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In this work, the stability analysis problem of the genetic regulatory networks (GRNs) with interval time-varying delays is
presented. In the previous works, the constructions of Lyapunov functional have usually been in simple Lyapunov functional,
augmented Lyapunov functional, and multiple integral Lyapunov functional. Therefore, we introduce new Lyapunov functionals
expressed in terms of delay product functions. New delay-dependent sufficient conditions for the genetic regulatory networks
(GRNis) are established in the terms of linear matrix inequalities (LMIS). In addition, a numerical example is provided to illustrate

the effectiveness of the theoretical results.

1. Introduction

In recent years, genetic regulatory networks (GRNs) have
achieved popularity in the biological and biomedical ap-
plications since it can effectively reflect the living organisms
of molecular and cellular levels [1, 2]. The researchers in
various fields have wildly emphasized on GRNs. The study of
living organism processes is one of the main challenges in
our postgenomic era. Mathematical modelling of GRNSs is
a tool in the study of mechanism of control gene expression
in an organism. The platforms of the studied model have
various types such as Boolean models [3], differential
equation model [4], stochastic equations [5, 6], and frac-
tional-order dynamical systems [7]. In Boolean models, the
expression of each gene is described to be either ON or OFF,
no intermediate activity level is ever taken into consider-
ation, and the state of gene is determined by the Boolean
function of the states of other related genes [3]. In contrast,
differential equation models described the continuous dy-
namical behaviors of GRNS between the concentration of

gene product such as messenger ribonucleic acids (mRNAs)
and proteins as the unknown functions. Consequently,
differential equation models have drawn the attention of
research studies to describe the gene regulatory process of
organisms on the molecular level.

In experimental study in biochemistry, the gene ex-
pression was studied which consists of transcription and
translation processes. As we known that the transcription
and translation processes are slow reaction, time delay is
inevitable in genetic regulatory network. In a biochemistry
experiment on mice, it has been proved that there exists the
time lag of about 15 minutes in the peaks between the
mRNA molecules and the proteins of the gene Hesl [8].
Thus, time delay has been attended in the study of math-
ematical modelling of GRNs.

Time delays in mathematical systems have received at-
tention from researchers in the stability analysis which
provide a poor performance or even instability of the rel-
evant system [9-15]. In this reason, the stability analysis
problems of genetic regulatory network with time delay have
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been reported in the literature [6, 8, 16-28]. They proposed
new stability condition and reduced the possible conser-
vativeness caused by the time delay. First, the local stability
criteria for GRNs with constant delay were established in [8].
However, it is not sufficient to describe the behavior dy-
namic of nonlinear GRNs. The global asymptotic stability of
GRN with SUM regulatory functions has been studied
[16, 20, 21, 25, 26]. An increasing number of research studies
about more complex modelled GRNs has been received
attention in the following years, e.g., GRNs with distributed
delayed [27], GRNs with nonlinear disturbance [17], leakage
delay involved GRNS [22], and impulsive perturbation [24].
The stability problems of GRNs, such as stochastic stability
[19], robust stability [18], exponential convergence analysis
[28], and discrete-time stochastic stability [6, 23] have been
also reported in the literature.

The stability analysis of systems with time-varying delays
is the major problem of stability in systems. The conservatism
stability condition and the maximum allowable delay bound
have been recognized as the most important index. As we
know that there are many methods to reduce the conserva-
tism in stability criterions such as the development of the
integral inequalities, i.e., the Jensens inequality, the Wir-
tinger-based inequality [16, 20], delay partitioning approach,
and free-weighting matrix were used in [29], generalized zero
equalities [30], and Lyapunov function approach [31]. As we
know, in order to get the less conservative results, the main
efforts were concentrated on two directions. One of the most
popular approach is Lyapunov function. The construction of
Lyapunov functions generally has two types, i.e., augmented
Lyapunov functional approach (ALFA) and multiple integral
Lyapunov functional approach (MILFA), which have been
mainly utilized to propose new Lyapunov functionals
[30-38]. The ALFA is more state information into the vector
of the positive quadratic term, for example, £ (¢)PE(t) with

¢(t) including x(8), y(), f(x(®)), j .. x(s)ds, and
I iy, X(s)ds, while the MILFA is used in mult1ple integral
terms of a positive quadratic term as a Lyapunov function. In
[32, 33], they established a new Lyapunov functionals which
are delay product-type functionals and lead to less conser-
vative result in time-varying delay systems. Furthermore, the
construction of MILFA also led to least conservatism and
decision variables for uncertain systems with interval time-
varying delay [30-38].

