

i −
αi

2


k

j�t+1
μj

i
⎛⎝ ⎞⎠

2

−
αi

2


k

j�t+1
σj

i
⎛⎝ ⎞⎠

2

, lti ≥
ωk

i

αi

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P l
k
i  � max mk l

t
i − 

k

j�t+1
μj

i
⎛⎝ ⎞⎠

+

, nk l
t
i − 

k

j�t+1
μj

i
⎛⎝ ⎞⎠

+

+ mk − nk( bk

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(13)

E(ρk
i ) � μk

i and D(ρk
i ) � (σk

i )2 are the expectation and
variance of the random disturbance ρk

i , respectively.
Among these constraints, constraints (9g), (12a), and

(12b) are our inequality constraints, and constraints (9d) are
our equality ones. *e type of decision variables is real, and

there are eight hundred and forty variables, one hundred and
thirty-nine inequality constraints, twenty equality con-
straints, and eight hundred and forty boundaries.
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Theorem 1. Problem (P2) is a convex optimization and has
an optimal solution.

Proof of *eorem 1 is shown in Appendix C.

3.3. Dual Problem. From *eorem 1, (P2) is a convex op-
timization and has an optimal solution. It is equivalent to its
dual problem. *erefore, it can be solved using a dual
method [20].

*e Lagrangian function of (P2) is

L(X, Y, Z, λ, θ, c) � 
K

k�t
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(14)

where X � (xt
1, xt

2, . . . , xt
n), Y � (yt

1, yt
2, . . . , yt

n),
Z � (zt

1, zt
2, . . . , zt

n), λ≥ 0, θ � (θau,i
)MCi

×n ∈ RMCi
×n, and

c ∈ R+. *e objective function of the dual optimization
problem is as follows:

D(λ, θ, c) � max
xk

i
,yk

i
,zk

i

L(X, Y, Z, λ, θ, c)

0≤ lak
u,i
≤ rmax

ak
u,i

,∀au,i ∈ Bi, Ci,

zk
i ∈ − gb, gb ,∀k ∈ K,

lki � xk
i − yk

i + zk
i( 

+
.



⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

(15)

*e dual problem is the following:

min
λ,θ,c∈R+

D(λ, θ, c). (16)

3.4. Smoothing Method

3.4.1. Introduction of Smoothing Methods. *e payment
function P(lki ) of (P2) contains of the plus and maximum
functions, which are nonsmooth. It is impossible to solve
this problem directly using classical optimization
methods. Smooth approximation functions can be found
to replace the abovementioned functions. *e basic idea
of a smoothing method is to replace the nonsmooth
function with a smooth approximation function and
solving the original problem is equivalent to solving the
traditional optimization problem. *ere are many
smoothing methods, such as quadratic function method,
aggregate function method, and density method (see
[47]).

Absolute value function y � |x| is convex on R1 and
smooth everywhere except x � 0. Given a small constant
ε> 0, the following smooth function approximates it:

fε(x) �

− x, x ≤ − ε,

1
2ε

x
2

+
ε
2
, − ε<x< ε,

x, x≥ ε,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(17)

which is called quadratic function method.
*e aggregate function method is considered. *e

maximum function is as follows:

f(x) � max
1≤i≤m

fi(x), (18)

where fi(x)(i � 1, . . . , m) is a second-order continuous
differentiable function on Rn. *e following aggregate
function is a smooth approximation function of formula (18)
[47]:

f(x, π) � π ln 
m

i�1
exp

fi(x)

π
 ⎡⎣ ⎤⎦, (19)

where π is a small positive number.
Next, the density method is discussed.
Let ρ(x) be a probability density function from R1 to R+

and satisfy
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+∞

− ∞
|s|ρ(s)ds � κ< + !∞. (20)

*e smooth approximation function of x+ � max x, 0{ } is
as follows:

P(μ, x) � 
+∞

− ∞
(x − μs)+ρ(s)ds, (21)

where μ> 0 is a smaller number.
Because the plus function is inside and the maximum

function is outside of the payment function P(lki ), the plus
function is considered first smoothing and then smoothing
the maximum function.

3.4.2. First Smoothing. *equadratic function and aggregate
function method are simple, practical, and effective, and
these smoothing methods are adopted to deal with the
nonsmoothness of payment function P(lki ). *e quadratic
method is first adopted.

