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/e structural damping ratio, structural quality, yield strength, and elastic modulus of section steel, compressive strength, elastic
modulus of concrete, yield strength, and elastic modulus of steel bars play important roles in the stability of the steel-reinforced
concrete (SRC) frame structure, which are usually uncertain. However, their importance influence on the different seismic
demands of SRC is rarely investigated simultaneously. In order to investigate the effects of the above parameters on four seismic
demands (i.e., the top displacement, the maximum floor acceleration, the base shear force, and the maximum interstory dis-
placement angle) of SRC frame structures, the orthogonal polynomial estimation method is first applied to the importance
analysis of structural seismic demand based on the moment-independent method. Two engineering examples are performed to
verify the accuracy and efficiency of the proposed method./e results have the characteristics of fast convergence and are in good
agreement with those obtained by the moment-independent method based on kernel density estimation./e variance importance
index based on Monte Carlo (MC) method is also calculated for comparison. /e influence of each random variable on the four
structural seismic demands is basically the same. /erefore, the accuracy and efficiency of the proposed method are
proved sufficiently.

1. Introduction

It is well known that the structural seismic requirement
analysis plays an important role in seismic vulnerability
analysis. /ere are many research studies of structural
seismic requirement analysis in recent years. For example,
Ge et al. [1] studied the seismic requirements of steel col-
umns partially filled with concrete at the bottom. Fajfar et al.
[2] proposed the simple formulas for seismic requirements
of single-degree-of-freedom systems and long-period
ranges.

Seismic requirement is affected by many factors. Gen-
erally speaking, they can be divided into two parts: the
randomness of earthquake ground motion and the ran-
domness of structural parameters. Existing studies have
found that the randomness of earthquake ground motion

has a great influence on the seismic requirement of struc-
tures. At the same time, the random variables of structures
also have important influence on the seismic capacity and
seismic requirement of structures. /erefore, the influence
of the structural random variables should be taken into
account in the safety assessment of structures [3]. However,
there are few researches which study the influence of the
uncertainty of random variables on the structure seismic
requirement. As aforementioned, there are many parameters
which impact the seismic requirement of the structure, while
the degree of the influence is different. /erefore, it is
necessary to focus on the stochastic variable with priority
ranking ahead and ignore the random variable with priority
ranking backward in the seismic requirement analysis of
structures [4, 5], and then the computational process is
simplified, and the efficiency of calculation has been
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improved. Considering the importance of the random
variables, the influence of the random variables on the
structure seismic requirement has been analyzed in this
study.

Sensitivity is generally applied to investigate the influ-
ence of the uncertainty of the input random variables on the
output response. Recently, it has received more and more
attention in structural engineering. For example, Ratto et al.
[6] developed a state dependent parameter (SDP) model to
analyze the sensitivity of random variables based on the
variance method, in which the sample size has been reduced
greatly, and then the calculation efficiency has been im-
proved for the structural system model. Gu [7] studied the
sensitivity influence of earthquake quality, ground motion
record, and intensity on the probabilistic seismic behavior of
wooden buildings based on two engineering cases, which are
two-story building and four-story building, respectively.
Chikh et al. [8] proposed a new definition of inelastic de-
formation ratio C-eta and studied the sensitivity of the
average inelastic deformation ratio for the yield strength
coefficient based on the selected 140 seismic records. In
order to analyze the influence of random variables on
seismic requirement in bridges, Song et al. [9] proposed a
global sensitivity analysis method to rank the importance of
random variables.

/ere are two methods in the sensitivity analysis of
random variables for structures, which are local sensitivity
analysis and global sensitivity analysis, respectively./e local
sensitivity analysis can only investigate the influence of
nominal values of random variables on the output response,
while the influence of the whole values of random variables
on the output response cannot be studied [10]. /e global
sensitivity analysis, also known as importance analysis, can
investigate the effect of random variables on the output
response when they change within their whole range of
values [11]. Compared with global sensitivity analysis, the
local sensitivity analysis neglects the influence of some
values of input random variables on the output response.
/erefore, the global sensitivity analysis has more advan-
tages and can rank the importance of each random variable
[12]. According to the uncertainty of the structure random
variables, the global sensitivity analysis is adopted in this
study for the structure seismic requirement analysis.