Motivated by the above discussion, the most important
concerns are the improved stability conditions for genetic
regulatory networks with time-varying delays. In this paper,
we will present new Lyapunov functions which are extended
from [32, 33], by adding two quadratic terms. One is double
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integral terms of a positive quadratic term and the other one
is a quadratic term which does not need to meet positive
definite and would relax the stability conditions. Moreover,
the development of double integral inequality is utilized to
derive sufficient conditions in terms of linear matrix in-
equalities (LMIS). Finally, a numerical example is provided
to illustrate the effectiveness of the theoretical results.

Notations: throughout this paper, R" and R™" denote
the n-dimensional Euclidean space and the set of all m xn
real matrices, respectively. S denotes a set of positive
definite matrices with n x n dimensions. X > 0 means that the
matrix X is a real symmetric positive definite matrix. I
denotes the identity matrix with appropriate dimensions,
diag{. ..} denotes block diagonal matrix. The superscript T
denotes the matrix transposition. Col{. ..} denotes column
matrix. The # in the matrix represents the elements below
the main diagonal of a symmetric matrix. Sym{X} indicates
indicates X + X© For X € R™",

2. Problem Formulations

Genetic regulatory networks (GRNs) are composed of
a number of genes that interact and regulate the expression
of other genes by proteins (the gene product). The dynamic
behavior of genetic regulatory networks with variable delays
can be described by the following state equations [4]:

—a;m; (t) + f;(p, (t = a (1), p, (t =0 (1)),
o Pa(t=a(1)), (1)
p;(t) = —c;p; (t) +dm; (t — (1)),

iy (£) =

where m; (t) and p; () denote the concentration of mRNA
and protein of the ith node at time t. g; and ¢; are positive
real numbers that present the degradation rates of mRNA
and protein, respectively. d; is the translation rate. o (t) and
7(t) are transcriptional and translational delays, re-
spectively, and function f; denotes the regulatory function
or transcription function, which is generally nonlinear
function but has a form of monotonicity of each variable. It
is usual to assume that the regulatory function satisfies the
following SUM logic [26]:

fi(py(t=a(t), py(t =0 (D)), ...
= Z bij(pj (t- U(t)))-

j=1

P (t—0 (1))
(2)

And the function b;;(p;(t)) is generally expressed by
a monotonic function of the Hill form:

if transcription factor j is an activator of gene i,

(3)

if transcription factor jis a repressor of gene1,
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where h; is the Hill coefficient, f8; is a positive scalar, and a;
is a bounded constant denoting the dimensionless tran-
scriptional rate of transcription factor j to gene i. We note
that

h.
A(H)/B.) 7

;< M) @

1+(p; ()/B;)" 1+(p; (0)IB;)"

Thus, GRNs (1) can be rewritten as

m; (t) = —a;m; (t) + Z wijgj(pj (t- a(t))) i
st (5)

Pi(t) =—c;p;(t) + d;m; ((t — (1)),

where g;(x) = (x/ﬂi)hf/l + (x/ﬁi)hi is a monotonically in-
creasing function, J; = } .y a;;, and V; is the set of all the
transcription factor j which is a repressor of gene i. The
matrix W = (w;;) € R™" is the coupling matrix of GRNs,
which is defined as follows:

(Xi]-,

wy(p; (1) =10,

_(xij’

if transcription factor j activates gene 1,
if transcription factor j does not regulate gene i, (6)

if transcription factor j represses genei.

