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In this paper, we introduce and analyze a mixed discontinuous Galerkin method for the Helmholtz equation. &e mixed
discontinuous Galerkin method is designed by using a discontinuous P− 1

p+1 − P− 1
p finite element pair for the flux variable and the

scattered field with p≥ 0. We can get optimal order convergence for the flux variable in both H(div)-like norm and L2 norm and
the scattered field in L2 norm numerically. Moreover, we conduct the numerical experiments on the Helmholtz equation with
perturbation and the rectangular waveguide, which also demonstrate the good performance of the mixed discontinuous
Galerkin method.

1. Introduction

We consider the following nonhomogeneous Helmholtz
equation with the Robin boundary condition:

− Δu − k
2
u � f, in Ω ∈ Rd

, (1)

zu

znΩ
− iku � − g, on Γ � zΩ, (2)

where d � 2, 3, i �
���
− 1

√
denotes the imaginary unit, k ∈ R+ is

a given positive number and known as the wave number, Ω
is an open and bounded domain, and f ∈ L2(Ω) represents a
harmonic source. &e Robin boundary condition (2) is the
lowest-order absorbing boundary condition [1]. &e appli-
cations of the Helmholtz equation are extensive in many
practical applications, such as geophysics and radar
detecting, simulation of ground penetrating, biomedical
imaging, acoustic noise control, and seismic wave propa-
gation. &e numerical solution of the Helmholtz equation is
fundamental to the simulation of time harmonic wave
phenomena in acoustics, electromagnetics, and elasticity.
However, it remains a challenge to design robust and effi-
cient numerical algorithms for the Helmholtz equation,

especially with the large wave number or highly oscillatory
solution.

In recent years, many numerical methods have been
developed to solve and analyze the Helmholtz equation, for
instance, finite difference method [2–5], conforming finite
element method [6, 7], boundary element method [8], weak
Galerkin finite element method [9–12], spectral method [13],
and adaptive finite element method [14] . It is also well known
that the discontinuous Galerkin methods are flexible and
highly parallelizable, and hence discontinuous Galerkin
methods are widely used to solve the Helmholtz equation
numerically, such as interior penalty discontinuous Galerkin
method [15], hybridizable discontinuous Galerkin method
[16, 17], local discontinuous Galerkin method [18], and the
references therein. However, the local discontinuous Galerkin
method [19–21] is known to be more physical and flexible on
designing discontinuous Galerkin schemes. Two local dis-
continuous Galerkin methods are studied in [18], where the
P− 1
1 − P− 1

1 finite element pair was used to approximate the flux
variable and the scattered field. &ey obtain the suboptimal
convergence for the flux variable. In the numerical fluxes, the
authors choose the penalty parameter β> 0 in theoretical
analysis and numerical experiments.
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In this paper, we set the penalty parameter β � 0 in
numerical fluxes and use the discontinuous
P− 1

p+1 − P− 1
p (p≥ 0) finite element pair to approximate the flux

variable and the scattered field. In addition, we obtain the
optimal convergence for the scattered field and the flux
variable in the L2 norm and the flux variable in the
H(div)-like norm numerically.

&e paper is organized as follows. In Section 2, we give
the definition of the numerical fluxes and introduce the
mixed discontinuous Galerkin method. A series of nu-
merical experiments are presented to validate the effec-
tiveness of the mixed discontinuous Galerkin method in
Section 3. &e paper concludes with conclusions in Section
4.

2. Mixed Local Discontinuous Galerkin Method

2.1. Meshes and Notations. In order to establish the mixed
discontinuous Galerkin method, we first introduce some
notations. &e standard space, norm, and inner product
notations are adopted in this paper. In particular, for a
bounded domain D, (·, ·)D and 〈·, ·〉zD denote the L2- inner
product on complex-valued spaces L2(D) and L2(zD),
respectively.