/e methods of the global sensitivity analysis include
variance importance analysis [13], information entropy
importance analysis [14], and moment-independent im-
portance analysis [15], where the variance importance index
will inevitably lose some information of the random vari-
ables by assumed that the first moment of variance can fully
describe the distribution characteristics of the output re-
sponse [16]. /e moment-independent importance index
avoids the aforementioned disadvantages and has been used
widely in recent years. /erefore, the moment-independent
method is adopted to analyze the seismic requirement of
structures, in which the orthogonal polynomial estimation
method is first applied to the moment-independent im-
portance analysis of structure seismic requirement in this
study. /e influence of the random variables on the seismic
requirement of the SRC frame structure is investigated, and

the moment-independent importance index of each random
variable for the seismic requirement is obtained. /e ran-
dom variables which have significant or little influence on
the seismic requirement of frame structures are screened
out. /e results provide a certain reference value for the
seismic analysis of practical engineering. At the same time,
the above results are compared with the results of moment-
independent importance analysis based on kernel density
estimation and variance importance analysis based on
Monte Carlo (MC) method to verify the accuracy and ef-
fectiveness of this method.

It is worth noting that the Sobol sequence is applied to
simulate the samples of random variables in this study,
which is different from the ordinary MCmethod./e results
show that good convergence can be obtained even when the
sample size is small. /erefore, the proposed method in this
study provides a new sampling method for the importance
analysis and seismic analysis of the large-scale structures.

/is study is organized as follows: the moment-inde-
pendent importance analysis method and the variance
importance analysis method are briefly described in Sections
2 and 3, respectively; two engineering case studies are listed
in Section 4; and the research conclusions are summarized in
Section 5.

2. Moment-Independent Importance
Analysis Method

2.1. Moment-Independent Importance Analysis Index. Set Xi
are the random variables in a structure, and Y are various
seismic demands (i.e., the output response), which can be
obtained by Y� g (X1, X2, . . ., Xn). According to Borgonovo
[17], when the values of random variables Xi take their
implementation values, the cumulative impact of Xi on the
density of the output response is defined as the absolute
value of the difference between the unconditional density
function of Y and the conditional density function of Y. /e
cumulative impact on the density of the output response Y
can be expressed as follows:

s Xi( 􏼁 � 􏽚
+∞

− ∞
fY(y) − fY Xi| (y)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dy, (1)

where fY(y) and fY|Xi
(y) are the unconditional probability

density function and the conditional probability density
function of Y, respectively, and the value of fY|Xi

(y) can be
obtained by the implementation values x∗i of the random
variables Xi, where x∗i can be obtained by the probability
density function of Xi.

When the random variables Xi take all the imple-
mentation values, the average value of the cumulative impact
ofXi on the distribution function of the output responses can
be represented as the mathematical expectation of s(Xi):

EXi
s Xi( 􏼁􏼂 􏼃 � 􏽚

+∞

− ∞
fXi

xi( 􏼁s Xi( 􏼁dxi. (2)

Generally, the importance measure index of the influ-
ence of the general random variables on the distribution
function of the structural output response Y is between 0 and
1, so it can be expressed as follows:
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δi �
1
2
Exi

s Xi( 􏼁􏼂 􏼃. (3)

Similarly, the importance measure indexes for a set of
random variables Xi1, Xi2, . . ., Xir can be defined as follows:

δXi1 ,Xi2 ,...,Xir
� 􏽚 fXi1 ,Xi2,...,Xir

Xi1, Xi2, . . . , Xir( 􏼁

× s Xi1, Xi2, . . . , Xir( 􏼁dxi1, xi2, . . . , xir

�
1
2
EXi1 ,Xi2 ,...,Xir

s Xi1, Xi2, . . . , Xir( 􏼁􏼂 􏼃,

(4)

where r is the number of the random variables,
fXi1 ,Xi2 ,...,Xir

(Xi1, Xi2, . . . , Xir) denotes the joint probability
distribution function for this group of random variables
(Xi1, Xi2, . . . , Xir), and s(Xi1, Xi2, . . . , Xir) � 􏽒

+∞
− ∞|fY(y)−

fY | Xi1 ,Xi2 ,...,Xir
(y)|dy, where fY|Xi1 ,Xi2,...,Xir

(y) is the proba-
bility density function of Y when the values of random
variables Xi1, Xi2, . . . , Xir take their implementation values.

