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To enhance the calculation accuracy of bond-based peridynamics (BPD), a novel attenuation function is introduced to describe
the effect of internal length on nonlocal long-range forces. Furthermore, the expression of the micromodulus function is deduced,
and the corresponding fracture criteria are established. )e validity and accuracy of the extended bond-based peridynamic
approach are illustrated by three numerical examples: 2D isotropic plate under uniaxial loading; plate with a circular cutout under
quasi-static loading; and a diagonally loaded square plate with a center pre-existing crack. Finally, the influence of the width and
the angle of the pre-existing crack on the fracture initiation time and the crack propagation paths are studied by applying the
proposed approach.

1. Introduction

Predicting crack initiation and propagation accurately ap-
plying classical continuum mechanics (CCM) is still a major
challenge for the community of solid mechanics [1, 2]. )e
classical methods, such as the finite element method (FEM),
are the most popular computational technique for structural
computations [3]. However, it is formulated using spatial
partial differential equations which are singularities and
resulting in convergence problems at discontinuities [4], so
some special techniques need to be devised, such as remeshing
approaches is one of the main viable options to cope with
these limitations [5], but remeshing processes are affected by
numerical difficulties, complexity in computer programming,
and often lead to calculation accuracy which is reduced [6].

Bond-based peridynamics (BPD) [7], first introduced to
handle problems involving discontinuities and long-range
forces by Silling in 2000, reformulate classical continuum
mechanics in terms of spatial integral equations rather than
partial differential equations. In contrast to classical con-
tinuummechanics, the peridynamic equations are defined at
the discontinuities, and thus, the fracture initiation and

crack propagation can be simulated. It has the advantages of
other numerical methods, such as the meshless, finite ele-
ment, and molecular dynamics method [8]. And it has been
widely applied to failure problems for brittle materials
[9–13].

)ere are certain limitations in bond-based peridy-
namics, such as the limitation of fixed Poisson’s ratios and
obvious surface effect. Recently, the state-based PD [14], the
two-parameter bond-based PD [15, 16], and the novel
conjugated bond-based PD [17, 18] were proposed and have
solved the limitation of fixed Poisson’s ratios in bond-based
PD. And the volume method [19], the energy method [20],
the fictitious node method [11], and coupling PD with the
CCM method [4, 21] were applied and have solved the
surface effect in bond-based PD, and detailed information
about surface correction techniques is introduced in [22].
However, there are still some unresolved problems in the
bond-based PD that need to be addressed. For instance, the
micromodulus which represents the bond stiffness is an
invariable material constant. Actually, as a nonlocal model,
the constant micromodulus of BPD ignores the internal
length effect of long-range forces [23].
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In BPD theory, a continuum is composed of infinitely
many material points and interconnection through ficti-
tious bonds, the influence of the material point interacting
with X is assumed to exist in its own family (horizon), and
the interaction between two points is always a constant
regardless of the distance between them in one horizon. In
other words, it can also be considered that the attenuation
function g(ξ, δ) � 1 was introduced. And thus, the
micromodulus function is a material constant. Based on the
BPD model, Silling and Askari [8] researched the con-
vergence in a fracture calculation and illustrated the
properties of the method for modeling brittle dynamic
crack growth. Agwai et al. [24] simulated three different
experimental dynamic fracture problems and obtained data
which coincide well with the results of literatures and
experiment. Ha and Bobaru [10] analyzed the dynamic
crack propagation and branching in brittle materials and
showed results of convergence studies under uniform grid
refinement. Dipasquale et al. [25] studied the dependence
of crack paths on the orientation of regular 2D peridynamic
grids.

When the internal length effect of nonlocal long-range
forces is described, it is an effective way to introduce types
of attenuation functions g(ξ, δ) to reflect the spatial dis-
tribution of the intensity of long-range forces. At present,
the attenuation function g(ξ, δ) � 1 − (ξ/δ) which was
introduced into the BPDmodel has been widely researched.
Micromodulus of the BPD model which considered the
effects of long-range forces hereinafter is called “variable
micromodulus.” Bobaru et al. [26] found that micro-
modulus has an influence on the rate of convergence, and
the variable micromodulus leads to optimal rates of con-
vergence independent of the grid used. Bobaru and Ha [27]
found that micromodulus makes a difference to surface
effect, and the variable micromodulus can weaken it. Ha
and Bobaru [10] analyzed the dynamic crack propagation
and obtained that the variable micromodulus has no sig-
nificant effect on crack paths in brittle materials. Hu et al.
[28] derived the formulation of the nonlocal J-integral and
found that the variable micromodulus gives better con-
vergence rates to the classical solutions in elasticity
problems compared to the constant micromodulus. Cheng
et al. [29] simulated various dynamic brittle fractures in
functionally graded materials (FGMs) and suggested that
the influence of variable micromodulus on the fracture
behavior of FGMs is limited.