In compact matrix form, (5) can be written as

m(t) = -Am(t) + Wg(p(t - o (D)) + ],

p(t) ==Cp(t) + Dm(t - (1)), 7
where
m(t) = [my (£),m, (1),...,m, (1),
p(®)=[p, (1), py ()., p, (D],
g @) =[g1 (21 (0), g2 (P2 () 9, (2. )],

7= jor- s ji] s (8)
A = diaglk,.1, ks - - > Ky}
C = diag{k,, kpp> - . ., K, }

D = diag{r,, 75, ...,1,}.

Let (m*, p*) be the equilibrium point of GRNs (7),
' and  p* = [p/,p;,

where m* = [m,m),...,m; ]T
<D ]T; then, we obtain

-Am" +Wg(p") =0,

. . 9
-Cp" +Dm” =0.

Shifting equilibrium point (m*, p*) to the origin, using
the following transformation x(f) =m(t)-m* and
y(t) = p(t) — p*, model (7) can be transformed into the
following form:

x(t) = -Ax(t) + Wf(y(t—oa(t),

. (10)
y(t) =-Cy(t) + Dx(t - (1)),

where f(y(t)) = g(p(t) + p*) — g(p*). Since the function
g is monotonically increasing function with saturation, it
satisfies that, for all a,b € R with a#b,

Os%sk. (11)

When g(-) is differentiable, the above inequality is
equivalent to 0< gd(a)/d(a) <k. From the relationship of

f () and g(-), we know that f(-) satisfies the sector con-
dition [39], or equivalently

(@) (f () - ka) <0, (12)

Assumption 1. The assumptions of time-delay conditions
are

0<1,<7(t) <71y,
0<o,<0(t)<o,, (13)

0<7(t)<7yand0<0(t) <0y,

where 0< 7, <1,, 0<0,<0,, 7;,>0, and 0,>0.

Assumption 2. Let g2 R — R, i=1,...,n, be mono-
tonically increasing functions with saturation and moreover

satisty
0<% L1 1, = max £i(w)
T

(14)

(hl- _ l)hi_ 1/h; (hl + 1)]1,-— 1/h;
4b;h; )

Remark 1. The modelling of GRNs is largely dependent on
powerful tools of mathematics theory. The differential
equation model has drawn a lot of research attention since
variables in gene dynamics are usually the concentrations of
gene product (messenger ribonucleic acids (mRNAs) and
proteins). It has been shown that the time delays may play an
important role in the predictions of the dynamics of the
mRNA and protein concentrations; GRNs models without
consideration of time delays may provide wrong predictions.
Therefore, it is significant to study the stability of delayed
GRNs and sufficient stability conditions. However, the
conservatism stability condition and the maximum allow-
able delay bound have been recognized as the most im-
portant index. Therefore, in this research, we have improved
delay dependent stability criterion for genetic regulatory



network (GRNs) with interval-time varying delays via new
Lyapunov function by constructing a new Lyapunov func-
tionals in Section 4. In addition, we have established one
integral and double integral inequalities to estimate.
Therefore, the results had been established that the stability
criterion lead to less conservativeness.

b b
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To proceed, the following lemmas are introduced which
will be useful for further derivations.

Lemma 1 (Jensen integral inequalities, see [40]). Let

w: [a,b] — R" be a differentiable function. For any given
matrix R>0 and a<s<b, the following inequalities hold:

b

T
(b- a)J " (5)Ri (s)ds > (J w(s)ds> R(j w(s)ds>,
(15)
(b-a)® (b (b b (b T b (b
. J J " ()R (u)duds > (J J w(u)duds) R(J J w(u)duds>.
Lemma 2 (Wirtinger-based integral inequality, see  where
[41]). Let w: [a,b] — R" be a differentiable function. For | b
any given matrix R>0 and a <s <b, the following inequality y = w(b) - —— J w(s)ds,
holds: b-ala
b p T T T 2 b 6 b b
(b-a) J w' (s)Rw(s)ds > x, Ry, + 3y, Ry, + 5x3 Rx3» X =w(b) + b2 J w(s)ds - W J J w (u)duds.
a - a —a alJs
(16) (19)
where
¥ = w(b) - w(a) Lemma 4 (Schur complement, see [42]). For a symmetric
- matrix S = [Sil Sio ], the following conditions are
X, =w(b) +w(a) - =% J w(s)ds, equivalent: 22
@ ) (a) $<0

6 b
x; =w(b) —w(a) +m Lw(s)ds

I.]