2.2. Solution Methods. Since there is usually no explicit
expression of fY(y) and fY|Xi

(y) in practical engineering,
many researchers developed a lot of estimation methods to
obtain fY(y) and fY|Xi

(y), such as the point approximation
method [18], the histogram estimation method [19], the
orthogonal polynomial estimation method (OPE) [20], the
kernel density estimation method (KDE) [21], the maximum
entropy principle method [22], and the linear mixed fre-
quency polygon estimation method [23]. /e orthogonal
polynomial estimation method is introduced to estimate
fY(y) and fY|Xi

(y) in this study because of its high cal-
culation efficiency and convergence for the multivariable
structure.

2.2.1. -e Orthogonal Polynomial Estimation Method.
According to the works by Samuels [24], the relationship
between the moment and the probability distribution can be
described as follows: if the moments μ1, μ2, . . . μr(r≥ 3)

exist, the characteristic function of the probability distri-
bution |Φ|v is integrable when v≥ 1. /en, the finite term fn

can be obtained by Fourier inverse transformation, which is
expanded by the eigenfunction Φ through Taylor series.
When n≥ v and n⟶∞, all values of the random variable x
should satisfy the following equation [24]:

fn(x) − φ(x) 1 + 􏽘
r

k�3
n

− (k/2)+1
Pk(x)⎛⎝ ⎞⎠ � 0 n

− (r/2)+1
􏼐 􏼑,

(5)

where Pk(x) is a real polynomial that depends only on the
moments μ1, μ2, . . . μr, which means it is independent of n
and r, f(x) is the probability density function of x, and φ(x)

is the Gaussian function.
It is generally believed that f(x) can be obtained by the

expansion approximation of the high-order moment, in
which the expansion is the normal distributionmultiplied by
the correction coefficient, so f(x) can be expanded to a

polynomial with weighted function./eHermite orthogonal
polynomial is used to expansion approximation in this
study, which is expressed as follows:

Hn(x) � (− 1)
n
e

x2dn e− x2
􏼐 􏼑

dxn
, n � 0, 1, . . . . (6)

Suppose the performance function is Z � g(x) �

g(x1, x2, . . . xn), then the origin moment of each order of Z
can be described as

Mk(g) � 􏽚
+∞

− ∞
(g(x))

k
f(x)dx, k � 1, 2, . . . , N. (7)

A new performance function Yz is adopted to solve the
moment of Z in this study, which can make the original
moment of each order as the same as the center distance./e
original moment of each order is expressed as follows:

μk Yz( 􏼁 � 􏽚
+∞

− ∞
Y

k
zf(x)dx, k � 1, 2, . . . , N, (8)

where Yz � (z − μz/σz) � (g(x) − M1(g)/��������������

M2(g) − M1(g)2
􏽱

); μz and σz are the mean value and
sigma of Z, respectively.

When the distribution type of f(x) is determined, it can
be considered as a weight function. For a weight function,
the calculation accuracy and efficiency could be improved
greatly by the Gauss integral point. /e weight function is
different for different probability distribution types. For
example, the weight functions of exponential distribution,
normal distribution, and uniform distribution are e− x, e− x2 ,
and 1, respectively./en, the Gaussian integration points are
selected according to different weight functions.

In order to determine f(x), the orthogonal polynomial
estimation method is applied to approximate f(x) in this
study, which is expressed as follows:

ωk(x) � 􏽘
k

m�0
Akmx

m
, k � 0, 1, 2, . . . , (9)

where Akm is an ascertainable constant.
According to the properties of the orthogonal polyno-

mials, the following equation is set up:

􏽚
b

a
ρ(x)ωi(x)ωj(x)dx �

hi, i � j,

0, i≠ j,
􏼨 (10)

where a and b are both real numbers and hi is a specific
function of integer i or a constant.