Let Th be a shape regular triangulation of the domain Ω
with mesh size h, hK be the diameter of any K ∈ Th and
h � maxK∈Th

hK, Eh be the set of all edges in Th, E
I
h be the

collection of all interior edges, and EB
h � Eh/E

I
h be the set of

boundary edges. For an interior edge e shared by two ele-
ments K1 and K2, n1 and n2 are the unit outward normal
vectors of them, respectively. For any scalar function v and
vector-valued function τ, let vi � v|zKi

and τi � τ|zKi

(i � 1, 2), and the average ·{ } and jump [·] are defined as
follows:

v{ } �
1
2

v1 + v2( , τ{ } �
1
2

τ1 + τ2( , e ∈ EI
h,

[v] � v1n1 + v2n2, [τ] � τ1 · n1 + τ2 · n2, e ∈ EI
h.

(3)

On a boundary edge e ∈ EB
h , we set

v{ } � v,

τ{ } � τ,

[v] � vn,

[τ] � τ · n,

(4)

where n is the outward unit normal vector on zΩ.

2.2. Mixed Discontinuous Galerkin Scheme. In this section,
we introduce the mixed discontinuous Galerkin method for
the nonhomogeneous Helmholtz equations (1) and (2).
Firstly, we introduce an auxiliary variable σ � − Δu and
rewrite equation (1) into

σ + Δu � 0, in Ω, (5)

divσ − k
2
u � f, in Ω. (6)

Next, we introduce the mixed discontinuous Galerkin
method to find the solution pair (u, σ) of (5) and (6) nu-
merically. Multiplying (5) and (6) by test functions τ and v,
respectively, and integrating both equations over an element
K ∈ Th yield to


K
σ · τdx − 

K
udivτdx + 

zK
unK · τds � 0, (7)

− 
K
σ · ∇vdx − k

2


K
uvdx + 

zK
σ · nKvds � 

K
fvdx,

(8)

where nK denotes the unit outward normal vector to zK and
the overbar denotes complex conjugation. &e mixed dis-
continuous Galerkin spaces Vh and Qh are defined as

Vh � v ∈ L
2
(Ω); v

 K ∈ Pr(K),∀K ∈ Th ,

Qh � τ ∈ L
2
(Ω) 

d
; τ

 K ∈ Pl(K)( 
d
,∀K ∈ Th ,

(9)

where Pr(K)(r≥ 1) stands for the set of all polynomials of
degree less than or equal to r on K. Based on the weak
formulations (7) and (8), the solution (uh, σh) of the mixed
discontinuous Galerkin method can be defined by


K
σh · τhdx − 

K
uhdivτhdx + 

zK
uKnK · τhds � 0

− 
K
σh ·∇vhdx − k

2


K
uhvhdx + 

zK

σK ·nKvhds � 
K

fvhdx,

(10)

for any (vh, τh) ∈ Vh × Qh, where uK and σK are the nu-
merical fluxes on the boundary zK. &e numerical fluxes
have to be suitably defined in order to ensure the stability
and accuracy of the mixed discontinuous Galerkin method.
Summing the above equations over all elements, K ∈ Th, and
using the following integration by parts identity,


K∈Th


zK

vτ · nds � 
e∈Eh


e
[v] τ{ }ds + 

e∈EI
h


e

v{ }[τ]ds,

(11)

we get

σh, τh( Ω − uh, divhτh( Ω + 
e∈Eh

〈 uK , τh 〉e

+ 

e∈EI
h

〈 uK , τh 〉e � 0,
(12)

divhσh, vh( Ω − k
2

uh, vh( Ω + 

e∈EI
h

〈 σK − σh  vh 〉e

+ 
e∈Eh

〈 σK − σh , vh 〉e � f, vh( Ω.
(13)

Here, for any piecewise smooth scalar function v and
vector-valued function τ, let divhτ|K � divτ|K on any ele-
ment K ∈ Th. In this paper, we choose the numerical fluxes
in (12) and (13) as follows:
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σh � σh , uh � uh  + iηeh
− 1
e σh , on e ∈ EI

h, (14)