Based on the BPD which introduced the attenuation
function g(ξ, δ) � e− (|ξ|/δ)2 , Kilic and Madenci [30, 31] in-
vestigated the elastic stability of simple structures to de-
termine buckling characteristics by considering the
problems of buckling load and buckling temperature. Using
the BPD model which introduced the function
g(ξ, δ) � (1 − (ξ/δ)2)2, Huang [23, 32] demonstrated that it
is more accurate than the earlier BPD models using a fixed
stiffness constant, and the crack propagation and the frac-
ture mechanism of a cantilever concrete beam with pre-
existing notch are studied. Chen et al. [33] analyzed the
influence of micromodulus by four different attenuation
functions on BPD simulation of crack propagation and

branching in brittle materials. )ough the problems of
fracture were reported based on the several types of at-
tenuation functions which were introduced to the BPD
model, the influence of attenuation functions on compu-
tational accuracy and the optimal attenuation function need
to be explored, and there is still lack of research on the
influence of crack width and angle on brittle material failure
based on the BPD model which considered the effects of
long-range forces.

)is study is organized as follows. In Section 2, the BPD
theory is reviewed. In Section 3, the proposed extended BPD
model is introduced, and several micromodulus functions
based on various attenuation functions are defined. In
Section 4, the validity and computational accuracy of the
extended BPD model are illustrated by numerical examples.
In Section 5, the influence of crack width and angle on
fracture initiation time and crack propagation paths are
explored by numerical simulations. Finally, Section 6
summarizes the conclusions resulted from this study.

2. Review of BPD Theory

In BPD theory, a continuum is composed of infinitely many
material points. Each material point with a volume of VX

and mass density of ρ is identified by its coordinates X in the
initial configuration. As shown in Figure 1, each material
point X is assumed to interact with all other material points
X′ within its horizon through fictitious bonds. )e horizon
is defined as Hδ � X′ ∈ Ω: |X′ − X|≤ δ . According to
Newton’s second law, the peridynamic equation of motion
[7] for material point X at time t is expressed by

ρ€u � 
Hδ

fdVX′ + b(X, t), (1)

where €u � (z2u(X, t))/zt2 is the acceleration of material
point X at time t, b is the body force density, and f is a
pairwise force function that represents the force vector
material point X′ which exerts on material point X and is
expressed by

f � f u′, u, X′, X, t(  � f u′ − u, X′ − X  � f(η, ξ),

(2)

where u and u′ are the displacements of material points X

andX′ at time t, respectively. ξ � X′ − X denotes the relative
position of material points X and X′ in the initial config-
uration. η � u′ − u denotes their relative displacement.

According to Silling and Askari [8] formulation, for
linear elastic material, f is the derivative of microelastic
strain density ω(η, ξ) with respect to relative displacement
vector η.

f �
zω(η, ξ)

zη
, (3)

where

ω(η, ξ) �
c(ξ, δ)s2

2
|ξ|, (4)
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where c(ξ, δ) is a micromodulus function which represents
the bond stiffness, |ξ| denotes the magnitude of the vector ξ,
and s is the stretch of the bond, and

s �
|ξ + η| − |ξ|

|ξ|
. (5)

Substituting from equation (4) into equation (3) results
in

f � c(ξ, δ)s
ξ + η

|ξ + η|
. (6)

BPD assumes that half of the strain energy density due to
the interaction of X and all X′ is stored by X, and WPD(X)

can be expressed as

W
PD

(X) �
1
2


Hδ

ω(η, ξ)dVX′ �
1
2


Hδ

c(ξ, δ)s2

2
|ξ|dVX′ .

