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Image caption enables computers to generate a text description of images automatically. However, the generated description is not
good enough recently. Computers can describe what objects are in the image but cannot give more details about these objects. In
this study, we present a novel image caption approach to give more details when describing objects. In detail, a visual attention-
based LSTM is used to find the objects, as well as a semantic attention-based LSTM is used for giving semantic attributes. At last, a
gated object-attribute matching network is used to match the objects to their semantic attributes. /e experiments on the public
datasets of Flickr30k and MSCOCO demonstrate that the proposed approach improved the quality of the image caption,
compared with the most advanced methods at present.

1. Introduction

One of the artificial intelligence (AI) dreams is making
computers to be able to see and understand the rich visual
world around us and endowing them with the ability to
communicate with us in natural language. /ese aspirations
are motivated by offering valuable practical applications,
such as early childhood education and visual dysfunction
assistance. /e task may be very simple for humans, but it is
very difficult for computers.

Image caption is an approach that enables computers to
express what is seen in natural language. It requires detecting
the objects in an image and describing what they are and
what their attributes are. Recently, the image caption has
made remarkable progress, especially with the frameworks
based on convolution neural network (CNN) and long
short-term memory network (LSTM) [1–4]. In these
frameworks, CNN encodes the image into visual feature
vectors. /en, LSTM maps the visual feature vectors to a
sentence.

/e attention mechanism is indispensable for
humans when handling the visual problems. Humans

pick out the key points and discover the essential in-
formation involved in the image by scanning the image
and focusing on the salient aspects. Inspired by the at-
tention mechanism of humans, researchers propose the
visual attention-based neural networks [5–7] for image
captioning, which have been developed with significant
improvements. /ese models can selectively focus on
specific objects instead of scanning the whole image.
/erefore, the visual attention-based neural network can
find the location information of the focused objects by
locating the object regions but lacks the information
about the object current state such as
sitting, lying, and redorblack.

Additionally, the semantic attention-based neural net-
works [8–10] utilize the semantic attributes to focus on
semantically important concepts about the image, to im-
prove the accuracy of the generated caption. /e semantic
attributes include the state of the objects in an image, such as
sitting and lying and color. All of these semantic attributes
are the object properties detected from the image. It is
apparent that attributes are valuable for improving the ac-
curacy of the generated captions. However, the semantic
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attention-based networks fail on locating the objects in the
image [9].

As shown in Figure 1, the semantic attention-based
network evaluates the relations of the objects and the related
image region, as well as the relations of the attributes and the
related image region. Limited by the significance evaluation
of semantic attention-based networks, they can only include
the relation between motorcycle and track in the image
caption process but miss the relation between motorcycle

and yellow. Consequently, the generated caption misses the
attributes describing the color of the motorcycle. Actually,
these attributes with low significance values are also in-
dispensable for guaranteeing the accuracy of the generated
caption.

Either visual attention-based neural networks or se-
mantic attention-based neural networks for describing ob-
jects’ attributes cannot utilize the mutual relations of objects
and their attributes. A specific image caption is expected to
tell not only what the objects are but also how these objects
are. /e significant challenge is how to accurately in-
corporate semantic attributes into visual attention-based
networks.

To generate more detailed and accurate captions, we
propose a model for addressing the aforementioned chal-
lenge by utilizing the mutual relations of objects and at-
tributes. By leveraging a gated object-attribute matching
network, the model discovers the essential relations of ob-
jects and attributes obtained by the visual attention module
and the semantic attention module, respectively, and maps
all meaningful attributes to the corresponding objects. In
this way, a more detailed and accurate caption can be
obtained.

As illustrated in Figure 2, the gated object-attribute
matching network for the detailed image caption generates a
detailed description of objects in the image. /e proposed
model consists of three steps: (1) /e visual features are
extracted by the object detectors that locate image regions of
the objects. /e semantic features are extracted by the at-
tributes extractors which obtain descriptive words from the
image captions in training sets to collect all types of attri-
butes. (2) /e first LSTM layer encodes the visual features of
objects and the semantic features of the attributes. /en, we
match the objects with their attributes by involving a gated
attention-based recurrent network in order to mapping all
meaningful attributes to the corresponding objects. (3) /e
second LSTM layer, i.e., language LSTM, integrates the
objects with their attributes to generate the corresponding
caption.

Our main contributions are as follow:

(i) We study two types of image caption models, i.e.,
the visual attention-based neural network and the
semantic attention-based neural network. A visual
attention-based network will focus on each specific
image region and evaluate the relations of the re-
lated objects and this region. In this way, we can
locate the objects but cannot match the corre-
sponding descriptive attributes to these objects. On
the contrary, a semantic attention-based network

will evaluate the relations of the related objects and
this image region, as well as the relations of the
related attributes and this image region. However,
with various limitations, semantic attention-based
networks cannot accurately match each attribute to
the corresponding object too. /e significant
problem is how to match each attribute to the
corresponding object while using semantic atten-
tion-based networks.