When x � 0, ψ(x) � max x, 0{ } is nonsmooth, and let

ψt(x) �

x, x> t,

x2

4t
+

x

2
+

t

4
, − t≤ x≤ t,

0, x< − t.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(22)

Theorem 2. For ∀t> 0, ψt(x), in formula (22) is a smooth
approximation function of ψ(x) � max x, 0{ }.

Proof of *eorem 2 is shown as Appendix D.
According to *eorem 2, x of formula (22) is directly

replaced by (lti − 
k
j�t+1 μ

j
i )

+ and the smoothing function
ψt(lti − 

k
j�t+1 μ

j
i ) can be obtained. *en,

P l
k
i  � max mk l
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j�t+1
μj

i
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, nk l
t
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i
⎛⎝ ⎞⎠

+

+ mk − nk( bk

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

� max mkψt l
t
i − 

k

j�t+1
μj

i
⎛⎝ ⎞⎠, nkψt l

t
i − 

k

j�t+1
μj

i
⎛⎝ ⎞⎠ + mk − nk( bk

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(23)

3.4.3. Second Smoothing. During the second smoothing
process, the aggregate functionmethod is used to smooth the
maximum function of the payment function P(lki ).

Let P(lki ) � max f1(x), f2(x) , where f1(x) � mkψt

(lti − 
k
j�t+1 μ

j
i ) and f2(x) � nkψt(lti − 

k
j�t+1 μ

j
i ) + (mk −

nk)bk.

*us, P(lki )u � π ln[exp(f1/π) + exp(f2/π)].
L(X, Y, Z, λ, θ, c) is smoothed to

Ltu(X, Y, Z, λ, θ, c) � 
K

k�t
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n
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s
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(24)

and the model in (15) can be transformed to find the
maximum value of the smoothing approximation function:

D(λ, θ, c) � max
xk

i
,yk

i
,zk

i

Ltu(X, Y, Z, λ, θ, c)

0≤ lak
u,i
≤ rmax

ak
u,i

,∀au,i ∈ Bi, Ci,

zk
i ∈ − gb, gb , ∀k ∈ K,

lki � xk
i − yk

i + zk
i( 

+
.



⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
(25)

*e optimal solution of (25) can be obtained using a
quasi-Newton method [34]:

(1) Taking X0, H0, and parameter ε≥ 0, let k � 0.
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(2) Computing dk � − Hkgk and Xk+1 � Xk + αkdk,
where Xk � (xk

i , yk
i , zk

i ), gk �(zLtu/zX)|X�Xk
, αk is a

step generated by a line search.
If ‖gk+1‖≤ ε, the algorithm stops; otherwise, moves to
the next step.

(3) Let Hk+1 � Hk + ((sk − Hkyk)(sk − Hkyk)T)/((sk−

Hkyk)Tyk), where yk � gk+1 − gk, and k � k + 1, go
to (2).

*us, X∗(λ, θ, c) is obtained and is substituted into (25).
We can then have D(λ, θ, c). Computing λ, θ, and c, the
solution of the model is obtained.

A flowchart of the algorithm is shown in Figure 2.

4. Numerical Simulations

A power system that includes a power supplier with five
users is considered. One day is divided into twenty-four
periods. Each family is equipped with a rooftop solar panel, a
small wind turbine, several batteries and electrical vehicles,
and ten electric appliances. *e must-run appliances a1,
a2 ∈ Ai consume electricity at any time during the day. *e
electricity consumption of these appliances is set as 1 kWh
and 3 kWh.*e elastic appliances Bi, include four appliances
a3, a4, a5, and a6. *eir electricity consumption is consid-
ered as a whole, so long as the total electricity consump-
tion will not exceed Rmax

ak
u,i

� au,i∈Bi
rmax

ak
u,i

� 10 kWh. *e

Input system data and quasi-Newton descent method paramters

Create the initialization X0, H0, ε ≥ 0, k = 0

Calculate

Generate αk by a line search

Calculate λ, θ, γ 

Get the optimal solution X∗

If
||gk+1|| ≤ ε

Start

Stop

No

Make
Yes

Hk+1 = Hk + (sk – Hkyk) (sk – Hkyk)T/(sk – Hkyk)T yk, 
yk = gk+1 – gk, k = k + 1

dk = –Hkgk, Xk+1 = Xk + αkdk,

Xk = (xi
k, yi

k, zi
k), gk = ∂Ltu/∂X|X=Xk

Figure 2: A flowchart of the algorithm.

