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Affine matrix rank minimization problem is a famous problem with a wide range of application backgrounds. +is problem is a
combinatorial problem and deemed to be NP-hard. In this paper, we propose a family of fast band restricted thresholding (FBRT)
algorithms for low rank matrix recovery from a small number of linear measurements. Characterized via restricted isometry
constant, we elaborate the theoretical guarantees in both noise-free and noisy cases. Two thresholding operators are discussed and
numerical demonstrations show that FBRTalgorithms have better performances than some state-of-the-art methods. Particularly,
the running time of FBRT algorithms is much faster than the commonly singular value thresholding algorithms.

1. Introduction

+e affine matrix rank minimization (AMRM) problem,
which is to recover a low-rank matrix from only a small
number of linear measurements, can be described as the
following optimization problem:

min
X∈Cn1×n2

rank(X)

s.t. ‖A(X) − b‖2 ≤ η,
(1)

where A ∈L(Cn1×n2 ,Cd) is a given linear map, b ∈ Cd is a
given vector, and η≥ 0 is error tolerance. +is problem has
got much attention in recent years and many applications
arising in various areas can be captured by solving model (1),
for example, matrix completion [1, 2], backgroundmodeling
[3], subspace clustering [4], phase retrieval [5, 6], image
inpainting [7], and other applications [8, 9]. +e lines and
the symbols in all figures are too small to see. It is better to
enlarge them. Unfortunately, ARMR problem is known to be
NP-hard. +erefore, without further assumptions on A and
X, solving this problem would be computationally intrac-
table. To overcome this shortcoming, many researchers have
focused on replacing rank(X) with other penalties G(X),
such as Schatten p-norm (0<p< 1) [10], Minimax Concave

Plus (MCP) [11], Smoothly Clipped Absolute Deviation
(SCAD) [12], Logarithm [13], Geman [14], and Laplace [15],
and considered the following optimization problem:

min
X∈Cn1×n2

G(X)

s.t. ‖A(X) − b‖2 ≤ η,
(2)

or the corresponding unconstrained optimization problem:

min
X∈Cn1×n2

1
2
‖A(X) − b‖

2
2 + λ · G(X), (3)

where λ> 0 is a regularization parameter. Model (3) can be
transformed into a fixed point problem described as

X � H X − s · A
∗
(AX − b)( , (4)

where A∗ is the dual operator of A, H is the thresholding
operator, and s is a step size parameter. Naturally, we have
corresponding iterative thresholding algorithm. Given a
fixed penalty G(·), there have been many theoretical guar-
antees. However, there are still some challenges as follows:

(I) Most of convergence results were developed for
model (3) with fixed λ, and it is difficult to choose
an appropriate parameter λ
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(II) It is hard to design the thresholding operator H(·)

for penalties G(X) except some special penalties,
such as Schatten p-norm (p � 0, 1, 1/2, 2/3)

[2, 16–18] and SCAD [12]
(III) Every iteration of the iterative thresholding algo-

rithms needs to calculate the SVD, and if the size of
the original matrix is large, the iterative thresh-
olding algorithms will be time consuming

Two papers that relate to our work need to be overviewed
here. Chartrand [19] firstly studied the way to compute the
penalty G(·) via a given thresholding operator. However, his
work did not show the stability guarantees of thresholding
algorithms. Wei et al. [20] proposed an iterative hard al-
gorithm with subspace projections, which had relatively
lower computation complexity. However, his work did not
examine the performance in the noisy case. Taking into
account these work, we try to design a new algorithm and
overcome these shortcomings to a certain extent.

In this paper, we design a family of new fast band re-
stricted thresholding (FBRT) algorithms to solve model (1)
and elaborate the theoretical guarantees in both noise-free
and noisy cases. In fact, many related works [17, 18, 21, 22]
focus on the stability of the optimal solution of the model.
For the effect of noise on the algorithm, an empirical ex-
planation is often given through numerical experiments. At
the end of this paper, we give some simple examples to
roughly verify our theoretical results.

+e remainder of this paper is organized in the fol-
lowing. In Section 2, we introduce some basic preliminary
results and notations. In Section 3, we describe the fast band
restricted thresholding (FBRT) algorithm. In Section 4, we
prove the convergence of the FBRT algorithm. In Section 5,
we display the numerical simulations, and then conclude this
paper in Section 6. All the proofs are presented in Appendix.

2. Preliminaries

In this section, we introduce some notations and useful
results to facilitate the following research.

2.1.Notations. We denoteA as a linear operator fromCn1×n2

to Cd. For any X ∈ Cn1×n2 , A(X) is (〈X, Ai〉F)d
i�1, where

〈X, Ai〉F � tr(XA∗i ) is a Frobenius inner product. +us, we
naturally obtain the dual operator A∗ as follows:

A∗: Cd⟶ Cn1×n2

b↦
d

i�1
biAi.

(5)

We also denote X as the original matrix with rank(X) �

r and e � b − A(X) as the noise with error tolerance
η � ‖e‖2. For any subspaces Ω1,Ω2 ⊂ Cn1×n2 , we obtain the
sum of subspacesΩ1 +Ω2, and we also rewriteΩ1∩(Ω2)

⊥ as
Ω1\Ω2.

2.2. Some Useful Results. In this section, we introduce some
useful results, which show the relationship between the
original low-rank matrix and the solution of model (1). For

this purpose, we review the definition of RIC, which plays an
important role in the following research.