(ii) We propose a gated object-attribute matching
network that incorporates the semantic attributes
into the visual attention-based network. /is ob-
tains additional information to get not only location
information about objects but also their attributes
for generating a more detailed image caption. Our
work improves the image captioning by con-
structing a detailed presentation out of the visual
representation and the semantic representation and
improving the description model that exploits more
information from the image. Furthermore, the us-
age of attributes benefits an elegant model which
generates sentences from an open lexicon, making
the description of the image more realistic.

(iii) Specifically, we implement the proposed model on
the gated object-attribute matching network and
conduct the experiments on public datasets
Flickr30k and MSCOCO with metrics BLEU, ME-
TEOR, and CIDEr, respectively. /e experimental
results demonstrate that our model outperforms the
state-of-the-art approaches in the accuracy of the
generated captions.

We organize the paper into five parts: Section 1 is the
introduction to an overview of the proposed model. Section
2 reviews the related work about the image caption. /en,
Section 3 announces particulars of the proposed gated ob-
ject-attribute matching network model, and Section 4
evaluates the effectiveness of the model on far-reaching
experiments. Finally, Section 5 summarizes work in the
paper.

2. Related Work

Image captioning is a very important part of artificial in-
telligence which leverages a natural language sentence to
describe the content of the image automatically. Recently,
the related work thrives for research interests.

2.1. Basic ImageCaptionFramework. /emodeling methods
discussed up to now in this paper are in use of the encoder-
decoder framework for machine language translation. By
using the successful application to machine translation
[11, 12], these methods are considered to apply to the image
caption which is the similar task to translate the image into
the corresponding text by reasonable innovation. Kiros et al.
[13] took the lead in using the encoder-decoder algorithm to
generate text to describe the image, and a log-bilinear model
with multiple modes as an input was proposed. Vinyals et al.
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[1] only took the image as the input of RNN at the beginning.
/en, Kiros et al. [14] improved the model using LSTM to
encode sentences. Donahue et al. [15] applied the LSTM
model to video description generating. All the above
methods replaced the encoder by a pretrained CNN on
ImageNet and used the output of its last layer as the encoder
result./en, the result of the encoder was put to the language
model which is regarded as the decoder to generate text. In
contrast, Karpathy and Fei-Fei [2] adopt the result of object
detection from R-CNN and output of a bidirectional RNN to
learn a joint embedding space for caption ranking and
generation.

However, most of these methods take the entire image
feature as the encoded vector. When the decoder generates
words in each step, it gets the same context from the encoded
vector. It should “pay attention” to different image regions
when generating different words of a sentence.

Generated captions by using these approaches are always
too simple to describe the essential content of the image
[1, 16]. We can generate richer descriptions by exploiting
compositional structures.

2.2. Visual Attention-Based Approach. /e human visual
cognitive system selectively focuses on specific regions or
objects in its sight, which is the primary reason why the
visual attention mechanism is important in image caption
generation.

When the visual attention mechanism is applied to the
image caption generation, different image regions have
different impacts on the caption. /erefore, researchers

propose diverse attention mechanisms that guide the model
to focus on different areas of the image when generating each
word in the caption, such as [5–7, 17, 18].

/e attention-based approach [6] was intended to
achieve the purpose of paying attention to the salient region
that “should” be paid attention to when generating a word.
Jin et al. [5] used the selective search [19] to locate the salient
region in the image to attend. /en Lu et al. [7] introduced
an adaptive attention model considering only visual words
require information from the image. Afterwards, Anderson
et al. proposed the object detector to get basic attention units
[17]. Lu et al. [18] enforced the generative model to predict a
template-like sentence and make notable advances.

2.3. Semantic Attention-Based Approach. Another branch of
the image caption model is semantic attention approaches
[8–10, 20] which detect semantic concepts from images to
guide the generation of description. Especially, these ap-
proaches focus on the interesting semantic attributes in the
image, by paying attention to semantic attributes with
different weights [9]. Wu et al. [8] investigated the effect of
adding advanced semantic concepts to the image caption
model on generating image captions, which can significantly
improve the performance of image captions. In addition,
Fang et al. [21] utilized multiple instance learning to extract
attributes related to different semantic information, which
was feed as input to the LSTM language model to generate
text description. /e proposed long short-term memory
with attributes (LSTM-A) [20] outperforms the state-of-the-
art model at that time. Gan et al. [10] extended the weight
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matrix for LSTMwhich dependents on each semantic tag for
making the corresponding caption.

2.4. Reinforcement Learning in SequenceGeneration. To deal
with the loss-evaluation mismatch problem, the re-
inforcement learning is utilized to train deep end-to-end
systems directly on nondifferentiable metrics. /erefore,
researchers use reinforcement learning to directly opti-
mize the evaluation metrics [22–26]. Ren et al. [24] in-
tegrated a policy network and a value network to
collaboratively generate text description. /e policy
network was used to predict a sentence, while the value
network served as a global predictor for the sentence in
evaluation. Both networks are enhanced by re-
inforcement learning. Additionally, Liu et al. [23] in-
corporated metric SPICE [27] and metric CIDEr [28] for
the policy gradient algorithm to improve text generation
accuracy, instead of directly estimating the reward in
reinforcement learning.