Table 4: Available electricity consumption of appliances.

Appliances Parameters Available electricity consumption

Must-run appliances Ai Kau,i
, rak

u,i
lak

u,i
�

rak
u,i

,

0,


k ∈ Kau,i

otherwise
Elastic appliances Bi rmax

ak
u,i

0≤ lak
u,i
≤ rmax

ak
u,i

, ∀k ∈ K

Semielastic appliances Ci rmax
ak

u,i

, Kau,i
′ , Eau,i
′

0≤ lak
u,i
≤ rmax

ak
u,i

, ∀k ∈ Kau,i
′

lak
u,i

� 0, ∀k ∉ Kau,i
′

k∈Kau,i
′ lak

u,i
� Eau,i
′
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semielastic appliances, include four appliances a7, a8, a9, and
a10. *e total amount of electricity required for their tasks is
5 kWh, 3 kWh, 4 kWh, and 2 kWh, respectively, and the
expected working periods are {3, 4, . . ., 9}, {5, 6, . . ., 11}, {4,
5, . . ., 14}, and {9, 10, . . ., 18}. *e capacities of the RES and
ESS are set as 20 kWh and 5 kWh, respectively. All the
computations are performed byMatlab R2016a.*e running
time for all the algorithm simulations is less than 1ms. *e
abovementioned data are shown in Table 5.

*e differentiated prices mk and nk are set as follows:

mk �

3cents/kWh, [0: 00, 10: 00],

7cents/kWh, [10: 00, 16: 00],

10cents/kWh, [16: 00, 20: 00],

8cents/kWh, [20: 00, 24: 00],

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

nk �

9cents/kWh, [0: 00, 8: 00],

7cents/kWh, [8: 00, 13: 00],

15cents/kWh, [13: 00, 24: 00].

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(26)

Let bk � 4 kW during the entire period.
*e utility function of user i is set as follows:

U l
k
i ,ωk

i  �

ωk
i lki −

αi

2
l
k
i 

2
, 0≤ lki ≤

ωk
i

αi

,

ωk
i( 

2

2αi

, lki >
ωk

i

αi

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(27)

where ωk
i is an elastic utility coefficient and is a known

parameter. Under the same conditions, the larger is the
value of ωk

i , the higher is the power consumption while
increasing the pressure on the TPS (further information
regarding the utility function can be found in [48]).
*erefore, ωk

i needs to be taken into account as a proper
range. In the first scenario, different ranges of the elastic
coefficient ωk

i are analyzed. In the other scenario, the
impacts of the RES and ESS by manipulating semielastic
and elastic appliances are studied under the appropriate
range of ωk

i in various models.

Table 6: *e indexes used in the models.

Indexes w � 2 w � 6 w � 10 w � 20
*e intervals of ωk

i [1, 3] [5, 7] [9, 11] [19, 21]
*e satisfaction levels of users Lowest Normal Highest
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Figure 3: *e average of electrici1ty consumed from the TPS by
semielastic appliances a7.
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Figure 4: *e average of electricity consumed from the TPS by
semielastic appliances a8.

Table 5: *e parameters of appliances.

*e types of Appliances Must-run
appliances Ai

Elasti
c appliances Bi

Semielastic
appliances Ci

Appliance a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
Electricity (kWh) [1, 3] <10 5 3 4 2
Schedule time frame (h) — — — — — — 3 am–9 am 5 am–11 am 4 am–2 pm 9 am–6 pm

10 Mathematical Problems in Engineering



4.1. Discussion under Different Elastic Coefficients. ωk
i is

selected randomly from the intervals [1, 3, 5, 7, 9, 11] and
[18, 20], respectively. “w � 2” means ωk

i ∈ [1, 3] for the
lowest satisfaction level; “w � 6” and “w � 10” mean
ωk

i ∈ [5, 7] andωk
i ∈ [9, 11] for the normal satisfaction levels,

respectively; and “w � 20” means ωk
i ∈ [19, 21] for the

highest satisfaction level.*e specifications of these units are
summarized in Table 6.