Generally, the distribution type of f(x) is considered as
normal distribution, so the normalized performance func-
tion is used to approximate to f(x). /en, f(x) can be
defined as follows:

f(x) ≈ ρ(x) 􏽘
N

k�0
akωk(x), (11)

where ak is the undetermined coefficient, and
ak � 􏽐

k
m�0 Akmμm(x)/hk, and ρ(x) is the weight function,

which is generally taken as (1/
���
2π

√
σ)exp[− (x − μ2)/2σ2].
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Considering the output response and conditional output
response as random variables, substitute them into equa-
tions (6)–(11), respectively; then, 􏽢fY(y) and 􏽢fY|xi

(y) can be
obtained.

2.2.2. Kernel Density Estimation. For comparison, the kernel
density estimation is also adopted to estimate the probability
distribution of the random variables. For the output response
y1, y2, . . . , yn, the probability function of the kernel density
estimation can be expressed as follows [21]:

􏽢fY(y) �
1

nh
􏽘

n

i�1
K

y − yi

h
􏼒 􏼓, (12)

where y is the output response, 􏽢fY(y) the kernel density
estimation of fY(y), whose value is a weighted mean, and
K(y) is the kernel function which is also a weight function.

When the value of fY(y) at point y is estimated, the
number of points and the degree of utilization of the data are
controlled by the range and shape of the kernel function, and
the accuracy of kernel density estimation is determined by
the selection of the kernel function K(y) and the bandwidth
h. In order to ensure the reasonableness of the estimation,
the kernel function needs to satisfy the following
requirements:

􏽚
+∞

− ∞
K(y)dy � 1, K(y)≥ 0. (13)

/e Gauss kernel function and the optimal window
width are used for the kernel density estimation in this study.

In summary, the calculation process is described as
follows:

(1) Simulate N samples of random variables
xk(k � 1, 2, . . . , N) by the low deviation Sobol se-
quence. When the number of samples is above 500,
the error of the average and standard deviation are
not more than 5/1000 based on this sampling
method.

(2) Substitute the simulated samples into the finite el-
ement model for calculation, and obtain various
seismic demands Y (Y � yk(k � 1, 2, . . . , N)).

(3) Calculate 􏽢fY(y) and 􏽢fY|xi
(y) by the method of the

orthogonal polynomial estimation and the kernel
density estimation method, respectively (i.e., equa-
tions (11) and (12), respectively), where 􏽢fY(y) and
􏽢fY|xi

(y) are the estimated values of the uncondi-
tional probability density function fY(y) and the
conditional probability density function fY|xi

(y),
respectively.

(4) Substitute 􏽢fY(y) and 􏽢fY|xi
(y) into equation (1) to

calculate s(Xi), and then the importance measure
index δi based on moment independence is obtained
by equation (3).

3. Variance Importance Analysis Method

3.1. Variance Importance Analysis Index. To verify the ac-
curacy and efficiency of the proposed method, the

variance-based (VAR) importance measure method is also
used to calculate the importance index in this study.
According to the works by Saltelli and Sobol [11, 25], the
variance importance measure index is expressed as
follows:

δv
i �

Var E Y Xi

􏼌􏼌􏼌􏼌􏼐 􏼑􏼐 􏼑

Var(Y)
�
Var(Y) − E Var Y Xi

􏼌􏼌􏼌􏼌􏼐 􏼑􏼐 􏼑

Var(Y)
, (14)

where Var(Y) is the variance of the output response Y and
E(Var(Y | Xi)) is the mathematical expectation of the
conditional variance of Y.

Since the value of Var(Y) does not affect the importance
order of Xi, so equation (14) can be rewritten as follows:

δv
i � Var(Y) − E Var Y Xi

􏼌􏼌􏼌􏼌􏼐 􏼑􏼐 􏼑. (15)

3.2. Solution Method. /e Monte Carlo (MC) simulation
method is generally used to solve equation (15) because
the sample mean converges to the global mean, and the
frequency converges to the probability of occurrence, i.e.,
the law of large numbers. /erefore, the variance-based
importance measure index based on MC is considered as
an exact solution in structural engineering. When the
random variable takes its realization value, the condi-
tional variance and conditional mean are the variance and
mean value of the random variable, respectively.
According to the law of large numbers, Var(Y) is
expressed as follows [9]:

Var(Y) �
􏽐

N1
i�1 Yi − Y( 􏼁

2

N1 − 1
, (16)

where Yi is the output response, Y is the unconditional
average value of the output response Y, and N is the sample
size of the random variables.