Definition 1 (see [23]). Given a linear operator
A: Cn1×n2⟶ Cd and 1≤ r≤min m, n{ }, the restricted
isometry constant δr is the smallest nonnegative number,
such that, for any matrix X ∈ Cn1×n2 , with rank(X)≤ r, we
have the following inequality:

1 − δr( ‖X‖
2
F ≤ ‖A(X)‖

2
2 ≤ 1 + δr( ‖X‖

2
F, (6)

where ‖·‖F is the Frobenius norm.
For a given linear map A, it is difficult to calculate the

restricted isometry constant δr, but for Gaussian random
linear map, there has been a result that the number of
measurements d≥ c0r(n1 + n2)log(n1n2) (c0 only depends on
δ) is sufficient to yield an RIC of δ with high probability [23].

In the noisy case, the following theorem claims that the
solution ofmodel (1) cannot be far of from the original low-rank
matrix, if A satisfies a certain RIC. +e related theorem about
compressive sensing is mentioned in [24], see equation (5.24).

Theorem 1. Let Z, Zη be two solution of (1) within error
tolerance η (i.e., ‖A(Z) − b‖2, ‖A(Zη) − b‖2 ≤ η). If
rank(Z) � rank(Zη) � r and δ2r < 1, we can obtain a sta-
bility claim of the form

Z − Z
η����
����
2
2 <

4η2

1 − δ2r

. (7)

If we take η � 0 in +eorem 1, we obtain the following
uniqueness result, in a noise-free case.

Corollary 1. Let Z be a r-rank solution of A(X) � b. If A
satisfies

δ2r < 1, (8)

then Z is the unique lowest rank solution.

Taking into account the abovementioned results, it
implies that the original low-rank matrix X is the solution of
model (1), if A satisfies a certain RIC.

3. FastBandRestrictedThresholdingAlgorithm

In this section, we will design a new fast band restricted
thresholding (FBRT) algorithm. For this purpose, we need to
review some thresholding algorithms for (1) in previous
work and compare FBRT algorithm with other algorithms.

Similar to compressive sensing problem, both iterative
hard thresholding and iterative soft thresholding, also
known as SVP [16] and SVT [2], are simple and efficient
algorithms for low-rank matrix recovery. In pursuit of better
results, some alternative algorithms, such as HFPA [22],
thresholding function for Schatten 2/3-norm [18], SCAD
[12], and firm thresholding [25], have been proposed. We
present these commonly used thresholding functions in
Figure 1, and it is obvious that all of them satisfy the fol-
lowing definition.
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Definition 2. A function hτ of R+ with parameter τ > 0 is
called as band restricted thresholding (BRT) function, if it
satisfies

(I) hτ(u) � 0, with u≤ τ
(II) hτ(u)≤ hτ(v), with τ < u≤ v

(III) +ere exists a constant c ∈ [0, 1] (band parameter),
such that u − cτ ≤ hτ(u)≤ u, with u≥ τ

According to Definition 2, the following Table 1 shows
the corresponding band parameter c of these BRTfunctions.

Given a BRT function hτ , we can obtain a thresholding
operator Hτ(·) which is defined as

Hτ(X) � 
i�1

hτ σi( uiv
∗
i , (9)

where i�1σiuiv
∗
i is the SVD of X, and we can also have the

corresponding thresholding algorithm described as

W
(k)

� X
(k− 1)

+ A
∗

b − A X
(k− 1)

  ,

X
(k)

� Hτ W
(k)

 ,
(10)

where τ is the threshold parameter. In fact, every iteration of
the abovementioned algorithm needs to compute the SVD of
W(k). +us, if N � (n1 + n2) is large, this algorithm will be
computationally expensive. To improve the efficiency of
algorithm, we propose to orthogonally project W(k) onto a
subspace Sk, which was first applied in [20]. Sk, which is the
tangent space of the rank r matrix manifold at X(k), is
described as

Sk ≔ UkP + QV
∗
k : P ∈ Cr×n2 , Q ∈ Cn1×r

 , (11)

where Uk ∈ Cn1×r and Vk ∈ Cr×n2 are the left and right
singular vectors of X(k). Furthermore, for any matrix
Z ∈ Cn1×n2 , PSk

(Z) is defined as

PSk
(Z) � UkU

∗
k Z + ZVkV

∗
k − UkU

∗
k ZVkV

∗
k

� I − UkU
∗
k( Z I − VkV

∗
k( .

(12)

Meanwhile, we derive the fast band restricted thresh-
olding (FBRT) algorithm described as in Algorithm 1.

Remark 1. +e threshold parameter τ plays an important
role which affects the performance of FBRTalgorithm. Here,
we let τ � σk

r+1, and we will show the theoretical performance
of FBRT algorithm in the following discussion.

Remark 2. +e stopping criterion is ‖A(X(k)) − b‖2 ≤ ε.
Taking into account +eorem 1, X(k) cannot be far of from
X, if A satisfies a certain RIC. On the contrary, it is an
important situation of classified discussion that X(n) is close
to X, and the detail will be shown in the following section.

It is worth noting that X(k) + A∗(b − A(X(k))) is always
a full rank matrix and computing the SVD will use O(N3)

(N � (m + n)) floating point operations flops. In the mean
time, W(k) in every iteration of FBRT algorithm is a
(2r)-rank matrix, and according to the QR factorization, we
can obtain that

W
(k)

� QR � QR
∗
1Q
∗
1 , (13)

where W(k) � QR and R∗ � Q1R1 are the QR factorizations
of W(k) and R∗, with Q ∈ Cn1×2r, R ∈ C2r×n2 , R1 ∈ C2r×2r, and
Q1 ∈ Cn2×2r.+us, the SVD of W(k) can be obtained from the
SVD of R1, and computing the SVD of W(k), will use O(r3)

floating point operations instead of O(N3) flops [20].

4. Analysis of the FBRT Algorithm

In this section, we will study theoretically the performance of
the FBRTalgorithm, and the following+eorem 2 and 3 show
the theoretical guarantees in both noise-free and noisy cases.