(7)

Normally, c(ξ, δ) is derived from the principle that the
BPD strain energy density equals to the strain energy density
based on classical continuummechanics at material point X,
i.e.,

W
PD

(X) � W
CCM

(X). (8)

)e value of c(ξ, δ) for various cases is given in the
following [19], as shown in Table 1. It is noted that Poisson’s
ratio is fixed to be 1/3 in the case of plane stress and 1/4 in the
case of plane strain and 3D.

3. Extended BPD Approach and
Fracture Criteria

3.1. Extended BPD Approach. In BPD, the intensity of the
long-range forces between material points remains the same
within the horizon, and the influence of the distance between
the particles on the stiffness of the bond is ignored [23, 32];
therefore, the function c(ξ, δ) is reduced to a constant c(δ).
It causes the calculation error to become larger. When
describing the internal length effect of nonlocal long-range
forces, attenuation function g(ξ, δ) was introduced to reflect
the spatial distribution of the intensity of long-range forces.
)e micromodulus of BPD can be written as

c(ξ, δ) � c(0, δ)g(ξ, δ), (9)

where c(0, δ) is the bond stiffness function of BPD and
g(ξ, δ) is the attenuation function, and it should meet the
following conditions [23, 32]:

g(ξ, δ) � g(− ξ, δ),

lim
ξ⟶0

g(ξ, δ) � maxg,

lim
ξ⟶δ

g(ξ, δ) � 0,


∞

− ∞
lim
δ⟶0

g(ξ, δ) � 
∞

− ∞
δ(ξ)dx � 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where δ(ξ) is the delta function, and it is noted that there is
no connection between the delta function δ(ξ) and the
horizon radius δ. )e function c(ξ, δ) is equal to a constant
c(δ) of BPD if g(ξ, δ) � 1. In the plane stress situation, the
strain energy density in BPD can also be expressed as

W
PD

(X) �
1
2


Hδ

1
2ξ

c(0, δ)g(ξ, δ)η2dVX′ . (11)

)e strain energy density based on the classical con-
tinuum mechanics at material point X can be written as

W
CCM

(X) � E(1 − ])ε20 � E(1 − ])s(ξ, η)
2
, (12)

where ε0 denotes the strain vector at material point X. Under
the same conditions, the relative stretch of the bond s equals
to the strain vector, i.e., s � ε0.

In this study, the form of attenuation function (four-
power function) is uniquely proposed as follows:

g(ξ, δ) �

1 −
ξ
δ 

4
, ξ ≤ δ,

0, ξ > δ.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)

It meets all the requirements described in equation (10),
and then comparing equations (11) and (12), the relation
between the micromodulus c(0, δ) in the extended BPD
approach and elastic modulus E and Poisson’s ratio ] can be
expressed as

c(0, δ) �
63E

4πhδ3
,

] �
1
3
.

(14)

Similarly, the relationship between the micromodulus
c(0, δ) of the extended BPD approach, elastic modulus E,
and Poisson’s ratio ] in the plane strain situation and 3D
situation can be obtained, as shown in Table 2.

Another type of attenuation function
gi(ξ, δ), i � 1, 2, . . . , 11 can also be introduced in (9), as
shown in Table 3. )ese attenuation functions include
different kinds of distribution which allow forces to decrease
with increasing distance between the pair of material points.
In a similar way, the micromodulus ci(0, δ), i � 1, 2, . . . , 11
can be obtained by the strain energy density in the extended
BPD approach which equals to the classical continuum

x

x′ u′

f ′

y′

y

ξ

u

Hx
Hx

ξ + η

Undeformed state
Deformed state

f

e3
e1

e2

Figure 1: Deformation of PD material points X and X′ and de-
veloping equal and opposite pairwise force densities [11].
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mechanics under the same conditions, respectively. )e
expression of ci(0, δ), i � 1, 2, . . . , 11 and
ci(ξ, δ), i � 1, 2, . . . , 11 in the plane stress situation is listed
in Table 3. And the shape of proposed micromodulus
functions ci(ξ, δ), i � 1, 2, . . . , 11 is illustrated in Figure 2.