Similarly, the conditional variance Var(Y | Xi) of the
output response Y can be obtained by

Var Y Xi

􏼌􏼌􏼌􏼌􏼐 􏼑 �
􏽐

N2
j�1 Yj Xi

􏼌􏼌􏼌􏼌 − Yj Xi

􏼌􏼌􏼌􏼌􏼐 􏼑
2

N2 − 1( 􏼁
, (17)

where Yj|Xi and Yj|Xi are the unconditional value and the
unconditional mean value of the output response Y,
respectively.

After calculating the expectation according to equation
(17) and substituting it with equation (16) into equation (15),
the variance importance measure index can be obtained. It is
worth to note that the accuracy of the calculation increases as
the sample size N increases.

4. Case Study

4.1. Importance Analysis of a 7-Storey 3-Span SRC Frame
Structure. As shown in Figure 1, a 7-storey 3-span SRC
frame structure is used as a case study, in which the un-
derlying floor height is 4,200mm, the standard storey height
is 3,600mm, the column spacing is 6,000mm, the floor
thickness is 120mm, and the concrete protective layer
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thickness is 25mm. /e random variables are listed in
Table 1, in which the loading conditions have been con-
sidered as the structural mass (i.e., Ms). It is suggested that
the structural mass is usually thought to be the ratio of its

nominal dead weight to the acceleration of gravity and
follows a normal distribution with the variation coefficient
which is 0.1 [33, 34]. /e representative value of gravity load
is taken as the mean value ofMs, and its variation coefficient
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Figure 1: Structure diagram. (a) Structural plan. (b) Structural elevation.

Table 1: Statistical parameters of random variables.

Random variables Units Distributions Symbol Means Variation coefficients
Steel modulus MPa Normal [26] Es 228559 0.033
Steel strength MPa Lognormal [27] fy 384 0.078
Concrete modulus MPa Normal [28] Ec 33904 0.08
Concrete strength MPa Normal [29] fc 34.82 0.14
Structural damping ratio — Normal [30] DA 0.05 0.2
Representative value of gravity load kN/m2 Normal [31] Ms 6 0.1
Section steel strength MPa Normal [32] fys 396 0.078
Section steel modulus MPa Normal [26] Ess 228559 0.033

Mathematical Problems in Engineering 5



is 0.10 in this paper. Briefly, the cross sections of the beam
and the column are designed based on the load code for the
design of building structures (GB50009—2012) [35], code
for seismic design of buildings (GB50011—2010) [36], and
code for design of composite structures (JGJ138—2016) [37]
under the conditions of that the antiseismic grade is 1∼3, and
the number of layers is more than 2 in this paper. /e
designed sizes of the cross sections have passed all the re-
quirements of structural seismic checking, so they are rea-
sonable and usable, and the information is listed in Table 2.

/e nonlinear time history analysis is carried out by
OpenSEES software to obtain the output response. For
making the simulating results more realistic, the El Centro
(RSN6) original record which comes from the NGA-West2
database of PEER is adopted for the ground motion records.
/e two directions of the structure were loaded at the same
time, and the peak ground acceleration (PGA) of the lon-
gitudinal and transverse structure is 0.28 g and 0.21 g, re-
spectively. /e columns and beams were all nonlinear fiber
beam column units. /e concrete was Concrete02 unit, and
the steel bar adopts the Steel02 element material model.

4.1.1. Results of Moment-Independent Importance Analysis.
In this study, the importance measure indexes of 4 kinds of
seismic demands are investigated, which are the top dis-
placement, the maximum floor acceleration, the base shear,
and the maximum story drift angle, respectively. /e cor-
responding relationship between the structural output re-
sponse (i.e., the top displacement demand) and the random
variables is shown in Figure 2. It is found that the top
displacement demand varies with random variables. For
example, the top displacement demand decreases with the
increase of DA andMs, while it increases with the increase of
the concrete strength fc. /e variation characteristics of the
top displacement demand are not very obvious for the other
random variables compared with these three random var-
iables. In addition, there is a linear cap line in the top right
side of Figure 2(d). /e possible reason of this characteristic
may be that DA can significantly reduce the seismic response
of the structure, and the larger the value, the faster the
vibration attenuation of the structure so that the top dis-
placement demand of the structure is significantly reduced.