Theorem 2. Let the sequence X(n)  be defined by the FBRT
algorithm with A(X) � A(X) � b and rank(X) � r. If the
thresholding operator in the FBRT algorithm is the BRT
operator with a band parameter c and the following constant

ρ ≔
�������
4 + 2c2r

√
δ2r + δ3r +

�������
4 + 2c2r

√
δ2r+1

σminX
‖X‖F , (14)

is less than 1, we have

X
(n)

− X
�����

�����F
≤ ρn

X
(0)

− X
�����

�����F
. (15)

Particularly, ρ< 1 can be satisfied if

δ3r ≤
1

2
�������
4 + 2c2r

√
+ 4 + 2c2r( )

�
r

√
σmax(X)/σmin(X)

. (16)
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Figure 1: Typical thresholding function hτ(·) with τ � 1.

Table 1: Band parameter c for different thresholding functions.

hτ,∗ hτ,0 hτ,1 hτ,1/2 hτ,2/3 hτ,SCAD hτ,firm

c 0 1 1/3 3/4 1 1
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+e proof of +eorem 2 is given in Appendix, and we
discuss condition of +eorem 2, which shows the perfor-
mance of the FBRT algorithm in the AMRM problem.

Remark 3. According to +eorem 2, the performance of the
FBRT algorithm depends on σmax(X)/σmin(X), i.e., the
condition number of the original r-rank matrix X. It plays
an important role for the projection operator PSn

.
In the noisy case, the error tolerance η is a significant

parameter. According to +eorem 1, we know that there
exists a gap between the solution of model (1) and the
original low-rank matrix. +us, we always assume that the
model error is small.

Theorem 3. Assume that ‖X‖F ≥ μη, where rank(X) � r and
η � ‖e‖2 is error tolerance. Let the sequence X(n)  be defined
by the FBRT algorithm with ‖A(X) − b‖2 ≤ η. If the thresh-
olding operator in the FBRT algorithm is the BRT operator
with a band parameter c and A satisfies

δ3r ≤
μ

2
�������
4 + 2c2r

√
(μ + 1) 1 +

�������
4 + 2c2r

√
/σmin(X)(  ‖X‖F − μη( ( 

,

(17)

then the sequence X(n)  must satisfy one of the following
result:

(i) Bere exists a positive integer n, such that

X
(n)

− X
�����

�����F
≤ c′η, (18)

where c′ � 4(μ + 1)
������
2 + c2r

√
.

(ii) For any positive integer n, we have

X
(n)

− X
�����

�����F
≤ ρn

X
(0)

− X
�����

�����F
+

�������
4 + 2c2r

√ �������
1 + δ2r+1



1 − ρ
η,

(19)

where ρ � (μ/(μ + 1))< 1.

+e proof of this theorem is also presented in Appendix.
First of all, if δ3r satisfies the condition of +eorem 3,
δ3r ≤ μ/(μ + 1)< 1. Besides, when the error tolerance η is not
too large, the result of +eorem 3 illustrates that there exists
a positive integer n, such thatX(n) will be close to the original
matrix X. Since A is a bounded linear operator, it implies
thatA(X(n)) is close toA(X). In themean time, the fact that
A(X(n)) is close toA(X) also implies thatX(n) is close to the

original matrix X, according to+eorem 1. On the contrary,
the parameter μ in this theorem is a key parameter, and
performance of algorithmwill get better as ‖X‖F − μη is close
to 0. Meanwhile, the performance of algorithm also depends
on the condition number of the original r-rank matrix X,
which is similar to +eorem 2.

5. Numerical Demonstration

In this section, we present some empirical observations of
FBRT algorithms with two thresholding operator:

hτ,atan(u) �

u − τ +
2τ
π
arctan(u − τ), if u≥ τ,

0, if u< τ, (Atan),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

hτ,firm(u) �

u, if u> a · τ,

a

a − 1
(x − u), if τ ≤ u≤ a · τ, (firm),

0, if u< τ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(20)

and compare them with some state-of-the-art methods
(singular value thresholding (SVT) algorithm [2], singular
value pursuit (SVP) algorithm [16], half norm fixed point
(Half ) algorithm [22], and Riemannian gradient descent
(RGrad) algorithm [20]).

Here, we define two quantities to quantify performance
of the algorithm:SR ≔ d/n1n2, i.e., the number of mea-
surements divided by the number of entries of the matrix,
which denotes the sampling ratio, andOS ≔ d/(r(n1+ n2 −

r)) is the oversampling ratio, i.e., the ratio between the
number of sampled entries and the “true dimensionality” of
an n1 × n2 matrix of rank r. In fact, if OS < 1, we cannot
recover the original low-rank matrix because there are al-
ways an infinite number of matrices of rank r with the given
entries [26]. We use the relative error (RE) in the Frobenius
norm

RE ≔
M − Xopt

�����

�����F

‖M‖F

, (21)

to evaluate the closeness of Xopt to M, where Xopt is the
“optimal” solution of the algorithm and M is the original
low-rank matrix.

Input: A ∈L(Cn1×n2 ,Cd), r ∈ N+, b ∈ Cd, and error tolerance ε≥ 0
Initialization: k � 0, X(0) � Hσ0

r+1
(W(0)), where W(0) � A∗(b) and σk

r+1 is the (r + 1)-th singular value of W(0).
Repeat:

(1) k⟵k + 1,
(2) W(k) � X(k− 1) + PSk− 1

A∗(b − A(X(k− 1))),
(3) W(k) � U(k)Σ(k)(V(k))∗, based on the singular value decomposition,
(4) X(k) � U(k)Hσk

r+1
(Σ(k))(V(k))∗, where σk

r+1 is the (r + 1)-th singular value of the matrix W(k).
Until: the matrix X(k), with ‖A(X(k)) − b‖2 ≤ ε.