It is worth noting that these mathematical functions
(attenuation functions) that we analyzed are all based on
physical arguments (the radius of horizon δ and the relative
position ξ). )e selection of the micromodulus function is
based on two points:

(1) To reveal the rule that the pairwise force of the BPD
bond decays with the increasing distance in the
horizon of material points

(2) To enhance the calculation accuracy of the BPD
model, various types of the attenuation functions
which are experiential such as “Gaussian,” “Trian-
gular,” and “Parabolic” adopted in the literature are
used and compared, as listed in Table 3

3.2. Extended BPDFracture Criteria. )e critical stretch sc is
adopted to judge the breakage of the bond, and it can be
obtained by the critical energy release rate Gc [8, 11]. A bond
is deemed to be broken if the stretch between pairs of
material points which is computed by equation (5) exceeds a
certain critical value sc and failure occurs, and these two

points cease to interact and the bonds between them to break
irreversibly.

As shown in Figure 3, crack CD crosses the horizon of
material pointA located on the midperpendicular of CD and
divides its horizon into two separate parts completely. )e
bond connecting material point A and any material point B
within the yellow region is broken, and the strain energy
stored in the bond is released.

Gc denotes the energy needed to produce a unit area
crack, and in 2D situation, Gc can be expressed by

Gc � h 
δ

0

δ

z

cos− 1(z/ξ)

− cos− 1(z/ξ)

1
2

c(ξ, δ)s
2
cξξ dθ dξ dz

� h 
δ

0

δ

z

cos− 1(z/ξ)

0
c(ξ, δ)s

2
cξξ dθ dξ dz.

(15)

Substituting from equation (9) into equation (15) results
in

Gc � h 
δ

0

δ

z

cos− 1(z/ξ)

0
c(0, δ)g(ξ, δ)s

2
cξξ dθ dξ dz. (16)

In the 3D situation, Gc can be expressed as

Gc � 
δ

0

2π

0

δ

z

cos− 1(z/ξ)

0

1
2

c(0,δ)g(ξ,δ)s
2
cξξ

2 sin θdθdξdϕ.

(17)

Table 2: Micromodulus c(ξ, δ) of the extended BPD approach.

Micromodulus c(0, δ) Poisson’s ratio Micromodulus c(ξ, δ)

3D 24E/πδ3 ] � 1/4 (24E/πδ3)(1 − (ξ/δ)4)

2D Plane strain 84E/5πhδ3 ] � 1/4 (84E/5πhδ3)(1 − (ξ/δ)4)

Plane stress 63E/4πhδ3 ] � 1/3 (63E/4πhδ3)(1 − (ξ/δ)4)

Table 3: Eleven types of attenuation functions g(ξ, δ) and micromodulus functions c(ξ, δ) under the 2D plane stress condition.

Function type Attenuation function gi(ξ, δ) ci(0, δ) ci(ξ, δ) � c(0, δ) · gi(ξ, δ)

Constant [9, 10, 34] g1 1 9E/πhδ3 9E/πhδ3

Four power g2 1 − (ξ/δ)4 63E/4πhδ3 (63E/4πhδ3)(1 − (ξ/δ)4)

Exponential [33] g3 e− (ξ/δ) 3eE/((2e − 5)πhδ3) 3eE/((2e − 5)πhδ3)e− (ξ/δ)

Gaussian [30, 31] g4 e− (ξ/δ)2 24eE/((3e − 4)πhδ3) 24eE/((3e − 4)πhδ3)e− (ξ/δ)2

Triangular [33] g5 1 − (ξ/δ) 36E/πhδ3 36E/πhδ3(1 − (ξ/δ))

Semielliptical [33] g6 1 − (ξ/δ)2 45/2πhδ3 45/2πhδ3(1 − (ξ/δ)2)

Parabolic [33] g7 (1 − (ξ/δ)2)2 315E/8πhδ3 315E/8πhδ3(1 − (ξ/δ)2)2

Six power [35] g8 (1 − (ξ/δ)2)3 945E/16πhδ3 945E/16πhδ3(1 − (ξ/δ)2)3

Cosine [35] g9 cos(πξ/2δ) 3Eπ2/(2(π2 − 8)hδ3) 3Eπ2/(2(π2 − 8)hδ3) cos(πξ/2δ)

Inverse proportional [36] g10 (δ/ξ) 6E/πhδ3 6E/πhδ3(δ/ξ)
Quadratic power [36] g11 (δ/ξ)2 3E/πhδ3 3E/πhδ3(δ/ξ)2

Table 1: Micromodulus and Poisson’s ratio in BPD.