/e moment-independent importance measure indexes
δi of each random variable under different N conditions are
obtained by orthogonal polynomial estimation, which are
shown in Figure 3. It is obvious from Figure 3(a) that the
moment-independent importance measure index of DA for
the structural top displacement demand is the largest one,
while the moment-independent importance measure in-
dexes of Ess, Es, and Ec are smaller. As shown in Figure 3(b),
the moment-independent importance index of fc is the
largest one and then followed by Ms, and the moment-in-
dependent importance indexes of other random variables
are smaller. Figure 3(c) shows that the moment-independent
importance index of Ms and DA for the maximum floor
acceleration demand is larger than other random variables.
Figure 3(d) shows that the moment-independent impor-
tance measure index of DA for the maximum displacement

angle between stories is the largest one, while the moment-
independent importance measure indexes of other random
variables are smaller.

In a word, the moment-independent importance
measure indexes of the 8 random variables under the four
seismic demands corresponding to each random variable
vary greatly when N< 384, while the moment-independent
importance measures of each random variable tend to be
stable when N≥ 384. Except for the importance measure
indexes corresponding to very few random variables with
less influence have some changes, the values of the im-
portance measures corresponding to other random vari-
ables are basically unchanged, and the importance ranking
of each random variable does not change too. In addition,
the moment-independent importance measure index of
each random variable tends to be stable when N ≥ 384
except for Ms in the seismic requirement of the maximum
floor acceleration, as shown in Figure 3(c). However, the
variation magnitude of the moment-independent impor-
tance measure index of Ms is small when N increases from
384 to 1024. /erefore, the aforementioned results indicate
that the sample size N used in this study is proved to be
effective. Moreover, when load conditions (i.e., Ms) change
over their entire normal distribution range, the importance
indexes of the 8 random variables under the four seismic
demands also nearly unchanged whenN increases from 384
to 1024.

4.1.2. -e Results of the -ree Methods. Figure 4 shows the
importance analysis results of the moment-independence
method based on orthogonal polynomial estimation (OPE),
kernel density estimation (KDE), and variance-based MC
numerical simulation method (VAR), in which the sample
size is N� 1024. As shown in Figure 4, the same random
variables have different importance impacts to different
seismic demands, and the importance index ofDA,Ms, and fc
is relatively larger; the moment-independent importance
indexes obtained by the two methods are basically the same.
/ere are some differences between the moment-indepen-
dent importance index and the variance-based importance
index, and the same random variables have different effects
on different seismic demands. For example, DA has the
greatest influence on the structural top displacement de-
mand and the maximum interstory displacement angle
demand, while fc has the greatest influence on the base shear
demand.

In this study, a variety of methods are applied to im-
portance analysis of the structure, in which the moment-
independent importance analysis and variance-based im-
portance analysis are studied based on the global sensitivity
analysis methods. In order to facilitate the comparative
analysis, the results of importance analysis of the random
variables are listed in Table 3.

Table 3 shows that the importance order of random
variables obtained by the three methods is approximately the
same for the same seismic requirement. For example, the
importance orders of the eight random variables obtained by
these three methods for the top displacement seismic
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Table 2: Section information.

Floor Cross section of
beam (mm×mm)

Reinforcement of
beam (mm2)

Cross section of
column (mm×mm)

Reinforcement of
column (mm2)
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Figure 2: Continued.
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Figure 2: /e relationship of top displacement demand and random variables: (a) fy; (b) Es; (c) Ms; (d) DA; (e) fc; (f ) Ec; (g) fys;
(h) Ess.
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Figure 3: Importance measure index under different quantiles. (a) Top displacement. (b) Base shear. (c) Maximum floor acceleration.
(d) Maximum story drift angle.
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Figure 4: Importance measure index under different methods. (a) Top displacement. (b) Base shear. (c) Maximum floor acceleration.
(d) Maximum story drift angle.

Table 3: Sensitivity ordering of random variables.