ALGORITHM 1: Fast band restricted thresholding (FBRT).
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5.1. Empirical Phase Transition. In this section, we test how
many measurements are needed to recover a low rank
matrix. For the sake of simplicity, we set n � m and generate
rank r matrix X � LR, where L ∈ Rn×r and R ∈ Rr×n and the
components of L and R is sampled from the standard normal
distribution. +e stopping criterion is as follows:

Xk − Xk− 1
����

����F

Xk− 1���
���

F

≤ 10− 8
. (22)

Simulations of FBRTalgorithms are repeated for 10 times,
and numerical results are reported in Table 2. We consider an
algorithm to successfully recover the low rank matrix X if the
“optimal” solution of this algorithm with RE≤ 0.01. Further-
more, we denote rmin as the largest rank such that the cor-
responding max RE≤ 0.01 and rmax as the smallest rank such
that the corresponding min RE≥ 0.01. OSmax is computed via
rmin, and OSmin is computed via rmax. Figure 2 shows the
empirical of the tested algorithms on the (SR and OS), where
we calculate oversampling ratio OS via r � ((rmin + rmax)/2).

Table 2 and Figure 2 show that these two FBRT algo-
rithms can affect recover rank r matrices, where OS is close
to 1, and there is not much difference between two empirical
phase transition curves.

5.2.Comparisonwith theState-of-the-ArtAlgorithms inNoise-
Free Case. In this section, we consider the noise-free case
and test the performances of FBRT algorithms on matrix
completion problems. We also generate a low rank matrix in
the way of Section 5.1. +e stopping criterion is as follows:

Xk − Xk− 1
����

����F

Xk− 1���
���

F

≤ 10− 8
. (23)

Simulations are repeated for 10 times, and numerical
results are reported in Tables 3 and 4 and Figure 3.

In Table 3, we show the comparison experiments with
SVT, SVP, and Half. We conduct the tests for
n ∈ 400, 1000{ }, r � 50, and OS � 2 and record the average,
maximum, and minimum values of relative errors and
running time, respectively. Based on Table 3, we can obverse
that the relative errors of FBRT algorithms are smaller, and
the running time is also faster. In the meantime, the running
time of FBRTalgorithms increases slowly as n increases. We
explore the trends, displayed in Figure 3, between the rel-
ative error and the running time of the first time algorithm
operation results. In Table 4, we show the comparison ex-
periments with RGrad. We conduct the tests in two cases:
n � 100, r � 19, SR � 0.4 and n � 1000, r � 50,OS � 2.
Based on Table 4, we see that the running time of different

Table 2: Numerical results of two FBRTalgorithms: FBRT-Atan and FBRT-firm (a� 3) with fixed m � n � 300. For any SR, themaximum of
10 relative errors is less than 0.01 when r≤ rmin and the minimum of 10 relative errors is greater than or equal to 0.01 when r> rmax.

z FBRT-Atan FBRT-firm
SR Min RE Max RE Min RE Max RE

0.1 rmin � 11 1.0260e − 5 0.0023 rmin � 11 2.1594e − 5 0.0068
rmax � 13 0.0079 0.6592 rmax � 12 2.7247e − 4 0.5478

0.2 rmin � 26 6.1794e − 6 6.5852e − 5 rmin � 27 8.8405e − 6 2.2534e − 4
rmax � 28 3.3154e − 4 0.5499 rmax � 28 3.6679e − 4 0.5143

0.3 rmin � 43 7.6326e − 6 9.6796e − 6 rmin � 44 8.2757e − 5 3.0298e − 4
rmax � 45 0.0017 0.5188 rmax � 45 0.0032 0.4816

0.4 rmin � 61 7.7705e − 6 1.8222e − 5 rmin � 61 7.8113e − 6 8.3863e − 6
rmax � 62 6.8547e − 5 0.4236 rmax � 63 0.0011 0.4392

0.5 rmin � 80 7.0491e − 6 7.3872e − 6 rmin � 81 1.1833e − 5 2.2862e − 5
rmax � 81 1.1140e − 5 0.3924 rmax � 83 0.0059 0.3871

0.6 rmin � 102 7.4470e − 6 2.3292e − 5 rmin � 103 1.9080e − 5 6.4072e − 5
rmax � 103 2.2913e − 5 0.3510 rmax � 105 0.0016 0.3472

0.7 rmin � 127 7.7453e − 6 5.2701e − 5 rmin � 128 1.8729e − 5 1.3984e − 4
rmax � 128 5.1908e − 5 0.2978 rmax � 129 1.5370e − 4 0.2578

0.8 rmin � 156 6.7983e − 6 7.4203e − 6 rmin � 158 5.5031e − 5 2.1316e − 4
rmax � 158 1.3876e − 4 0.2559 rmax � 159 3.2228e − 4 0.2214

0.9 rmin � 196 9.9473e − 6 4.7502e − 4 rmin � 197 4.6863e − 5 1.7010e − 4
rmax � 197 2.5510e − 4 0.1592 rmax � 198 0.0011 0.1610

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SR = d/mn
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d/
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 +
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 –
 r)

)

Empirical phase transition

FBRT-Atan
FBRT-firm (a = 3)

Figure 2: Empirical phase transition curves for FBRT algorithms:
FBRT-Atan and FBRT-firm (a� 3) with fixed m � n � 300
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algorithms is about the same, but the relative errors of FBRT
algorithms are smaller than the relative error of RGrad.
+erefore, we can find that FBRT algorithms perform better
than others in noise-free case.

5.3. Comparisonwith the State-of-the-Art Algorithms inNoisy
Case. In this section, we consider the noisy case and
compare the performances of FBRT algorithms with
RGard algorithm on the image inpainting problems. Here,

Table 3: Numerical results of matrix recovery algorithms: SVT, SVP, Half, FBRT-Atan, and FBRT-firm (a� 3) with different n but fixed
rank � 300 and OS � 2.