Lemma 3 (relaxed double integral inequality, see [35]). Let
w: [a,b] — R" be a differentiable function. For any given
matrix R>0 and a<s<b, the following inequality holds:

b b

b b

12 w (u)duds.

(b- a)

a

1 [E (1+B)R, BS, +asS,
2_

%

1 (——

(b) S;; <0 and S,, — ST,S,1S;, <0
(c) Sy, <0 and S;; — $1,8,35T, <0

3. Improved Integral Inequalities

In this section, we propose the following results which will
be used to the development of the inequality.

Lemma 5 (extended relaxed one integral inequality, see
[42]). Letw: [ay, a,] — R" be a differentiable function, for
a time-varying scalar «(t) € [ay, a,], symmetric matrices

J J W' ()R (u)duds > 21 Ry, +4x; Ry, (18) R =di ag{R;, 3R}, with R; > 0, and any matrices S; € R,
e i =1, 2, the following integral inequality holds:
t—ay T ) t—ay (1) T )
j w (s)le(s)ds+J w (s)R,w(s)ds
t-a(t) t—a(t)

(20)

BS,R;'sT o E,

H 0 as{;*z;lsl])lgj’
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where

0y = &) — &,

a(t)—a; o (1)
X=— = _—
%1 %1

_az—a(t):az_(t)

B=

o5 1
[ w(t-a)-w(t-alt) ]
El = 2 t-a, ’
(e ) +w-a) - s La(t)w(s)ds_
i w(t-at)-w(t-a) ]
E2 = 2 t—a(t) d !
_w(t—(x(t))+w(t—(xz)—mL_O‘2 w(s) S_
(21)

Proof. By setting a function f(s,a,b)=2s-b-a/b-a,
where a and b are constants, then the following equations are
derived:

b
J (s)ds = w(b) - wla),
b ) 2 a
L f(s,a,b)w(s)ds =w(b) +w(a) - P L w(s)ds,
b
J Fs,a,b)ds = 0,

b —
J £2(s,a,b)ds = %’3—“
(22)

Furthermore, based on Schur complement, for sym-
metric matrices R;>0, i=1,2, and any matrices X;,
j=1,2,3, 4, with appropriate dimensions, the following
inequalities hold:

X, R'X]" X,R'X;" X,
X,R' X, X, |20,
L * R, ]
- “1y-1 —1y-1
XR'X; XGR' X X,
X, R'X,' X, |20
* R, |

(23)

which lead to

9 ! X1RI1XII XlRIIX; X,
t—oy
I, = J Mg XzRIIX; X,
t—a(t)
w(s) * R,
9
Mg [ds=0,
w(s)
. (29
“1 -1 11
9 X3R, X3 X5R, X, X,
t—a(t)
I, = L A9 X4R;1X21 Xy
o
w(s) * R2
9
Ag |ds>0,
w(s)
where g=[ELEI]", A =f(st-a,t—a(t), and

Ay = f(s,t—a(t),t —ay).

Define matrices X;, i = 1,2,3,4, as follows:

‘R,
1
X, =—1 0|,
%
L L,
r o0
X, = ! 3R
2 o 1)
L L,
(25)
L
X, = L R
’ a1 2f
L O
- L,
1
Xy=——1 0 |
%21
L 3R,