σh � σh, uh �
i

k
σh · n −

i

k
g, on e ∈ EB

h , (15)

where ηe is positive constant. Substituting the numerical
fluxes (14) and (15) into (12) and (13), we get the mixed
discontinuous Galerkin formulation of (1) and (2) as follows:
finding (uh, σh) ∈ Vh × Qh such that

σh, τh( Ω − uh, divhτh( Ω + 

e∈EI
h

〈 uh , τh 〉e

+ 

e∈EI
h

iηeh
− 1
e 〈 σh , τh 〉e

+
i

k
〈σh · n, τh · n〉Γ �

i

k
〈g, τh · n〉Γ

divhσh, vh( Ω − k
2

uh, vh( Ω − 

e∈EI
h

〈 σh , vh 〉e � f, vh( Ω,

(16)

for any (vh, τh) ∈ Vh × Qh.

3. Numerical Experiments

In this section, we present some numerical examples of the
mixed discontinuous Galerkin method. In the following
experiments, we set penalty parameter ηe � 10.

3.1. Example 1: Helmholtz Equation in Convex Domain.
We first consider a Helmholtz problem defined on the
domain Ω � [− 0.5, 0.5] × [− 0.5, 0.5], and the exact solution
is given by

u �
cos(kr)

k
−

cos k + i sin k

k J0(k) + iJ1(k)( 
J0(kr),

f �
sin(kr)

r
,

(17)

where r �
������
x2 + y2


and Jn(z) are the Bessel functions of the

first kind and order n. &e function g is chosen by the exact
solution. We test uniformly triangular meshes as shown in
Figure 1(a). &e numerical errors and convergence rate for
k � 5 and k � 10 with the discontinuous Galerkin pair
P− 1

p+1 − P− 1
p (p � 0, 1) are given in Tables 1–4. We can observe

that the convergence rate is optimal for the flux variable in
both H(div)-like norm and L2 norm and the scattered field
in L2 norm.

3.2. Example 2: Helmholtz Equation in Nonconvex Domain.
In this numerical test, we solve the Helmholtz problem
defined on a nonconvex domain as shown in Figure 1(b).We
take f � 0 and choose the exact solution as follows:

u � Jξ k

�����������

(x + 1)2 + y2


 cos ξarctan
y

x + 1
  . (18)

&e boundary condition g is given by the exact solution
u for ξ � 1, ξ � 3/2, and ξ � 2/3. We can check that u is
smooth for ξ ∈ N, while its derivative has a singularity at
(− 1, 0) for ξ ∉ N. For ξ � 1, 3/2, and 2/3 and wave number
k � 4, Figures 2 and 3 show the errors of the mixed dis-
continuous Galerkin method with the finite element pair
P− 1
1 − P− 1

0 and P− 1
2 − P− 1

1 , respectively. It shows that con-
vergent rates are optimal in three errors for cases ξ � 1. We
lose the optimal convergent in the flux variable ‖σ − σh‖0,Ω,
while the scalar variable ‖u − uh‖0,Ω and the flux variable
‖div(σ − σh)‖0,Ω still converge at the optimal order, for the
case ξ � 2/3 and ξ � 3/2.

3.3.Example3:HelmholtzEquationwithLargeWaveNumber.
&is test is devoted to studying the numerical test for the
same setting as example 1 with a large wave number. We
solve the Helmholtz problem with different mesh sizes for
four wave numbers k � 5, 10, 50, and 100. &e errors in
‖u − uh‖0,Ω, ‖σ − σh‖0,Ω, and ‖div(σ − σh)‖0,Ω are shown in
Figure 4 with p � 0 and Figure 5 with p � 1. It indicates that
the mixed discontinuous Galerkin method is convergent for
the cases k � 5 and k � 10, and the errors begin to reduce as
h becomes to be quite small for large wave numbers k � 50
and 100. &e surface plots of the mixed discontinuous
Galerkin solution and the exact solution are shown in
Figure 6. It shows that the mixed discontinuous Galerkin
solution has the correct shape.