SVT SVP Half FBRT-Atan FBRT-firm

n� 400
r� 50
OS� 2

taver 12.45 6.88 12.42 5.00 5.04
REaver 0.20 1.76e − 7 1.61e − 4 1.76e − 7 1.77e − 7
tmax 13.47 7.07 13.32 5.15 5.27
tmin 11.61 6.72 7.21 4.88 4.94
REmax 0.21 1.92e − 7 1.65e − 4 1.85e − 7 1.87e − 7
REmin 0.19 1.70e − 7 1.57e − 4 1.69e − 7 1.68e − 7

n� 1000
r� 50
OS� 2

taver 131.52 172.59 420.00 92.75 93.00
REaver 0.44 5.37e − 7 1.20e − 4 5.54e − 7 5.48e − 7
tmax 139.66 174.62 443.33 93.81 94.78
tmin 122.04 170.64 379.53 91.22 91.62
REmax 0.45 5.48e − 7 1.21e − 4 5.92e − 7 5.73e − 7
REmin 0.41 5.33e − 7 1.18e − 4 5.32e − 7 5.36e − 7

Table 4: Numerical results of matrix recovery algorithms: RGrad, FBRT-Atan, and FBRT-firm (a� 3) with different n, rank and OS � 2.l

RGrad FBRT-Atan FBRT-firm

n� 100
r� 19
SR� 0.4

Aver. RE 0.0354 5.5880e-6 4.7998e-6
Aver. Time 8.1457 9.3389 8.5035
Max RE 0.3541 8.2501e − 6 6.1506e − 6
Max time 13.1745 11.6156 10.0949
Min RE 4.1929e − 6 4.3110e − 6 3.9417e − 6
Min time 0.5778 7.4130 6.9589

n� 1000
r� 50
OS� 2

Aver. RE 5.6007e − 7 5.4427e − 7 5.4482e − 7
Aver. Time 99.6237 95.4349 97.2309
Max RE 6.3984e − 7 5.5862e − 7 5.6776e − 7
Max time 103.0736 98.7222 100.1280
Min RE 5.3833e − 7 5.2797e − 7 5.2966e − 7
Min time 98.2743 93.0526 94.3025
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Figure 3: Convergence curves for matrix recovery algorithms: SVT, SVP, Half, FBRT-Atan and FBRT-firm (a� 3) with different n� 1000,
400 but fixed rank� 50 and OS� 2. (a) n� 1000. (b) n� 400.
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we test these algorithms on the grayscale image: 419 × 400
intracranial venous image (IVI), and we obtain approx-
imated low-rank image truncated from IVI with rank
r � 35. We generate the noised image with normal dis-
tribution by

imnoise image, “gaussian”, 0, σ2 , (24)

where σ2 is the variance of normal distribution, and generate
the sample image from noised image with SR � 0.4. We
consider the variance σ2 ∈ 0.01, 0.001{ } and iterations are

(a) (b)

(c) (d)

(e) (f )

Figure 4: (a) Original 419 × 400 IVI image with full rank; (b) approximated image of (a) with rank 35; c noised image of (b) with σ2 � 0.01;
(d, e, and f) the recovering images via RGrad, FBRT-Atan, and FBRT-firm, respectively, SR � 0.4 (noisy case). (a) Original IVI. (b) Low-rank
IVI. (c) IVI with noise. (d) RGrad0.4. (e) FBRT-atan0.4. (f ) FBRT-_rm0.4.
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150 and 550, respectively. +e original image, its approxi-
mated low-rank image, its noised image, and its recovering
images of different algorithms and displayed in Figure 4,
respectively. Figure 4(a) is original IVI with full rank.
Figure 4(b) is a approximated low-rank image truncated
from Figure 4(a) with rank r � 35. Figure 4(c) is a noised
image of Figure 4(b) with σ2 � 0.01. Figures 4(d)–4(f) are
the recovering image via different algorithms, respectively.
Numerical results for image inpainting are reported in
Table 5. Comparing these comparison experiments, we find
that FBRT algorithms perform much better that RGard
algorithm in image inpainting noisy case.

6. Conclusions

In this paper, we proposed the FBRT algorithm and de-
veloped the theoretical guarantees in both noise-free and
noisy case. +e numerical demonstration showed that this
algorithm is effective. However, it is important to estimate
error tolerance η, which has a great influence on FBRT
algorithm. In the low SNR cases, more priori assumptions of
the original low rank matrix are necessary, and we will study
it in our future work. On the contrary, the condition number
of the original matrix is also a significant parameter. As we
know, phase retrieval [5, 6] and blind deconvolution [27, 28]
problems can be transformed into a rank one matrix re-
covery problem. Since the condition number of a rank one
matrix is always equal to one, it may be worth to study phase
retrieval and blind deconvolution problems via the FBRT
algorithm.

Appendix

Proof of Theorems 2 and 3

Now, let us turn to the proof of +eorems 2 and 3. Before
+eorems 2 and 3, we need to denote some notations and
introduce some lemmas.

We denote I, In, and In
+ as subspaces of Cn1×n2 , which are

described, respectively, as

I ≔ UV
∗
: U ∈ Cn1×r

 ,

I
n ≔ U Vn( 

∗
: U ∈ Cn1×r

 ,

I
n
+ ≔ U Vn+( 

∗
: U ∈ Cn1×(r+1)

 ,

(A.1)

where V ∈ Cr×n2 is the right singular vectors of X, Vn ∈ Cr×n2

is the right singular vectors of X(n), and Vn+ ∈ C(r+1)×n2 is the
right singular vectors corresponding to the first r + 1 sin-
gular values of W(n). According to FBRT algorithm, it holds
that In ⊂ In

+. For any matrix M ∈ Cn1×n2 and matrix sub-
spaces I, J ⊂ Cn1×n2 , MI represents PI(M), where PI(·) is

an orthogonal projection onto I, and we also denote I + J as
the sum of two subspaces and rewrite I∩(J)⊥ as I\J.