Seismic requirement Top displacement Base shear Maximum floor acceleration Maximum interstory drift angle
fy 7-6-7∗ 6-7-7 6-6-6 6-6-6
Es 6-7-8 7-6-6 8-7-7 7-7-8
Ms 2-2-2 4-3-4 1-1-1 2-2-2
DA 1-1-1 2-2-2 2-2-2 1-1-1
fc 3-3-3 1-1-1 3-3-3 3-3-3
Ec 8-8-5 8-8-8 7-8-8 8-8-7
fys 5-5-6 3-4-5 5-4-5 4-4-4
Ess 4-4-4 5-5-3 4-5-4 5-5-5
∗7-6-7: the first number is the order of moment-independent importance based on orthogonal polynomial estimation, the second is the order of moment-
independent importance based on kernel density estimation, and the third is the order of importance based onMonte Carlo numerical simulation, and so on.
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requirement are DA>Ms> fc> Ess> fys> Es> fy> Ec,
DA>Ms> fc> Ess> fys> fy>Es> Ec, and DA>Ms> fc> Ess
>Ec> fys> fy>Es, respectively, which are nearly the same.
/e importance influence of the individual random variable
is different for different seismic requirements. For example,
the importance indexes of DA obtained by these three
methods are all the largest for the top displacement seismic
requirement, while the importance indexes of fc obtained by
these three methods are all the largest for the base shear
seismic requirement. Taking the results obtained by the
orthogonal polynomial estimation as an example, the im-
portance orders of the random variables for the top dis-
placement, the base shear, the maximum floor acceleration,
and the maximum interstory drift angle seismic demands
are, respectively, DA>Ms> fc>Ess> fys>Es> fy>Ec, fc>DA>
fys>Ms>Ess> fy>Es>Ec,Ms>DA> fc>Ess> fys> fy>Ec>Es,
and DA>Ms> fc> fys>Ess> fy>Es>Ec. All three methods
show that Ec and Es have a relatively small impact on the four
structure seismic demands.

According to the results of the importance orders, the
random variables with larger values of the importance index
can be appropriately adjusted to improve structural safety
and engineering optimization in the actual engineering
application. For example, it is obvious that the random
variablesDA,Ms, fc, and Ess have greater influence on the top
displacement seismic requirement. /erefore, adjusting the
values of DA, Ms, fc, and Ess can improve the safety of the
structure more than adjusting the values of other variables.
Comprehensive consideration of four seismic requirements,
the random variables DA, Ms, fc, and Ess or fys have greater
influence on these four seismic requirements based on the
results in Table 3, so the aforementioned random variables
should be major consideration random variables.

4.2. Importance Analysis of the SRC Frame Structure with
Different Ground Motion Records. A certain steel concrete
frame structure is similar to the structure in engineering
example 1, but different ground motion records are selected,
and the modes of action are also different. /e selected
groundmotion records are listed in Table 4, which act on the
longitudinal direction of the frame structure. /e output
response of the structure is obtained by the nonlinear time
history analysis using OpenSEES software. It is worth noting
that, in the process of the calculation, PGAs of all ground
motion records are uniformly increased to 0.6 g.

Figure 5 shows the characteristic of the importance index
of the two kinds of seismic demands (i.e., the base shear force
and the maximum interstory displacement angle), which are
obtained by the orthogonal polynomial estimation (OPE),
kernel density estimation (KDE), and variance-based
method (VAR), respectively. It is found from Figure 5 that
the importance indexes of each random variable of 7 selected
ground motion records are different to some extent. For
example, for the base shear demand of most ground motion
records, according to Figures 5(a), 5(c), and 5(e), the im-
portance measure orders of the eight random variables
obtained by these aforementioned three methods are slightly
different, which are fys>Ms> fc>DA> fy> Ess> Es> Ec,

fys>Ms> fc>DA> fy> Ess>Es> Ec, and fys> fc>Ms> fy>
DA>Ess>Es> Ec, respectively. However, the importance
index of fys is the largest, while that of Es and Ec is the
smallest among the results obtained by the three methods.
For the maximum interstory displacement angle of most
ground motion records, according to Figures 5(b), 5(d), and
5(f ), the importance orders of the eight random variables
obtained by these three methods are consistent, which are
DA>Ms> fys> fc> Ess> fy>Es> Ec. Obviously, the impor-
tant indexes of DA, Ms, fys, and fc are generally higher than
those of Ess, fy, Es, and Ec. In addition, it is found from
Figures 5(a) and 5(b) that the importance orders of the eight
random variables obtained by OPE for the two kinds of
seismic demands are different, and the results obtained by
the other two methods have the same characteristics.
/erefore, the importance influence of the individual ran-
dom variable on different seismic demands is different.