Expression of micromodulus Poisson’s ratio Micromodulus
3D 6E/(πδ4(1 − 2])) ] � 1/4 12E/πδ4

2D Plane strain 6E/(πhδ3(1 + ])(1 − 2])) ] � 1/4 48E/πhδ3

Plane stress 6E/(πhδ3(1 − ])) ] � 1/3 9E/πhδ3

h denotes the thickness of material, E denotes the elastic modulus, and ] denotes Poisson’s ratio of the material.
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In the present work, substituting from equations (13)
and (14) into equation (16), therefore, the expression of scin
the plane stress situation can be obtained as

sc �

������
32πGc

63Ehδ



. (18)

When applying the extended BPD approach, once the
condition s> sc is reached, the bond is deemed broken. In
BPD, the bond stiffness is c(ξ, δ), an invariable material
constant, and the expression of sc is given in [8, 9], i.e.,
sc �

��������
4πGc/9Eδ


. Failure is included in the material response

through the scalar-valued function μ(ξ, t) that takes on
values of either 1 or 0, which is defined as

μ(ξ, t) �
1, if s ξ, t′( < sc, 0< t′ < t,

0, else.

⎧⎨

⎩ (19)

Function φ(X, t) is used to calculate the local damage at
a material point, and local damage is the weighted ratio of
the number of broken interactions to the total number of
interactions [8, 37]. It can be quantified as

φ(X, t) � 1 −


Hδ
μ(t, ξ)dVX


Hδ
dVX

, 0≤φ≤ 1. (20)

Note that 0≤φ≤ 1, and when the local damage is zero, it
representing intact material, while a local damage of one
means that all the interactions initially associated with the
point have been eliminated.

4. Numerical Examples

4.1. 2D Isotropic Plate underUniaxial Loading. A rectangular
isotropic plate with 1.0m length, 0.5m width, and 0.01m
thickness is stretched by applying a uniaxial uniform tension
loading of p� 200MPa, as shown in Figure 4. )e material
density is 7850 kg/m3, Young’s modulus 200GPa, and
Poisson’s ratio ] � 1/3. )ese material parameters are the
same as those on page 155 of [11]. )e spacing between
material points is Δ� 0.01mm, the total number of material
points is 5000, and the time step ∆t� 1.0 s. Deformation of
the plate is simulated by the extended BPD approach.

)e analytical solutions of the displacements are

ux
∗

(x, y) �
p

E
x,

uy
∗

(x, y) � − ]
p

E
y.

(21)

And the relative errors of numerical solutions are de-
fined as

ex �
ux − ux

∗

ux
∗ ,

ey �
uy − uy

∗

uy
∗ ,

(22)

where u denotes the numerically computed displacement
value, u∗ denotes the analytical displacement value, and e

denotes the relative error.
It is noted that several surface correction techniques are

introduced in [11, 22]; in the present study, the correction
method of the strain energy density from these literature
studies was first employed, and then the internal length effect
of nonlocal long-range forces is described.

Relative errors on the horizontal displacement are cal-
culated comparing results from the above BPD models with
different attenuation functions and analytical results, as
shown in Figure 5, where the horizon radius is chosen as
δ � 3.015Δ. )e maximum relative error on the horizontal

cos–1 (z/ξ)

Bond

B

A

z ϕ ξ
δ

–
+

Crack surface

θ

Figure 3: Integration domain of the micropotentials crossed by a
crack [11].

0

c (ξ, δ)

c (ξ, δ) = 9E/πhδ3

c2 (ξ, δ) = 63E/4πhδ3

(1–(ξ/δ)4)

Constant
Four power
Exponential
Gaussian

Semielliptical
Triangular Quadratic power

Parabolic
Six power
Cosine
Inverse proportional

ξ ξ–δ δ

Figure 2: )e diagram of various micromodulus functions c(ξ, δ)

under the 2D plane stress condition.
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displacement calculated by the BPD model with different
attenuation functions is shown in Figure 6, where the ho-
rizon radius is chosen as δ � 3.015Δ, δ � 4.015Δ, and
δ � 5.015Δ, respectively.