Lemma A.1. Let σn
r+1 be the (r + 1)th singular value of the

matrix W(n). Ben,

σn
r+1 ≤ W

(n)
− X 

In
+

������

������2⟶ 2
≤ W

(n)
− X 

In
+

������

������F
. (A.2)

Proof. Because of the definitions of σn
r+1 and In

+, it holds that

σn
r+1 � min

dim(M)≤n2− r
max

x∈M⊂Cn2 ,‖x‖2�1
W

(n)
In

+
x

�����

�����2
, (A.3)

where the second equality is based on the definition of In
+. In

the mean time, we project X onto a subspace In
+ and obtain

XIn
+
described as

XIn
+

� XVn+ Vn+( 
∗
. (A.4)

+us, rank(XIn
+
)≤ rank(X) � r, and we obtain a sub-

space ker(XIn
+
) with dim(ker(XIn

+
))≥ n2 − r. Furthermore, it

holds that

σn
r+1 � min

dim(M)≤n2− r
max

x∈M⊂Cn2 ,‖x‖2�1
W

(n)
In

+
x

�����

�����2

≤ min
dim(M)≤n2− r

max
x∈M⊂ker XIn

+
 ,‖x‖2�1

W
(n)
In

+
x

�����

�����2

≤ max
x∈ker XIn

+
 ,‖x‖2�1

W
(n)
In

+
x

�����

�����2

� max
x∈ker XIn

+
 ,‖x‖2�1

W
(n)

− X 
In

+

x

������

������2

≤ W
(n)

− X 
In

+

������

������2⟶ 2
≤ W

(n)
− X 

In
+

������

������F
.

(A.5)

□

Lemma A.2. Let e ∈ Cd and S be a linear subspace of Cn1×n2 .
If r � max rank(M): M ∈ S{ }, we have

A
∗
(e)( S

����
����F
≤

�����

1 + δr



‖e‖2. (A.6)

Proof. In fact, it holds that

A
∗
(e)( S

����
����
2
F

�〈A∗(e), A
∗
(e)( S〉F �〈e,A A

∗
(e)( S( 〉

≤ ‖e‖2 A A
∗
(e)( S( 

����
����2≤ ‖e‖2

�����

1 + δr



A
∗
(e)( S

����
����F

,

(A.7)

and divide through by ‖(A∗(e))S‖F to complete the
proof. □

Lemma A.3. Let M1, M2 ∈ Cn1×n2 and I be a linear subspace
of Cn1×n2 . If r1 � max rank(M): M � k1M1 + k2M2, k1,

k2 ∈ C} and r2 � max rank(M): M ∈ span I, M1  , we
have

〈M1, I d − A
∗
A(  M2( 〉F


≤ δr M1

����
����F

M2
����

����F
,

I d − A
∗
A(  M1( ( I

����
����F
≤ δr M1

����
����F

.
(A.8)

Table 5: Numerical results of four algorithms on image inpainting
(approximated low-rank IVI) with different ranks (noisy case).

RE
RGrad FBRT-Atan FBRT-firm

σ2 � 0.01 0.4577 (156) 0.4108 (114) 0.4017 (121)
σ2 � 0.001 0.1262 (524) 0.1251 (514) 0.1250 (578)

8 Mathematical Problems in Engineering



Proof. To the first inequality, let S � span M1, M2 ; thus,
(M1)S � M1, (M2)S � M2 and r1 � max rank(M): M ∈ S{ }.
+erefore, we have

〈M1, I d − A
∗
A(  M2( 〉F


 � 〈M1, M2〉F − 〈A M1( ,A M2( 〉F




� 〈 M1( S, M2( S〉F − 〈A M1( S,A M2( S〉F




� 〈 M1( S, I d − A
∗
A(  M2( S〉


≤ M1

����
����F

I d − A
∗
A(  M2( S

����
����F

≤ δr1
M1

����
����F

M2
����

����F
.

(A.9)

To the second inequality, we have

I d − A
∗
A(  M1( ( I

����
����
2
F

�〈 I d − A
∗
A(  M1( ( I, I d − A

∗
A(  M1( 〉F

≤ δr2
I d − A

∗
A(  M2( ( I

����
����F

M1
����

����F
,

(A.10)

and divide through by ‖((I d − A∗A)(M2))I‖F to complete
the proof. □

Lemma A.4 (see [20]). Let X(l) � UlΣlV
∗
l be a rank r matrix

and Sl be the tangent space of the rank r matrix manifold at
X(l). Let X be another rank r matrix. Ben,

I − PSl
 (X)

�����

�����F
≤

1
σmin(X)

X
(l)

− X
�����

�����
2

F
. (A.11)

Lemma A.5 (see [20]). Let X(l) � UlΣlV
∗
l be a rank r matrix

with the tangent space Sl. Let X be another rank r matrix.
Ben, the Frobenius norm of PSl

A∗A(I − PSl
)(X) can be

bounded as

PSl
A
∗
A I − PSl

 (X)
�����

�����F
≤ δ3r I − PSl

 (X)
�����

�����F
. (A.12)

Lemma A.4 and A.5 can be found in [20] and the detail
proofs are omitted here. Based on lemmas above, we start to
prove +eorems 2 and 3.