*rough the simulations, the electricity consumption
from the TPS by the semielastic appliance a7 at each hour is
computed and their average values are determined. *e
cycle of appliance a7 is denoted as {3, 4, . . ., 9} (see in

Table 5) and the assignment must be completed during this
period. As shown from Figure 3, the appliance a7 is op-
erated at time 4:00 am and is turned off at 8:00 am. Its
assignment is completed within the designated time {3, 4,
. . ., 9}. *e appropriate ranges of ωk

i in semielastic ap-
pliances are discussed, as shown from Figures 3–6. From
Figure 3, when w � 2, 6, 10, the electricity consumption
from the TPS by scheduling the semielastic appliance a7 is
relatively smaller and stabler (relieving the supply pressure
of the TPS) than that when w � 20.*e similar conclusions
of other semielastic appliances are obtained, as shown
from Figures 4–6.*erefore, the value of ωk

i under [1, 11] is
more appropriate.
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Figure 8: *e average of electricity consumed from the RES.
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Figure 7: *e average of electricity consumed from the TPS by
elastic appliances Bi.
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Figure 5: *e average of electricity consumed from the TPS by
semielastic appliances a9.
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Figure 6: *e average of electricity consumed from the TPS by
semielastic appliances a10.
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Multiple simulations are conducted; the electricity
consumption from the TPS by elastic appliances Bi for five
users is computed at each hour, and the average value is
determined. *e smaller and stabler electricity consumption
from the TPS by scheduling elastic appliances is seen from,
Figure 7, whenw � 2 andw � 6. Consequently,ωk

i is suitable
under [5, 11] considering the influence on the TPS.

Users are enthusiastic for making full use of electricity
consumption from the RES when ωk

i is suitable under
[11, 20], as shown from Figure 8. While w � 10, the avail-
ability of the ESS is relatively higher, especially in peak
periods (10:00–20:00) discharged and off-peak periods
charged, as presented in Figure 9.

As for the objective of this model, the higher the user’s
welfare value is when w � 20, the worser the stability is.
While not only a higher welfare value but also an optimal
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Figure 11: *e average of electricity consumed from the TPS by
semielastic appliances a7.
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Figure 12: *e average of electricity consumed from the TPS by
semielastic appliances a8.
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Figure 9: *e average of electricity consumed from the ESS.
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Figure 10: *e welfare of users in four models.

Table 7: *e indexes used in the four models.

Model ESS RES Expectation
Allno-model × × ×

ESS-model ○ × ×

RES-model × ○ ○
All-model (our proposed) ○ ○ ○
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solution is obtained when w � 10, as shown in Figure 10.*e
users’ welfare values are relatively stabler as w � 2 andw � 6;
however, it is abnormal to get the negative values (e.g.,
w � 2). In summary, w � 10 (i.e., ωk

i ∈ [9, 11]) is the suitable
range considering both the interest of users and the influence
on the TPS.

4.2. Discussion under the Same Elastic Coefficient. In this
scenario, four models to illustrate the impacts of the RES and
ESS by manipulating semielastic and elastic appliances are

studied under ωk
i ∈ [9, 11]. *e indexes used in the four

models are listed in Table 7.
As can be observed from Figure 11, the average of

electricity consumed from the TPS by semielastic appliances
a7 in the all-model is the least during the working periods. It
is shown that the RES and ESS play positive roles as auxiliary
energies making users using less power consumption from
the TPS. It should be also noted, owing to the continuous
working cycle of the semielastic appliances, users’ aggregate
power consumption (green line) from the TPS in the ESS-
model is much less than that, in the RES-model (blue line).
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Figure 15: *e average of electricity consumed from the TPS by
elastic appliances Bi.
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Figure 16: *e average of electricity consumed from the RES.
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Figure 13: *e average of electricity consumed from the TPS by
semielastic appliances a9.
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Figure 14: *e average of electricity consumed from the TPS by
semielastic appliances a10.
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*erefore, users have priority to consume the electricity
stored in the ESS and then produced from the RES and from
the TPS last. By giving aggregate electricity consumption
shown from Figure 11, users can reasonably arrange bat-
teries or electrical vehicles according to their semielastic
home appliances, to a large extent, alleviating the pressure of
the traditional power grid. Likewise, the same conclusions
are obtained from Figures 12–14.