It can be observed that the maximum relative errors all
occur in the corners due to the surface effect of the PD
method. )e maximal relative errors on the horizontal
displacement for the BPD model with eleven attenuation
functions are different. In especial, the errors are reduced
effectively by the four-power function g2 � 1 − (ξ/δ)4, and

the calculation accuracy of the BPDmodel with this function
is the highest regardless of the horizon radius.

)ese results showed that not all attenuation functions
have the ability to improve the accuracy of the BPD model
which was corrected by the method of the strain energy
density effectively.)e extended BPD approach in the present
work is actually the four-power function g2 � 1 − (ξ/δ)4 that
with the highest accuracy was introduced in the BPDmodel. It
can describe the spatial distribution of the intensity of
nonlocal forces and further weaken the surface effect.

p p

1m

0.5mx

y

o

Figure 4: Geometry of a plate under uniaxial tension.
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Figure 5: Contour of relative errors on the horizontal displacement for the BPD model with different attenuation functions. (a) Constant.
(b) Four power. (c) Exponential. (d) Gaussian. (e) Triangular. (f ) Semielliptical. (g) Parabolic. (h) Six power. (i) Cosine. (j) Inverse
proportional. (k) Quadratic power.
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4.2. Plate with a Circular Cutout under Quasi-Static Loading.
A square plate with 50mm side length and 0.5mm thickness
having a circular cutout at the center with a radius of 5mm is
used. )e material density is 8000 kg/m3, Young’s modulus
192GPa, and Poisson’s ratio ] � 1/3. )ese material pa-
rameters are the same as those on page 155 of [11]. )e plate
is subject to a slow rate of stretch along its horizontal edges,
and the velocity boundary condition is set as
_uy(x, ±L/2, t) � ±2.7541 × 10− 7m/s and imposed on the
fictitious boundary layer with a width of 3Δ, as shown in
Figure 7.)e spacing between material points is Δ� 0.5mm,
and the total number of material actual points is 9876. )e
horizon radius is chosen as δ � 3.015Δ, and time step
∆t� 1.0 s. )e critical stretch value sc � 0.02138. Deforma-
tion and fracture of the plate are simulated by the extended
BPD model.

)e process of fracture initiation and crack propagation
is shown in Figure 8. Fracture initiates at the 605 step and the
crack propagates along the direction of x-axis. Crack
propagates till up to the left and right boundaries of the plate
at the 905 step. )e final crack propagation paths are
consistent with the results reported by Huang et al. [4],
Madenci and Oterkus [11], and Ochoa-Ricoux [20], as
shown in Figure 9.

4.3. A Diagonally Loaded Square Plate with a Center Pre-
Existing Crack. A square plate with 150mm side length and
5mm thickness having a pre-existing centered crack of
length 45mm is stretched by applying a diagonal load, as
shown in Figure 10. )e properties of the plate are specified
as Young’s modulus 2.94GPa, Poisson’s ratio ]� 1/3, mass
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Figure 7: Geometry of a plate with a circular cutout under slow stretch and its discretization.
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Figure 6: Maximum relative error on the horizontal displacement with different values of the horizon radius δ calculated by the BPDmodel
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density 1,200 kg/m3, and the critical stretch value
sc � 0.09515. )e pre-existing crack has an orientation of
62.5° from the horizontal axis. )e load is applied, and a no-

fail region is introduced within the length of dz� 25mm and
nz� 40mm from the top and bottom corner of the plate,
respectively. )e no-fail region is specified to avoid spurious
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Figure 9:)e crack paths and damage plots of the plate for literature results: (a) PDFEMbyHuang [4]; (b) BPD byMadenci [11]; (c) BPD by
Ochoa-Ricoux [20].
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Figure 10: A diagonally loaded 2D plate with a pre-existing crack. (a) Experiment model. (b) Extended BPD model.
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Figure 8: )e crack propagation paths of the plate: (a) 605 step; (b) 800 step; (c) 905 step.
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cracking near the region of loading. )e load through a
constant velocity constraint of _u � 1× 10− 6m/s until damage
is captured and constraint of _u � 1× 10− 8m/s to predict
crack growth paths, respectively. Simulation is implemented
by the extended BPD model with Δ� 2mm, 5776 points,
δ � 3.015Δ, and time step t� 1.0E − 8 s.