Rennie et al. [25] used the generated sentence at the test
time as the baseline in the objective function, when they
trained text generation model directly on nondifferentiable
metrics. Guo et al. [26] suggested restricting the action space
by an n-gram language prior in order to reduce the learning
bias which leads to favorable readability of captions and
model stability. /e implicit optimization towards the target
metric improves the results. All these methods of re-
inforcement learning aforementioned have been proved to
be effectively improving the performance of the image
caption.

2.5.Discussion. Models based on visual attention can predict
which regions of the image to be focused on but lack the
related semantic attributes to describe the attended regions.
On the contrary, models based on semantic attention can
only learn the attributes in the image but cannot map these
attributes to the corresponding objects.

To generate more detailed and accurate captions, we
investigate how to exploit the mutual relations between
visual features and semantic features, i.e., the mutual re-
lations between objects and their attributes, and finally
propose a model to map the attributes to the corresponding
objects.

3. Gated Object-Attribute Matching Network

In this section, we present the proposed image captioning
model, gated object-attribute matching network, in order to
obtain more detailed image captions. In detail, we propose a
gated object-attribute matching network to discover the
potential relations of objects and high-level semantic at-
tributes and thus incorporate the visual attention module
and the high-level semantics attention module into image
caption generation.

/e entire framework of the caption generation network
is as follows:

Step 1: the visual features and semantic features, i.e.,
objects and the corresponding attributes, are extracted
by the object detector and the attribute extractor,
respectively

Step 2: firstly, the visual LSTM encodes the extracted
objects to hv

t , while the semantic LSTM encodes the
attributes of semantic features to ha

t

Secondly, the visual attention module maps the ob-
jects hv

t , to their context vector cv
t , as well as the se-

mantic attention maps the attributes ha
t , to their

context vector ca
t

/irdly, a determinant gate (⊗) is involved to map the
objects to the corresponding semantic features, and
the incorporated representation serves as the attri-
bute-aware visual features V

g
t

Step 3: the second LSTM layer, namely, language
LSTM, integrates the attribute-aware visual features V

g
t

with the semantic attention ca
t to obtain description of

different objects and generate a more detailed image
caption

We first propose our entire framework of the detailed
caption generation network, as illustrated in Figure 3. In
Section 3.1, we introduce the involved visual features and the
corresponding semantic features, i.e., objects and the cor-
responding attributes. /e proposed network has two LSTM
layers. /e first LSTM layer includes a visual LSTM, a se-
mantic LSTM, and a gated attention-based recurrent net-
work, which is proposed to map the visual features to the
corresponding semantic features. /e second LSTM layer is
language LSTM. In Section 3.2, we introduce the visual
LSTM and the semantic LSTM. /e visual attention and the
semantic attention are in Section 3.3. In Section 3.4, we
introduce the gated object-attribute matching. /e language
LSTM is in Section 3.5./e objective function is explained in
Section 3.6.

3.1. Visual and Semantic Features. /e original image cap-
tioning models [1, 13–15] simply analyse the entire image
instead of identifying and locating visual features. In order to
generate an accurate image caption, we need to discover the
essential visual features in images, i.e, objects. We leverage
bounding boxes used in faster R-CNN [29] to identify and
locate different objects in an image.

Specifically, we select the top-k region proposals from a
specific image. For each selected region j containing an
object, its corresponding visual feature vj is composed of
region proposals and their locations, through which we can
identify and locate different objects in the image. We define
the set of concatenation feature vectors vj as the visual
features of an image, V � vj | 1< j< k􏽮 􏽯, vj � [vv

j, vl
j],

vj ∈ RD. /e region proposal feature vv
j is the ROI pooling
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feature, and vl
j is the location coordinate of the region

proposal. And D is the dimension of the visual feature
vectors which is the sum of region feature dimension and
location coordinate dimension.

One of the limitations of the top-k paradigm is that it is
hard to attend to fine details which may be important in
terms of describing the image.

To handle this problem, more detailed information
about the image should be involved in analysis. As the
primary semantic features, attributes in an image contain
more detailed information and thus can be used to generate
specific description of the image, which do not only include
object names but also include motions and properties.
Considering that some descriptive attributes such as
beautiful may not be easily identified with bounding boxes
in an image, the classical training method cannot be used as
attributes extractor. Actually, the multi-instance learning
(MIL) [21] is feasible to be used to construct attribute ex-
tractors. To achieve a comprehensive attribute extractor, we
first build an attribute vocabulary that contains the most
usual words found in the image captions. /erefore, the
attributes can describe not only object names but also object
motion and properties. Additionally, we use bags to discover
attributes in images. Bag b(i) stands for image i, while each
instance in this bag stands for region proposal j in image i.
Firstly, we let bag b(i) be positive if the attribute is in the
caption of image i, and negative otherwise when traversing
the attribute vocabulary. /en we train the extractor by
iteratively selecting instances from the positive bags, fol-
lowed by retraining using the updated positive labels. /e
retraining process calculates the probability of an attribute
word wc in bag i as follows:

p
wc � 1 − 􏽙

j∈image(i)