From Figure 15, it can be seen that the electricity
consumption from the TPS by elastic appliances Bi in the all-
model is the most stable at each moment, and the range of
fluctuation is the smallest of the four models. At the same
time, it is observed that the ESS-model and RES-model have

a similar impact in terms of electricity consumption from the
TPS by elastic appliances.

From Figure 16, it can be demonstrated that the elec-
tricity consumption from the RES in the all-model is rela-
tively higher during peak periods than that in the RES-
model, which indicates that users make full use of the RES in
our proposed model. It can be seen from Figure 17 that the
ESS is in the discharge states (positive values) during peak
periods while in the charge states (negative values) during
off-peak periods in the all-model. To some extent, the ESS
relieves the power pressure on the TPS.

Without loss of generality, we consider the difference in
electricity consumed from the TPS by three types of
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Figure 19: *e welfare of users in four models.
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Figure 20: *e algorithm convergence and iteration times of the
all-model (our proposed model).
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Figure 17: *e average of electricity consumed from the ESS.
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Figure 18:*e electricity consumed from the TPS by all appliances
for user 1.
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appliances for user 1 at each hour in four models. Figure 18
shows the electricity consumed from the TPS by all appli-
ances for user 1 at each hour. *e electricity consumption
from the TPS in our proposed model is much less than those
other models overall.

Figure 19 shows that the users’ welfare value in the all-
model (i.e., our proposed model) is significantly higher than
that of other models. Users’ welfare values in the all-model
are more than double those of other models under
ωk

i ∈ [9, 11]. In particular, the welfare value of user 4 reaches
448 dollars in the all-model, while it reaches 175 dollars, 180
dollars, and 200 dollars in other models, respectively. *is
verifies the rationality of our proposed model and feasibility
of the method.

It can be demonstrated from Figure 20 that the proposed
algorithm has remarkable convergence performance, and it
converges at 16 times keeping the total welfare of users
around 2250 dollars.

5. Conclusions

In this paper, an optimal residential energy consumption
model is proposed, which aims to achieve a trade-off
between maximizing users’ utility and minimizing their
payment based on scheduling household appliances. *e
optimal solution of the model is obtained using a
smoothing quasi-Newton method. Several cases are dis-
cussed under different elastic coefficients ωk

i which is
demonstrated that ωk

i ∈ [9, 11] is the suitable range con-
sidering not only the interest of users but also the in-
fluence on the TPS. Afterwards, the impacts of the ESS and
the RES are discussed in several models. *e discussion
results show that users’ aggregate power consumption
from the TPS by semielastic appliances in the ESS-model
is much less than that in the RES-model. However, in
terms of electric power consumed from the TPS by elastic
appliances, the ESS-model and the RES-model have little
difference. Finally, the simulation results show that our
proposed model is superior to other models in terms of
not only users’ welfare but also electricity consumption
from the TPS.

Future studies will be conducted to extend as follows:

(1) An optimal residential energy consumption model is
proposed considering thermoelectrical load model-
ing of a house

(2) Similar models are solved adopting a robust ap-
proach or artificial intelligence algorithms such as
machine-learning algorithm

(3) We should consider extending the proposed model
to take care of other uncertainties (such as in the

customer behavior, for scheduling appliances, or in
real-time electricity price)

Appendix

A. Transformation of the Objective Function

*e objective function is divided into two situations: at the
initial time slot t and at other time slots.