)e process of crack propagation of the diagonally
loaded square plate specimen simulated by the extended
BPD model is shown in Figures 11(a)–11(e). At the moment
of 25 μs, fracture initiates at the tips of the pre-existing crack
and then extends along the horizontal axis. At the moment
of 422 μs, the crack reaches the boundaries of the plate. It can
be seen that the final crack propagation paths of simulation
by the extended BPD model have a good agreement with the
results of the experiment by Ayatollahi and Aliha [38], as
shown in Figure 11(f ).

5. The Influence of Crack Width on Brittle
Material Fracture

A square plate with 50mm side length and 0.1mm thickness
having a pre-existing centered crack of 10mm length is
subjected to uniaxial loading as shown in Figure 12. Material
properties are specified as Young’s modulus 192GPa, mass
density 8000 kg/m3, Poisson’s ratio ]� 1/3 (parameters are
taken from Madenci and Oterkus [11]), and the critical
stretch value of sc � 0.04781. )e velocity boundary con-
dition is V(t) � 20m/s. Simulation is implemented by the
extended BPD model with Δ� 0.1mm, δ � 3.015Δ, and time
step 1.3367E − 8 s.

Adopting the same parameters and loading condition,
the investigation is made for different crack widths of
dx � 0.5mm, 2mm, 3mm, 4mm, and 8mm and different
orientation angles β � i × 15∘(i � 0, 1, 2, 3, 4, 5, 6). Numer-
ical simulation is implemented by extended BPD, and the
crack patterns are shown in Figure 13.

It can be seen that the width of pre-existing cracks has a
notable influence on the final crack paths under uniaxial
loading. When the orientation angle β � 0∘, the crack
propagating in plates of crack width presents obviously
different forms. When crack width is less than 4mm, there is
only one crack growth and extends horizontally; when it is
greater or equal to 4mm, there occurs two-crack branching
along the up and down edges of the pre-existing crack tip,
and both of them extend and split. When 0∘ < β< 90∘, the
crack of the plates initiates at the pre-existing crack tip which
is closer to the left and right boundary and propagates
horizontally regardless of crack width.

)e pre-existing crack with the width of dx� 4mm and
the process of fracture initiation and crack propagation are
shown in Figures 14(a)–14(d). Fracture initiates at 5.2 μs,
after the loading, and the crack inclination angle is around
12° with respect to the direction of x-axis at 8.2 μs. Crack
propagates till up to the left and right boundaries of the plate
at 9.8 μs.

Figure 15shows the time of fracture initiation in plates
of different crack widths and having a pre-existing crack
with different orientation angles β. It can be seen that the
fracture initiation time is sensitive to the variation of crack
width when the precrack is horizontal and vertical. When
β � 0∘, as crack width increases, the fracture initiation time
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Figure 11: Comparison of the crack propagation paths of the plate: (a) t� 25 μs; (b) t� 235 μs; (c) t� 275 μs; (d) t� 335 μs; (e) t� 422 μs by
the present numerical method; (f ) the experiment result reported by Ayatollahi and Aliha [38].
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delays; when β � 90∘, the fracture initiation time advances
with crack width increasing; and when 0∘ < β< 90∘, the
fracture initiation time is not sensitive to the variation of

crack width, and orientation angle β� 75∘ of the pre-
existing crack is usually harder to break than other ori-
entation angles.

dx = 0.5mm dx = 2mm dx = 3mm dx = 4mm dx = 8mm

β = 0°
β = 15°β = 30°β =
 45°

β =
 60

°

β 
= 

75
°

β 
= 
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°

Figure 13: Crack propagation of different crack widths dx and different orientation angles β.
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Figure 12: Geometric parameters and loading condition of a plate with centered crack.

10 Mathematical Problems in Engineering



6. Conclusion

In this study, an extended BPD approach is proposed
through introducing a new attenuation function. )e val-
idity and precision of the approach are verified by three
numerical examples. By applying the approach, investigation
is made on the fracture of plates with pre-existing cracks of
different widths and different angles under uniaxial loading.
It can be concluded that the widths and angles of the pre-
existing cracks have a remarkable influence on the fracture
initiation times and the final crack propagation paths.
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