1 − p
wc

j􏼐 􏼑,
(1)

where p
wc

j is the probability of the finding word wc in the
subregion j of image i. We compute the sigmoid function on
the dense layer [29] to get the probability p

wc

j . /e proba-
bility p

wc

j is calculated as follows:

p
wc

j �
1

1 + exp − wwbij + bw􏼐 􏼑􏽨 􏽩
, (2)

where bij is the dense layer representation for the subregion j
in image i and the hyperparameter ww and bw are updated by
cross-entropy loss function.We use the cross-entropy loss as
the objective function and optimize the training process with
the stochastic gradient descent.

Let c be the number of attributes, and the semantic
feature set A can be defined as the probability distribution
vector:

A � p
w1 , p

w2 , . . . , p
wc􏼈 􏼉. (3)

3.2. Visual LSTM and Semantic LSTM. As illustrated in
Figure 4, our image captioning model is composed of two
LSTM layers as follows [17]: the first LSTM layer is the
most important component of the model, including a
visual attention-based LSTM, a semantic attention-based
LSTM, and a determinant gate for matching objects and
attributes. /e second LSTM layer is a language module
to generate a caption. In this section, we begin to in-
troduce the visual attention-based LSTM and the se-
mantic attention-based LSTM used in the first LSTM
layer.

A visual attention-based LSTM is involved in our image
captioning model to discover the potential relations among
objects. As depicted in Figure 4, at step t, the input vector of
the visual attention-based LSTM comprises its last step
output hv

t− 1, the average value of visual features v,
v � (1/k)􏽐

k
i�1vi, vi ∈ V, and the input word xt. Word xt has

been represented as word embedding of dimension equal to
the size of word dictionary. In the training stage, xt is the tth

word that comes from the image caption at step t. In the
testing stage, xt is the word generated by LSTM at the last
step. /e concatenate input vector is fed into the visual
LSTM to produce the vector hv

t according to the following
formulas:
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I
v
t � σ xtW

v
xi + vW

v
vi + h

v
t− 1W

v
hi + b

v
i( 􏼁,

F
v
t � σ xtW

v
xf + vW

v
vf + h

v
t− 1W

v
hf + b

v
f􏼐 􏼑,

O
v
t � σ xtW

v
xo + vW

v
vo + h

v
t− 1W

v
ho + b

v
o( 􏼁,

􏽥C
v

t � tanh xtW
v
xc + vW

v
vc + h

v
t− 1W

v
hc + b

v
c( 􏼁,

C
v
t � F

v
t ⊙C

v
t− 1 + I

v
t ⊙ 􏽥C

v

t ,

h
v
t � O

v
t ⊙ tanh C

v
t( 􏼁.

(4)

Correspondingly the gates are defined as follows: the
input gate is Iv

t , the forget gate is Fv
t , and the output gate is

Ov
t . Wv

xi, Wv
xf, Wv

xo, Wv
vi, Wv

vf, Wv
vo and Wv

hi, Wv
hf, Wv

ho are
the weight parameters, and bv

i , bv
f, bv

o are the bias parameters.
/e candidate memory cell is 􏽥C

v

t , and the memory cell is Cv
t .

Here, Wv
xc, Wv

vc, Wv
hc are the weights, and bv

c is a bias. /e
hidden state hv

t is then fed into visual attention at the next
step.

In addition, a semantic attention-based LSTM is in-
volved in our image captioning model to identify the re-
lations of attributes. At step t, the input of the semantic
LSTM consists of its last step output ha

t− 1, the attributes
vectorA, and the input word embedding vector xt. Its output
ha

t is calculated by

I
a
t � σ xtW

a
xi + AW

a
ai + h

a
t− 1W

a
hi + b

a
i( 􏼁,

F
a
t � σ xtW

a
xf + AW

a
af + h

a
t− 1W

a
hf + b

a
f􏼐 􏼑,

O
a
t � σ xtW

a
xo + AW

a
ao + h

a
t− 1W

a
ho + b

a
o( 􏼁,

􏽥C
a

t � tanh xtW
a
xc + AW

a
ac + h

a
t− 1W

a
hc + b

a
c( 􏼁,

C
a
t � F

a
t ⊙C

a
t− 1 + I

a
t ⊙ 􏽥C

a

t ,

h
a
t � O

a
t ⊙ tanh C

a
t( 􏼁.

(5)

/e computation in LSTMa is similar to LSTMv. Here,
Wa

xi, Wa
xf, Wa

xo, Wa
xc, Wa

ai, Wa
af, Wa

ao, Wa
ac and Wa

hi, Wa
hf,

Wa
ho, Wa

hc are the weight parameters, and ba
i , ba

f, ba
o, ba

c are the
bias parameters.