Proof of Beorem 2. To prove inequality (15), we just need to
prove

X
(n+1)

− X
�����

�����F
≤ ρ X

(n)
− X

�����

�����F
. (A.13)

First of all, we have the following inequality:

X
(n)

− X
�����

�����
2

F

� X
(n)

 
In − (X)In

�����

�����
2

F
+ (X)I\In

�����

�����
2

F

≤ 2 W
(n)

 
In − (X)In

�����

�����
2

F
+ W

(n)
 

In − X
(n)

 
In

�����

�����
2

F


+ W
(n)

 
I\In − (X)I\In

�����

�����
2

F
+ W

(n)
 

I\In

�����

�����
2

F


� 2 W
(n)

 
In+I

− (X)In+I

�����

�����
2

F
+ W

(n)
 

In − X
(n)

 
In

�����

�����
2

F
+ W

(n)
 

I\In

�����

�����
2

F
 

≜ J1 + J2 + J3,

(A.14)

since the space (Cn1×n2 , ‖ · ‖F) is an Euclidean space and
(X(n))I\In � 0. In the following, we will bound J1, J2, and J3
one by one.

According to the property of the orthogonal projection,
we obtain J1 ≤ 2‖(W(n) − X)In

++I‖
2
F
.

Besides, bound of J3 begins with the following equations:

W
(n)

�����

�����
2

F
� W

(n)
− W

(n)
 

In

�����

�����
2

F
+ W

(n)
 

In

�����

�����
2

F

� W
(n)

− W
(n)

 
In

�����

�����
2

F
+ W

(n)
 

In∩I

�����

�����
2

F
+ W

(n)
 

In\I

�����

�����
2

F

� W
(n)

− W
(n)

 
I

�����

�����
2

F
+ W

(n)
 

I

�����

�����
2

F

� W
(n)

− W
(n)

 
I

�����

�����
2

F
+ W

(n)
 

I∩In

�����

�����
2

F
+ W

(n)
 

I\In

�����

�����
2

F
.

(A.15)
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Since the definition of In, (W(n))In is the best rank r

approximation of W(n). +us, it implies that

J3 ≤ 2 W
(n)

 
In\I

�����

�����
2

F
� 2 W

(n)
− X 

In\I

�����

�����
2

F

≤ 2 W
(n)

− X 
In

++I

������

������

2

F
,

(A.16)

where XIn\I � 0.
In addition, the thresholding algorithm is a kind of

algorithm for singular value of the matrix. It is easy to obtain
that

J2 � 2 Σ(n)
− Hσn

r+1
Σ(n)

 
�����

�����
2

F
� 2

r

i�1
σn

i − hσn
r+1

σn
i(  

2
.

(A.17)

Because the thresholding function is a BRTfunction with
a band parameter c, it holds that

J2 ≤ 2c
2
r σn

r+1( 
2 ≤ 2c

2
r W

(n)
 

In
+

− (X)In
+

������

������

2

F

≤ 2c
2
r W

(n)
− X 

In
++I

������

������

2

F
,

(A.18)

where the second inequality follows from Lemma A.1.
+erefore, we have

X
(n)

− X
�����

�����
2

F
≤ J1 + J2 + J3 ≤ 4 + 2c

2
r  W

(n)
− X 

In
++I

������

������

2

F
.

(A.19)

In the meantime, we have
W(n+1) � X(n) + PSn

A∗(b − A(X(n))). +us, it implies that

W
(n+1)

− X
�����

�����F
� X

(n)
− X + PSn

A
∗

b − A X
(n)

  
�����

�����F

� X
(n)

− X + PSn
A
∗
A X − X

(n)
 

�����

�����F

≤ X
(n)

− X − PSn
A
∗
APSn

X
(n)

− X 
�����

�����F

+ PSn
A
∗
A I − PSn

  X
(n)

− X 
�����

�����F

≤ PSn
− PSn

A
∗
APSn

  X
(n)

− X 
�����

�����F

+ I − PSn
  X

(n)
− X 

�����

�����F

+ PSn
A
∗
A I − PSn

  X
(n)

− X 
�����

�����F

� PSn
− PSn

A
∗
APSn

  X
(n)

− X 
�����

�����F

+ I − PSn
 X

�����

�����F
+ PSn

A
∗
A I − PSn

 X
�����

�����F

≜ J1′ + J2′ + J3′,

(A.20)

where the second equality follows from the fact
(I − PSn

)(X(n)) � 0.
Bound of J1′: it is a fact that RIC can be represented as

δ2r � sup
0<rank(X)≤2r

‖A(X)‖22 − ‖X‖2F

‖X‖2F

≥ sup
0<rank(X)

APSn
 (X)

�����

�����
2

2
− PSn

X
�����

�����
2

F

PSn
X

�����

�����
2

F

≥ sup
0<rank(X)

〈 PSn
− P∗Sn

A∗APSn
 (X), X〉

‖X‖2F

� sup
0<rank(X)

PSn
− P∗Sn

A∗APSn
 (X)

�����

�����F

‖X‖F

≥
PSn

− P∗Sn
A∗APSn

  X(n) − X( 
�����

�����F

X(n) − X
����

����F

,

(A.21)

where the second equal sign is based on the fact that PSn
−

P∗Sn
A∗APSn

is a self-adjoint operator.+us, the first term J1′
can be bounded as

J1′ ≤ δ2r X(n) − X
����

����F
. (A.22)

Bound of J2′: according to Lemma A.4, the second term
J2′ can be bounded as

J2′ ≤
1

σmin(X)
X

(n)
− X

�����

�����
2

F
. (A.23)

Bound of J3′: according to Lemma A.5, the third term J3′
can be bounded as

J3′ ≤ δ3r I − PSn
 X

�����

�����F
� δ3r I − PSn

  X
(n)

− X 
�����

�����F

≤ δ3r X
(n)

− X
�����

�����F
,

(A.24)

where the equality follows from the fact (I − PSn
)(X) � 0.