3.4. Example 4: Helmholtz Equation with Perturbation.
We consider the Helmholtz equation with perturbation [14]
in the following form:

− Δu − k
2
(1 + q(x))u � f, inΩ ∈ R2

,

zu

znΩ
+ iku � g, on Γ � zΩ,

(19)

where f � k2q(x)ui(x), g � − (zui/znΩ) − ikui, ui(x) �

exp(ikx) is the incident field and the perturbation function
q(x) has compact support in the domain Ω. Note that the
solution is propagating for q(x)> − 1, while it is evanescent
for q(x)< − 1. &e numerical fluxes for the Helmholtz
equation with perturbation are the same as (14) and (15). In
this test, let Ω � [− 1.5, 1.5] × [− 1.5, 1.5]. Due to the area of
compact support of perturbation q(x) which is little relative
to the entire area Ω, with the aim of better observing the
experimental phenomena of the scattered field, we limit the
interval to [− 1, 1] × [− 1, 1] as shown in Figures 7 and 8.

(i) Take the perturbation function q(x) � 1.5 exp
(− 160|x|2) with wave number k � 40. &e graphics
of the real part of the scattered field and perturbation
function is shown in Figure 7. We can find that the
wave propagates through the origin of the positive
perturbation function.

(ii) In Figure 8, we present the geometry of the real part
of the scattered field and perturbation function with
the perturbation function q(x) � − 1.5 exp(− 160|x|2)

and wave number k � 40. &e results show that due
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Figure 1: &e meshes for example 3.1 (a) and example 3.2 (b).

Table 1: Numerical errors and convergence rate with k � 5 for the P− 1
1 − P− 1

0 element.

h ‖u − uh‖0 Rate ‖σ − σh‖0 Rate ‖div(σ − σh)‖0 Rate

1/2 1.0505e – 01 — 4.0575e − 01 — 2.6311e+ 00 —
1/4 5.2449e – 02 1.0020 1.3732e − 01 1.5631 1.3206e+ 00 0.9945
1/8 2.7299e – 02 0.9421 3.8612e − 02 1.8304 6.8713e − 01 0.9425
1/16 1.3851e − 02 0.9788 9.9766e − 03 1.9524 3.4859e − 01 0.9790
1/32 6.9536e − 03 0.9942 2.5156e − 03 1.9877 1.7499e − 01 0.9942
1/64 3.4804e − 03 0.9985 6.3026e − 04 1.9969 8.7586e − 02 0.9985

Table 2: Numerical errors and convergence rates with k � 10 for the P− 1
1 − P− 1

0 element.

h ‖u − uh‖0 Rate ‖σ − σh‖0 Rate ‖div(σ − σh)‖0 Rate

1/2 5.4580e − 02 — 9.9906e − 01 — 8.9505e+ 00 —
1/4 2.1681e − 02 1.3319 5.0097e − 01 0.9958 3.2653e+ 00 1.4547
1/8 1.8045e − 02 0.2648 2.1682e − 01 1.2082 1.5504e+ 00 1.0746
1/16 1.2249e − 02 0.5590 6.3883e − 02 1.7630 1.1230e+ 00 0.4653
1/32 6.6122e − 03 0.8894 1.6672e − 02 1.9381 6.1967e − 01 0.8578
1/64 3.3701e − 03 0.9723 4.2134e − 03 1.9843 3.1747e − 01 0.9649

Table 3: Numerical errors and convergence rates with k � 5 for the P− 1
1 − P− 1

0 element.

h ‖u − uh‖0 Rate ‖σ − σh‖0 Rate ‖div(σ − σh)‖0 Rate

1/2 2.1579e − 02 — 4.3274e − 02 — 5.7183e − 01 —
1/4 6.6959e − 03 1.6883 7.0819e − 03 2.6113 1.8744e − 01 1.6092
1/8 1.7359e − 03 1.9476 8.8260e − 04 3.0043 4.8484e − 02 1.9508
1/16 4.3740e – 04 1.9886 1.1042e − 04 2.9987 1.2215e − 02 1.9889
1/32 1.0956e − 04 1.9973 1.3799e − 05 3.0003 3.0595e − 03 1.9973
1/64 2.7402e − 05 1.9993 1.5553e − 06 3.1493 7.6522e − 04 1.9993