3.3. Visual Attention and Semantic Attention. A visual at-
tention module and a semantic attention module are applied
to discover the objects with high significance values, i.e., the

primary elements with significant relations with the others.
In detail, the encoded visual content hv

t is utilized to
identify the relevant objects of the word xt by using a soft
attention mechanism. Additionally, the context vector of
the objects at step t is obtained based on hv

t and the visual
feature set V:

αv
t,i � softmax e

v
t,i􏼐 􏼑

�
exp ev

t,i􏼐 􏼑

􏽐
k
t′�1exp ev

t,t′􏼒 􏼓

,

e
v
t,i � W

a
s tanh W

v
vvi + W

v
hh

v
t( 􏼁,

c
v
t � 􏽘

i

αv
t,ivi, vi ∈ V,

(6)

where cv
t is the context vector, αv

t,i is the weight of the object i
at step t, t′ � 1, . . . , k, and Wv

s, Wv
h, Wv

v are the hyper-
parameters to be learned.

Similarly, the context vector of semantic attention, ca
t , is

used to identify the significant attributes of the image, which
is calculated in terms of ha

t and the semantic feature set A, as
follows:

αa
t,i � softmax e

a
t,i􏼐 􏼑

�
exp ea

t,i􏼐 􏼑

􏽐
k
t′�1exp ea

t,t′􏼒 􏼓

,

e
a
t,i � W

a
s tanh W

a
vvi + W

a
hh

a
t( 􏼁,

c
a
t � 􏽘

i

αa
t,iai, ai ∈ A.

(7)

3.4. Gated Object-Attribute Matching. In order to map the
attributes to the corresponding objects and provide the
detailed description of the objects in an image, we match
each object with its salient context elements, including the
related objects and attributes, by using a gated object-at-
tribute matching network. /is gated object-attribute
matching network is based on an attention gate [30]. /is
attention gate is based on both of the objects and their
semantic attributes, instead of only relying on one type of
elements, just like what GRU [31] does. /e attention gate
V

g
t bases on the current context vector of visual c

g
t and the

encoded semantic features h
g
t :

V
g
t � sigmoid W

g
h

a
t , c

v
t􏼂 􏼃( 􏼁⊗ h

a
t , c

v
t􏼂 􏼃, (8)

where V
g
t is the attribute-ware objects, regarded as the high-

level visual features after matching the corresponding
sematic features. ⊗ is an element-wise product operation.
Wg is a weight matrix to be learned.

3.5. Language LSTM. /e second LSTM layer is a language
LSTM for generating image captions. /e language LSTM
utilizes the high-level visual features V

g
t and the context

vector of semantic attention ca
t , to generate the image

hoam
t–1 hoam
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g

ct
v ct
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aht
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Figure 4: An illustration of the proposed gated object-attribute
matching network model.
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captions. /e objects in the image at step t and their relevant
attributes are encoded to vector hoam

t as follows:

h
oam
t � LSTM h

oam
t− 1 v

g
t c

a
t( 􏼁. (9)

/is final representation hoam
t contains the entire in-

formation of the location of the salient objects and their
corresponding properties. Finally, while generating a cap-
tion of an image, each word in the generated caption is
picked up by using a softmax classifier, in terms of the input
word xt and the high-level representation hoam

t in the last
step:

p wt w1: t− 1
􏼌􏼌􏼌􏼌 , I􏼐 􏼑 � softmax Wxxt + Whh

oam
t + b( 􏼁, (10)

where Wx andWh are the hyperparameters to be learned.

3.6. Objective. /e aim of an image captioning model is to
maximize the probability that the generated description is
similar to a realistic image caption. /erefore, the objective
function of our network minimizes the difference between
realistic image captions and the generated image captions,
i.e., to minimize the following cross-entropy function:

£(θ) � − 􏽘
t

logp wt w1: t− 1
􏼌􏼌􏼌􏼌 , (V, A)􏼐 􏼑, (11)

where θ is the set of all the hyperparameters to be learned in
the training stage. V is the visual feature set, V � v1: k􏼈 􏼉. And
A is the semantic feature set of image attributes.
p(wt | w1: t− 1) is the probability that the word wt appears
behind the word sequence w1: t− 1.

Considering the significant performance of re-
inforcement learning (RL) to deal with the loss-evaluation
mismatch problem, we optimize our image captioning
network by involving an RL-based training process.

According to the cross-entropy training model initial-
ized in the previous step, we obtain the negative expectation
score and try to minimize it:

£ θr( 􏼁 � − Ew1: T∼θr
c w1: T( 􏼁( 􏼁, (12)

where c is an evaluation score of some metric, e.g., CIDEr,
which serves as a reward of policy gradient for reinforcement
learning. We update the gradient of the objective function as
follows:

▽θr
£ θr( 􏼁 ≈ − c w1: t( 􏼁 − gt( 􏼁▽θr

logpθr
w1: T, (V, A)( 􏼁,

(13)

where gt is the ground truth that serves as a reference re-
ward. /en the policy gradient for reinforcement learning
can calculate this reward. /e policy gradient for re-
inforcement learning improves the evaluation metric score
of the generated description of the image captioning model
and improves the accuracy of the generated captions.