where L;, i =1, 2, 3, 4, are appropriate dimensional ma-
trices, S, = [L,,L,]" and S, = [L;, L,]. Then, the following
equivalent relations are taken into account similar to [42]:
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R, 0 Ll
T 11 BT ! ! E
t-a, g R XoR X, g a, ()] ™1 - 1
J- XiR, X, ds = — 0 3R, L,
t-a(t) A g XZRIIX? \g %1 LE, E,
L L, LlRIIL{ +L,(3R,) ILZ
T -
%l E, ac * S1T§IIS1 E,
(2R, 0 LI]
T T
t-o g X 1 [Er E,
ZJ x(s)ds = —— 0 6R, L)
e Mg X, %1 E, E,
L, L, 0]
] lEl]T'zle SI:“El'
%1 E,J L » o]lE,]
(26)
-1,T = \-1T
T I . LyRy Ly +Ly(3Ry) 'Ly Ly L,
J't_‘xl [g jl R X3Ry X, g q a, (1) E, . E,
X,R;'X; s= L R, 0
e g X,R' X, [Lhg %1 E, . E,
! 0 3R,
T =—1.T
_ 1 [Eljl (062(1‘)) SRS, S, |:E1]
1| E, @ " R, JLE,
. ) ; ro Ly L,
t—a(t) | 9 X3 1 [E1] T E,
2J x(s)ds = —— LI 2R, 0
e Lhgl LXy %1, | . E,
LI 0 6R, .
L TEi 7 [2R, SZHEI'
“ilE, ] |+ o]LE,.
To sum up with multiplication, we have
- t-a(t) E,
0< Tl +11, = J ()R, (s)ds + j ()R, (s)ds
t—a(t) t-a, E2
(27)

I{EI]T l(l+(1—¢x))§1 (l—a)Sl+aSZ] (1-wS,R'sT o [EI]
* (1+a)R, .

“1lE, 0 aSTR;'S,
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Thus,
LTET [[a+0-a)R, (1-a8, +aS,] [(1-aS,R,'S; 0 E,
I, + I, >— B - (28)
%21 E, * (1+a)R, 0 (XS?EIISI E,
This completes the proof inequality (20). O When [ }il Tf ] >0, compared with inequality (20), two
2

Remark 2. Consider the inequality in Lemma 4 [42] can be
written in the following form:

t=h(t)

t
J W ()R (s)ds + j W ()R (s)ds
—h(t) t—h
I[El ]T R+p(R-SR's") S
2 —_
h E, * 1~2+(x(l~2—ST1~2_lS)

]

The advantage of Lemma 5 can be concluded as follows:

(29)

(1) Equation (20) can be reduced to Lemma 4 [42] when
S, =8, and the lower bound of time delay is zeros,
i.e., a(t) € [0, h]. However, Lemma 4 [42] cannot be
used to estimate in the time-delay interval
a(t) € [a, a,]

(2) The matrix S in [42] can be written as fS; + aS,
which leads to exactitude in the estimation of
equation (20).

(3) The matrices R, = R, can deal with Lemma 4 [42].
Lemma 5 can be applied in case of the different
matrices, in which Lemma 4 [42] cannot be esti-
mated in this case.

Remark 3. From the estimation of Corollary 5 [41] and
reciprocally convex combination lemma [43], the estimation
of integral (20) is as follows:

t—a(t) T )
w (s)Ryw(s)ds

t—ay T
J " (S)le(s)ds+J
t—a(t) t—a,

: lEl}Tlﬁl S “Ell
>— .
“11E,| |« R JLE,

(30)

aspects can be shown:

R, S

(1) The requirement [ . B >0 and the matrix S

which is relaxed to f8S; + S, is substituted in (20).

(2) The estimation gap between (20) and (30), which is
calculated from the right-hand side of (20) and (30),
is, respectively, defined by I', and T,; then,

R lﬁ(ﬁl ~SR,'S)) 0

6D
0 a(R, - $,R; s{)]

(i) By using Schur complement, then I'y —I', >0. This
can be shown that an upper bound of inequality (20)
is more than (30). So, we can see that (20) is less
conservative than (30).