5. Discussion

It is well known that the soil-structure interaction (SSI) plays an
important and essential role in engineering design. Actually,
the influence of SSI on the seismic response of structures has
attracted the attention of a large number of engineers, and
many research methods have been developed [38–41]. Re-
search studies show that the rocking-induced nonlinearities are
inevitable in soil and soil-foundation interface, which will cause
permanent deformations and thus damage the building, par-
ticularly for the buildings adopting the shallow foundations, as
it pointed out that the deep foundations (e.g., plie foundations)
are the most common solution for the problems caused by the
rocking-induced nonlinearities. For example, Hokmabadi et al.
[42] studied the effects of soil-pile-structure interaction (SPSI)
based on finite element analysis and concluded that the impact
of SPSI should not be neglected in structural design. Fatahi et al.
[43] investigated that the influence of the separation gap on the
seismic response of midrise buildings supported on piles with
the seismic soil-pile-structure interaction (SSPSI) is considered
based on the three-dimensional numerical modeling method.
However, the construction cost of plie foundations is alsomuch
higher than the shallow foundations. In view of this, Xu and
Fatahi [44] proposed a geosynthetic reinforced composite soil
(GRCS) foundation system to address the issues of residual
structural drift or permanent foundation settlement under
MCE level of shaking for seismic protection of midrise
buildings supported by a shallow foundation, where the effects
of geosynthetics on the seismic response of the buildings
considering SSI have also been investigated. /e accuracy and
efficiency have been verified by the three famous engineering
cases, and this method provides a reference for engineers in
improving the structural safety of buildings using shallow
foundations and saving construction costs.

/e aforementioned references have shown that the
influence of soil-pile-structure interaction (SPSI) should be
considered in the structural design because it will amplify the
overall seismic response of the building, especially the lateral
and interstory displacements [43]. /e proposed method
could also be used for the cases where seismic soil-structure
interaction is important. /at will be the future work.
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Table 4: Ground motion records.

Ground motion records Serial number Time of occurrence Magnitude PGA
Friuli_Italy-02 RSN130 1976 5.9 0.110 g
Big Bear-01 RSN902 1992 6.5 0.225 g
Northridge-01 RSN1083 1994 6.7 0.157 g
Northridge-01 RSN947 1994 6.7 0.094 g
Imperial Valley-02 RSN6 1940 7.0 0.281 g
Cape Mendocino RSN3747 1992 7.0 0.176 g
TaiwanSMART1(45) RSN578 1986 7.3 0.242 g
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Figure 5: Continued.
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6. Conclusion

/e moment-independent importance analysis of seismic
requirement for SRC frame structures is first carried out by
orthogonal polynomial estimation in this study. /e results
had been compared with the moment-independent im-
portance analysis based on the kernel density estimation
method and the analysis of variance-based MC numerical
simulation method, respectively./e following conclusions
are obtained:

(1) /e importance index of each random variable
obtained by the moment-independent importance
analysis method based on orthogonal polynomial
estimation for structural seismic requirement tends
to be stable when N≥ 384

(2) /e importance indexes obtained by moment-in-
dependent importance analysis based on the or-
thogonal polynomial estimation method are close to
those obtained by the kernel density estimation
method, which proved the accuracy and efficiency of
the proposed method

(3) /e importance order obtained by the moment-in-
dependent importance analysis method is basically
consistent with that obtained by the variance-based
MC numerical simulation method, which also
proved the accuracy and efficiency of the proposed
method

(4) For the structure seismic requirement selected in this
study, the importance influence of the random
variable on different seismic demands is different

(5) /e sampling method adopted in this study can get
ideal results when the number of samples is small,
which has practical significance for the importance
analysis of complex structures
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