3.7. Framework for Image Captioning. /e gated object-at-
tribute matching network is the end-to-end model. /e
training procedure is illustrated in Figure 3. Given an image
and its corresponding caption, our model maximizes the
probability of word sequence:

θ � argmax
θ

􏽘
(I,y)

logp(y | I; θ),
(14)

where θ represents the model parameters and I is the image
and is the word sequence of corresponding caption. Based
on the chain rule, the log likelihood of the joint probability
distribution over y is comprised of T conditional
probabilities:

logp(y) � 􏽘
T

t�1
logp yt yt− 1

􏼌􏼌􏼌􏼌 , . . . , y1, I􏼐 􏼑, (15)

where T is the total length of the caption. Here, the de-
pendency on model parameters θ is removed for conve-
nience. During the training stage, (I, y) is a training image
caption pair, and the overall optimization objective is the
sum of log probabilities over all training pairs in the training
set. Firstly, the visual features are extracted by the object
detectors from the image. /e object detectors also locate
image regions of the objects. So, we get visual feature vector
V � vj | 1< j< k􏽮 􏽯, vj � [vv

j, vl
j], vj ∈ RD by the object de-

tectors. Meanwhile, the semantic features are extracted by
the attributes extractors which obtain descriptive words
from the image captions in training sets to collect all types of
attributes. /en, we get semantic features vector
A � pw1 , pw2 , . . . , pwc􏼈 􏼉 by the attributes extractors.

Secondly, the visual LSTM encodes the visual features V
to hv

t ; meanwhile, the semantic LSTM encodes the semantic
features A to ha

t . /en, the visual attention maps hv
t to

context vector cv
t , as well as the semantic attention maps ha

t ,
to context vector ca

t . Next, a determinant gate (⊗) is involved
to map the objects to the corresponding semantic features,
and the incorporated representation servers as the attribute-
aware visual features V

g
t .

/irdly, the language LSTM integrates the attribute-
aware visual features V

g
t with their semantic context

vector ca
t to generate the corresponding caption. To

minimize the difference between realistic image captions
and the generated image captions, we use the cross-en-
tropy function as the objective function. We also optimize
the objective function by involving an RL-based training
process.

4. Experiments

4.1. Datasets. In order to evaluate the effectiveness of the
proposed model, we select the most popular datasets for the
image captioning, including Flickr30k [32] and MSCOCO
[33]. /e Flickr30k dataset contains about 31,000 images,
each with 5 sentences annotated to describe the image as a
reference, while the MSCOCO dataset contains about
123,000 images and each with 5 sentences also. We follow
the public available splits [2], remaining 1,000 images for
validation, 1,000 for testing, and others for training on
Flickr30k, while 5,000 images remain for validation as well as
5,000 images for testing on MSCOCO.

For representing the sentence in word embedding, we
fixed vocabulary size to 10,000 for both datasets including
special start sign <BOS> and end sign <EOS> .
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4.2. Implementation Details. While implementing our
model, ResNet-101 [34] is used as the pretrain model for
feature map layers./en we choose faster R-CNN [29] as the
object detector to get the proposal regions in an image. To
get the primary objects and their location, we fix the IoU
threshold on 0.7 for nonmaximum suppression and finally
select the top-k region proposals. For each selected region i,
its corresponding visual feature vi � [vv

i , vl
i], where vv

i is a
region feature obtained with a max-pooling feature map
from ROI align and vl

i is the coordinates of the bounding
box, xleft, ytop, xright, andybottom. Let the width and height of
the image be W and H, respectively. /e normalized co-
ordinates of the bounding box is xleft/W, ytop/H, xright/
W, andybottom/H.

In addition, the number of hidden nodes is 1024, the
word embedding size is 512, the dropout ratio is 0.5, the
minibatch size is 50, and the model training process lasts 50
epochs.

4.3. Evaluation

4.3.1. Metrics. BLEU [35] is a metric used for evaluating
machine translation algorithms based on n grams.We report
BLEU score on BLUE@1, BLEU@2, BLEU@3, and BLEU@4.
METEOR [36] evaluates the word alignment between the
generated captions and the realistic captions by considering
accuracy and recall rate. Different from othermetrics, CIDEr
is specially proposed for evaluating the accuracy of different
image captioning models by using TF-IDF (term frequency-
inverse document frequency). We compare our model with
the state-of-the-art methods in terms of all the above
metrics.

4.3.2. Compared Methods. We evaluate the accuracy of our
proposed image captioning model by comparing our
model with the state-of-the-art methods, including

Table 1: /e performance of the state-of-the-art image captioning models on the Flickr30k and MSCOCO testing splits.