+erefore, we have

W
(n+1)

− X
�����

�����F
≤ δ2r + δ3r +

X(n) − X
����

����F

σmin(X)
  X

(n)
− X

�����

�����F
.

(A.25)

Combining (A.19) and (A.25), it holds that

X
(n+1)

− X
�����

�����F

≤
�������
4 + 2c2r

√
δ2r + δ3r +

X(n) − X
����

����F

σmin(X)
  X

(n)
− X

�����

�����F
.

(A.26)

Considering X(0) � Hσ0
r+1

(W(0)) � Hσ0
r+1

(A∗(b)) and
(A.19), it implies that

X
(0)

− X
�����

�����F
≤

�������
4 + 2c2r

√
W

(0)
− X 

I0++I

������

������F

�
�������
4 + 2c2r

√
A
∗
A − I( (X)( I0++I

�����

�����F

≤
������
4 + 2cr

√
δ2r+1‖X‖F,

(A.27)
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where the second inequality follows from Lemma A.3.
Define

ρ ≔
�������
4 + 2c2r

√
δ2r + δ3r +

�������
4 + 2c2r

√
δ2r+1

σmin(X)
 . (A.28)

If ρ< 1, we use mathematical induction to prove (A.13).
When n � 0, we obtain

X
(1)

− X
�����

�����F
≤

�������
4 + 2c2r

√
δ2r + δ3r +

X(0) − X
����

����F

σmin(X)
  X

(0)
− X

�����

�����F

≤
�������
4 + 2c2r

√
δ2r + δ3r +

�������
4 + 2c2r

√
δ2r+1‖X‖F

σmin(X)
  X

(0)
− X

�����

�����F

� ρ X
(0)

− X
�����

�����F
,

(A.29)

and inequality (A.13) holds true. If inequality (A.13) holds true for n≤ k − 1 (where k is a
positive integer), then when n � k, we obtain

X
(k+1)

− X
�����

�����F
≤

�������
4 + 2c2r

√
δ2r + δ3r +

X(k) − X
����

����F

σmin(X)
  X

(k)
− X

�����

�����F

≤
�������
4 + 2c2r

√
δ2r + δ3r +

ρ X(k) − X
����

����F

σmin(X)
  X

(k)
− X

�����

�����F
≤ · · ·

≤
�������
4 + 2c2r

√
δ2r + δ3r +

ρk+1 X(0) − X
����

����F

σmin(X)
  X

(k)
− X

�����

�����F

≤
�������
4 + 2c2r

√
δ2r + δ3r +

X(0) − X
����

����F

σmin(X)
  X

(k)
− X

�����

�����F

≤
�������
4 + 2c2r

√
δ2r + δ3r +

�������
4 + 2c2r

√
δ2r+1‖X‖F

σmin(X)
  X

(k)
− X

�����

�����F

� ρ X
(k)

− X
�����

�����F
,

(A.30)

and inequality (A.13) holds true.
Furthermore, if

δ3r ≤
1

2
�������
4 + 2c2r

√
+ 4 + 2c2r( )

�
r

√
σmax(X)/σmin(X)

,

(A.31)

it implies that

ρ≤
�������
4 + 2c2r

√
δ3r 2 +

�������
4 + 2c2r

√ �
r

√
σmax(X)

σmin(X)
 < 1,

(A.32)

where δ2r ≤ δ2r+1 ≤ δ3r and ‖X‖F ≤
�
r

√
σmax(X). □

Proof of Beorem 3. If there exists a positive integer n such
that

X
(n)

− X
�����

�����F
≤ 4(μ + 1)

������
2 + c2r

√
η, (A.33)

the result of +eorem 3 holds true. If

X
(n)

− X
�����

�����F
> 4(μ + 1)

������
2 + c2r

√
η, (A.34)

for any positive integer n, it implies that

2 X
(n)

− X
�����

�����F
− (μ + 1)

�������
4 + 2c2r

√ �������

1 + δ2r+1



η 

≥ X
(n)

− X
�����

�����F
,

(A.35)

since δ2r+1 ≤ δ3r < 1.
To prove inequality (19), we firstly need to prove

X
(n+1)

− X
�����

�����F
≤ ρ X

(n)
− X

�����

�����F
+

�������
4 + 2c2r

√ �������

1 + δ2r+1



η,

(A.36)
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where ρ � (μ/(μ + 1))< 1. Similar to the discussion of
+eorem 2, inequality (A.19) holds. Meanwhile, we also have

W
(n+1)

− X
�����

�����F
� X

(n)
− X + PSn

A
∗

b − A X
(n)

  
�����

�����F

� X
(n)

− X + PSn
A
∗
A(X) + e − A X

(n)
  

�����

�����F

≤ X
(n)

− X − PSn
A
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(A.37)

In the meantime, similar to the proof of +eorem 2, we
can also obtain bounds of J1′, J2′, and J3′, and according to
Lemma A.2, bound of J4′ can be described as
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+us, we obtain
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Combining (A.19) and (A.39), it holds that
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Because we have (A.35), it implies that
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Considering X(0) � Hσ0
r+1

(W(0)) � Hσ0
r+1

(A∗(b)) and
(A.19), it implies that
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(A.42)

where the third inequality follows from Lemmas A.2 and
A.3. To prove inequality (A.36), we just need to prove the
following inequality:
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(A.43)

Based on the fact that
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now we use mathematical induction to prove (A.43).
When n � 0, we obtain
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where the fourth inequality sign is based on�������
1 + δ2r+1


≥ 1≥ δ3r. +us, inequality (A.43) holds true.

If inequality (A.43) holds true for n≤ k − 1 (where k is a
positive integer), it implies that
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+en, when n � k, we can obtain
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and inequality (A.43) holds true. □
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