Table 4: Numerical errors and convergence rates with k � 10 for the P− 1
1 − P− 1

0 element.

h ‖u − uh‖0 Rate ‖σ − σh‖0 Rate ‖div(σ − σh)‖0 Rate

1/2 4.3837e − 02 — 5.3549e − 01 — 4.7389e+ 00 —
1/4 1.4489e − 02 1.5972 7.2364e − 02 2.8875 1.2945e+ 00 1.8722
1/8 4.1745e − 03 1.7953 6.4364e − 03 3.4909 3.9645e − 01 1.7072
1/16 1.0708e − 03 1.9629 8.4948e − 04 2.9216 1.0206e − 01 1.9578
1/32 2.6887e − 04 1.9937 1.1549e − 04 2.8788 2.5641e − 02 1.9928
1/64 6.7280e − 05 1.9986 1.3821e − 05 3.0629 6.4172e − 03 1.9984
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Figure 2: Convergence rates with k � 4 and ξ � 1, 2/3, and 3/2 for the P− 1
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Figure 3: Convergence rates with k � 4 and ξ � 1, 2/3, and 3/2 for the P− 1
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1 element. (a) ‖u − uh‖0. (b) ‖σ − σh‖0. (c) ‖div(σ − σh)‖0.
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Figure 4: &e errors for four wave numbers k � 5, 10, 50, and 100 andP− 1
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to the scattering of the plane wave impinged on the
negative perturbation, the wave gradually disappears
near the origin.

3.5. Example 5: RectangularWaveguide. In this example, we
consider the domain Ω is Ω � [0, 1] × [0, 1], and the 2D
rectangular waveguide model problem satisfies the Helm-
holtz equation (1) with the following boundary conditions:

zu

zn
� 0, on Γ1 � (0, 1) × 0{ } and Γ3 � (0, 1) × 1{ }, (20)

zu

zn
� g2, on Γ4 � 0{ } ×(0, 1), (21)

zu

zn
� − iku, on Γ4 � 1{ } ×(0, 1). (22)

From [3, 22], we set in (1) and g2 � e− (1/2)(y− 1/2)2 in (21).
Similarly, we define the numerical fluxes for the rectangular
waveguide (1) and (20) and (22) as the following:

σh � σh , uh � uh  + iηeh
− 1
e σh , on e ∈ εI

h,

σh � σh, uh � −
i

k
σh · n, on e ∈ Γ2,

σh � − g2n, uh � uh, on e ∈ Γ4,

σh � 0, uh � uh, on e ∈ Γ1∪Γ3.

(23)

&e real part of the waveguide solutions for k � 16π, h �

1/64 and k � 64π, h � 1/128 is shown in Figure 9, which is
consistent with the results in [3, 22].

4. Conclusion

&e paper developed the mixed discontinuous Galerkin
method for the Helmholtz equation. We define the nu-
merical fluxes and introduce the mixed Galerkin method.

Compared with [18], we set penalty parameter β � 0 in
numerical fluxes and use the discontinuous
P− 1

P+1 − P− 1
p (p≥ 0) finite element pair to approximate the flux

variable and the scattered field. We present several nu-
merical experiments to validate the effectiveness of the
mixed discontinuous Galerkin method. &e optimal con-
vergence for the scattered field and the flux variable in the L2

norm and the flux variable in the H(div)-like norm is
obtained numerically. Furthermore, we test the Helmholtz
equation with a large wave number and the Helmholtz
equation with perturbation function and the rectangular
waveguide, which indicate the well performance of the
mixed discontinuous Galerkin method.
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