Model
Flickr30k MSCOCO

B@1 B@2 B@3 B@4 METEOR CIDEr B@1 B@2 B@3 B@4 METEOR CIDEr
DeepV-SAlign [7] 0.573 0.369 0.240 0.157 0.153 0.247 0.625 0.450 0.321 0.230 0.195 0.660
Soft-Attention [26] 0.667 0.434 0.288 0.191 0.185 — 0.707 0.492 0.344 0.243 0.239 —
Hard-Attention [26] 0.669 0.439 0.296 0.199 0.185 — 0.718 0.504 0.357 0.250 0.230 —
Attribute-FCN [15] 0.647 0.460 0.324 0.230 0.189 — 0.709 0.537 0.402 0.304 0.243 —
Adaptive-Attention [11] 0.677 0.494 0.354 0.251 0.204 0.531 0.742 0.580 0.439 0.332 0.266 1.085
Attribute-CNN+LSTM [14] — — — — — — — 0.56 0.42 0.31 0.26 0.94
NBT [13] 0.720 — — 0.285 0.231 0.575 0.759 — — 0.349 0.274 1.089
Up-Down [12] — — — — — — 0.802 0.641 0.491 0.369 0.276 1.179
Ours (Box proposed) 0.711 0.507 0.393 0.266 0.211 0.630 0.753 0.592 0.462 0.341 0.266 0.954
Ours (RL) 0.735 0.522 0.401 0.297 0.219 0.674 0.772 0.620 0.476 0.352 0.270 1.098

A young kid holding blue

baseball bat on green field

Figure 5: A visualized example of the localized objects corresponding to the detected semantic features.
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DeepV-SAlign [2], Soft-Attention [6], Hard-Attention [6]
and recently proposed Attribute-FCN [9], Adaptive-At-
tention [7], Attribute-CNN + LSTM [8], NBT [18], and
Up-Down [17].

4.3.3. Results Analysis: Quantitative Analysis. /e com-
parison results of our model and the compared methods on
Flickr30k and MSCOCO are listed in Table 1. Since it can
improve the quality of the generated captions to involve RL
into our model, we present our results without RL and with
RL, respectively, for a fair comparison.

As listed in Table 1, our proposed model outperforms
all compared models. Since Attribute-FCN and Attribute-
CNN+ LSTM used semantic attributes in image caption-
ing, the two models achieve significant performance im-
provements. Compared with Attribute-CNN+ LSTM, our
model improves BLEU-4 from 0.31 to 0.366, METEOR
from 0.26 to 0.279, and CIDEr from 0.94 to 1.185 on
COCO. Our model also outperforms the Up-Down model,
improving METEOR from 0.276 to 0.279, and CIDEr from
1.179 to 1.185 on COCO. /e Up-Down model combines
bottom-up and top-down attention mechanisms and ob-
tains the best performance than other compared models.
Similarly, on Flickr30k, our model obtains the best eval-
uation results on all metrics.

4.4. Quantitative Analysis. In Figure 5, we visualize the
process that the model focuses on different objects when
generating the corresponding caption. Our model finds the
most salient region proposals for the corresponding attri-
butes with the highest significance value.

To demonstrate the performance of our image cap-
tioning model, we present some images and the corre-
sponding generated captions in Figure 6, which are
selected from the public dataset, MSCOCO. GT stands
for the ground truth caption. As illustrated in Figure 6,
we can see that our proposed model can detect more
detailed attributes for the image. As for the first image,
our model generates a caption “A group of sheep are
gazing on the green grass.” Compared with the caption
provided in MSCOCO, gazing and green are included in
the generated caption. A more detailed image caption is
generated.

/is indicates that by localizing and describing objects in
a gated object-attribute matching network, and the gener-
ated caption can be more detailed as well as specific.

5. Conclusion

In this paper, we study the two types of image caption
models, i.e., the visual attention-based neural network and
the semantic attention-based neural network. To address the
challenge of accurately incorporating semantic attributes
into visual attention-based networks, we explore the mutual
relations of objects and attributes and improve the quality of
the generated captions. In detail, we propose a novel gated
object-attribute matching network, which is used to match
the objects to their semantic attributes.

/e experiments on the public datasets of Flickr30k and
MSCOCO demonstrate our model can obtain more detailed
image captions compared with many other methods.
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[11] K. Cho, B. Van Merriënboer, C. Gulcehre et al., “Learning
phrase representations using rnn encoder-decoder for sta-
tistical machine translation,” 2014, https://arxiv.org/abs/1406.
1078.

[12] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,” 2014,
https://arxiv.org/abs/1409.0473.

[13] R. Kiros, R. Salakhutdinov, and R. Zemel, “Multimodal neural
language models,” in International Conference on Machine
Learning, pp. 595–603, Beijing, China, June 2014.

[14] R. Kiros, R. Salakhutdinov, and R. S. Zemel, “Unifying visual-
semantic embeddings with multimodal neural language
models,” 2014, https://arxiv.org/abs/1411.2539.