At the initial time slot t,

E 
n

i�1
U l

t
i ,ω

t
i  − P l

t
i  ⎡⎣ ⎤⎦ � 

n
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i . (A.1)

At other time slots,
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We denote

Vk � E 
n

i�1
U l

k
i ,ωk

i  − P l
k
i  ⎡⎣ ⎤⎦. (A.3)

According to the properties of the mathematical ex-
pectation, Vk can be rewritten as follows:

Vk � 
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(A.4)

During operation of the power grid, power consumption
of users is not saturated. *us, only the situation
0≤ lki ≤ (ωk

i /αi) is considered. At this time, the utility
function can be written as follows:
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*en,
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(A.6)

Substituting (10a) into (A.6), it is obtained that
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A utility function is redefined as
U(lti ,ω

k
i ) � E[U(lki ,ωk

i )], which can be determined as
follows:
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In addition,
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where ρj
i describes the uncertain powers produced from the

RES. *e expected value of distribution is E(ρj
i ) � μj

i , and
the variance is D(ρj+1

i ) � (σj
i )
2. By applying the probability

theory, the payment function with expectation is trans-
formed into a certain function. *erefore, a new payment
function is denoted as follows:

16 Mathematical Problems in Engineering



P l
k
i  � E P l

k
i  

� max mk l
t
i − 

k

j�t+1
μj

i
⎛⎝ ⎞⎠

+

, nk l
t
i − 

k

j�t+1
μj

i
⎛⎝ ⎞⎠

+⎧⎪⎨

⎪⎩

+ mk − nk( bk.

(A.10)

Substituting U(lti ,ω
k
i ) and P(lki ) into (A.6), we have
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Considering the first case k � t, it can be seen that the
objective function still satisfies formula (A.11). *us, ob-
jective function (P1) can be equivalent to the following
deterministic problem:

V � max
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B. Transformation of Constraint (9h)

Constraint (9h) provides a probabilistic constraint on the
total electricity consumption. In other words, the power
supplier needs to ensure that the probability of the difference
between the electricity power consumption of all users and
the output of the power supplier exceeding a given threshold
should be smaller than any small positive number. *us,
condition (9h) can be drastically expressed as follows:
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− Gk ≥ η⎡⎣ ⎤⎦≤ ε, (B.1)

where η is a given threshold, reflecting the degree of dif-
ference between the total electricity consumption and the
quantity of electricity produced by the power supplier and ε
is a very small positive number, which can be understood as
the failure probability. By replacing formula (10a) into (B.1),
it can be obtained as follows:
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Formula (B.1) can be rewritten as the following
expression:
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Namely,
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where w � − (
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j
i + μ)/σ. Owing to w ∼ N(0, 1),

the variable obeys a standard normal with an expectation of
zero and a variance of 1. Expression (B.4) can be simplified
as
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where
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Formula (B.5) is changed to
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From (B.7), it follows that
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where φ(k) � η + μ − σΦ− 1(ε).

C. Proof of Theorem1

Theorem 1. Problem (P2) is a convex optimization and has
an optimal solution.

Proof. According to the property of utility function,
Ui(lti ,ωk

i ) � E[U(lki ,ωk
i )] is a strictly concave function,

whereas the sum of the strictly concave function
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function. In addition, lti − 
k
j�t+1 μ

j

i is a linear function, and
thus it is convex. *e bigger value of two convex functions is
a convex function [49], and thus (lti − 

k
j�t+1 μ

j
i )

+ is a convex
function, which is called a plus function. *en, P(lki ) is a
convex function, − P(lki ) is a concave function. In addition,
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P(lki ) is a convex function obtained through the
property of the convex function. *us, − 
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P(lki ) is a
concave function, and thus 
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concave function. *erefore, according to the conclusion
drawn by [50] and described in Section 4.2, the concave
function 

K
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n
i�1[

U(lti ,ω
k
i ) − P(lki )] at maximum is

equivalent to the minimum of a convex function. Because
the constraints of problem (P2) are linear, and the feasible
domain is a convex set, problem (P2) is a convex optimi-
zation. According to the convex programming property, an
optimal solution of problem (P2) exists. □

D. Proof of Theorem 2

Theorem 1. For ∀t> 0, ψt(x) in formula (22) is a smooth
approximation function of ψ(x) � max(x, 0).

Proof. When x> t or x< t, |ψt(x) − ψ(x)| � 0, when
− t≤ x< 0, we have
|ψt(x) − ψ(x)| � |x2/4t + x/2 + t/4 − 0| � |(x + t)2/4t|≤ t/4,
and when 0<x≤ t, we obtain
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�
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≤
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4
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*erefore, for ∀t> 0, |ψt(x) − ψ(x)|≤ (t/4), and thus
ψt(x) is a smooth approximation function of ψ(x)[47]. □
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