[15] J. Donahue, L. Anne Hendricks, S. Guadarrama et al., “Long-
term recurrent convolutional networks for visual recognition
and description,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2625–2634,
Boston, MA, USA, June 2015.

[16] J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille,
“Deep captioning with multimodal recurrent neural networks
(m-RNN),” 2014, https://arxiv.org/abs/1412.6632.

[17] P. Anderson, X. He, C. Buehler et al., “Bottom-up and top-
down attention for image captioning and visual question
answering,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 6077–6086, Salt
Lake City, UT, USA, June 2018.

[18] J. Lu, J. Yang, D. Batra, and D. Parikh, “Neural baby talk,” in
Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 7219–7228, Salt Lake City, UT, USA,
June 2018.

[19] J. R. R. Uijlings, K. E. A. Van De Sande, T. Gevers, and
A. W. M. Smeulders, “Selective search for object recognition,”
International Journal of Computer Vision, vol. 104, no. 2,
pp. 154–171, 2013.

[20] T. Yao, Y. Pan, Y. Li, Z. Qiu, and T. Mei, “Boosting image
captioning with attributes,” in Proceedings of the IEEE In-
ternational Conference on Computer Vision, pp. 4894–4902,
Venice, Italy, October 2017.

[21] H. Fang, S. Gupta, F. Iandola et al., “From captions to visual
concepts and back,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1473–1482,
Boston, MA, USA, June 2015.

[22] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba, “Sequence
level training with recurrent neural networks,” 2015, https://
arxiv.org/abs/1511.06732.

[23] S. Liu, Z. Zhu, N. Ye, S. Guadarrama, and K. Murphy,
“Improved image captioning via policy gradient optimization
of spider,” in Proceedings of the IEEE international Conference
on Computer Vision, pp. 873–881, Venice, Italy, October 2017.

[24] Z. Ren, X. Wang, N. Zhang, X. Lv, and L.-J. Li, “Deep re-
inforcement learning-based image captioning with embed-
ding reward,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 290–298,
Honolulu, HI, USA, July 2017.

[25] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel,
“Self-critical sequence training for image captioning,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 7008–7024, Honolulu, HI, USA, July
2017.

[26] T. Guo, S. Chang, M. Yu, and K. Bai, “Improving re-
inforcement learning based image captioning with natural
language prior,” 2018, https://arxiv.org/abs/1809.06227.

[27] P. Anderson, B. Fernando, M. Johnson, and S. Gould, “Spice:
semantic propositional image caption evaluation,” in Euro-
pean Conference On Computer Vision, pp. 382–398, Springer,
Berlin, Germany, 2016.

[28] R. Vedantam, C. Lawrence Zitnick, and D. Parikh, “Cider:
consensus-based image description evaluation,” in Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4566–4575, Boston, MA, USA, June
2015.

[29] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: towards
real-time object detection with region proposal networks,” in
Advances in Neural information Processing Systems, pp. 91–99,
London, UK, 2015.

[30] S. Wang and J. Jiang, “Machine comprehension using match-
lstm and answer pointer,” 2016, https://arxiv.org/abs/1608.
07905.

[31] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical
evaluation of gated recurrent neural networks on sequence
modeling,” 2014, https://arxiv.org/abs/1412.3555.

[32] P. Young, A. Lai, M. Hodosh, and J. Hockenmaier, “From
image descriptions to visual denotations: new similarity
metrics for semantic inference over event descriptions,”
Transactions of the Association for Computational Linguistics,
vol. 2, pp. 67–78, 2014.

[33] T.-Y. Lin, M. Maire, S. Belongie et al., “Microsoft coco:
common objects in context,” in European Conference on
Computer Vision, pp. 740–755, Springer, Berlin, Germany,
2014.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE Conference

10 Mathematical Problems in Engineering

https://arxiv.org/abs/1506.06272
https://arxiv.org/abs/1506.06272
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1411.2539
https://arxiv.org/abs/1412.6632
https://arxiv.org/abs/1511.06732
https://arxiv.org/abs/1511.06732
https://arxiv.org/abs/1809.06227
https://arxiv.org/abs/1608.07905
https://arxiv.org/abs/1608.07905
https://arxiv.org/abs/1412.3555


on Computer Vision and Pattern Recognition, pp. 770–778,
Vegas, NV, USA, June 2016.

[35] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a
method for automatic evaluation of machine translation,” in
Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, pp. 311–318, Association for
Computational Linguistics, Philadelphia, PA, USA, July 2002.

[36] M. Denkowski and A. Lavie, “Extending the meteor machine
translation evaluation metric to the phrase level,” in Human
Language Technologies: @e 2010 Annual Conference of the
North American Chapter of the Association for Computational
Linguistics, pp. 250–253, Association for Computational
Linguistics, Stroudsburg, PA, USA, 2010.

Mathematical Problems in Engineering 11



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