Lemma 6 (extended relaxed double integral inequality). Let
w: [a;,a,] — R" be a differentiable function, for a time-
varying  scalar  «(t) € [}, a,],  symmetric  matrices
R; = diag{2R;, 4R}, with R; >0, i = 1, 2 and any matrices S,
and the following integral inequality holds:

t—ay t—o
I I wT ()R, (s)dsd0
t—a(t) J 6

t—a(t) pt—al(t)
. J j w (5)R, i (s)dsdd
6

t-a,

[Fl T({Tzl o] lag(t)szfz;lsg 0 D
> —
F, 0 R, 0 (xf (t)SlTTQIlS1

(32)

where



O = Gy — &),
a, (1) = a(t) —ay,

a, (1) = ay — a(t),
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r 1 t—a
w(t—o)———- w(s)ds
( ! o (t) Jt—a(t)
F, = ,
2 t—oy 6 t—oy t—ay
w(t—a +—J w(s)ds——J J w(s)ds
L ( ) o, (1) Ji—a@ ocf(t) t-a(t) ) 0
r t—a(t)
w(t—a(t) - w(s)ds
t-a)- s [ e
F, =
2 t—a(t) 6 t-a(t) pt—al(t)
wt—a() + J w(s)ds - j j w(s)dsdo
L oy (t) Jia, o (t) Jt-a, Jo
Proof. By setting a function
f(s,a,b) =3s—a—2b/2(b-a), where a and b are con-
stants, then the following equations are derived:
b (b 1 (b
J J w(s)dsdez(b—a)<w(b)——J w(s)ds),
alo b-ala
[ rsabidss = (we e 2 [ w@ds— [ [ wiodwe
s,a,b)w(s)dsdd = wb)+—— | w(s)ds— w(s)dsdl |,
Ja.[Gf 2 ( b—aja (b—a)2 Ju.[@ ( )
b b
J j £ (s,a,b)dsdf = 0,
alo
Jb r Plsabydsdo= L=
alo o - 16 '
g T
Furthermore, based on Schur complement, for sym- t-ay t-ay
metric matrices R;>0, i=1,2, and any matrices X, I :J * J Mg
. . . . . . t—a(t) 0
j=1,2,3, 4, with appropriate dimensions, the following w(s)
inequalities hold: lonl lonl
XiR X X4Rp X, X, g
[X,R'X;" X,R'X;)" X, ] * X,R' X X, || Mg |dsd6=0
X,R'X;' X, [20, * Rl
T
L * R, | t-a(t) (t-alt) 9
- 11 11 . (35) I, :J Je X
X,R'X XRX, X, t-a, (s
11
X,R'X, X, |20 XR' X, XR' X, X[ g
L * R, | * X, R X, X, || Mg |dsd6=0

which lead to

* * R, w(s)

(33)

(34)

>

>

(36)
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where g= [FIT,Fg]T, A =f(s,t—a(t),t—a), and
Ay = f(s,t —a,,t —a(t)). Define matrices X;, i = 1, 2, 3, 4, trices, S; =
as follows: algebraic calculation, then
X, = —col{——R,,0,L, ¢,
1 ‘[ ) 1 1}
{0, RI,ZLZ},
(37)
= —col{ L,,
{ } (xz(t) }
= —col42L,, 0,
{ ! 2(t) }

t—ay

J

t—a,

t—a;
JG

ol
J

d

t—a(t)

1

t—a(t)

.,

t—a,

t—a(t)

.

0

t—a,

1T

t—ay g
t-a(t) JG |:A1g

t—a(t)

t—a(t)

T 11 11
X, R'X X,R'X
][111 212:||:g:|dsd0
XR' X [Lhg
2R, 0 a (LT
0 4R, a (LY
2 -1;T 2 -1;T
o, (DL, a; ()L, oy (1)L, (2R))” L, +a; (£)L,(4R,) L,
2 R0
o (1) !
T T
X F
[g ] [ l]w(s)dsdez—al(t)[ ‘] o 8
Mg X, F, a, (t)
L L, L,
2R, o, (OS, ][ F,
* 0 F, ’
T -1 v-1
X,R;'X
[ g } [X3R;‘X51 e ][ g ]dsd@
Alg X4R2 X4 /\2g
F“i (t)L; (2R,)" 1L3T + 0@ (t)Ly (4R,)” 1L4T a, (t)L; oy (t)L,
oy (1)L 2R, 0
a, (t)Ly 0 4R,
o a®S, 1[F
LMS,R'sT 7 2][ 1],
2 F2
ro0 L, L,
4
X F L 2 0
[g M 3]w(s)dsd9=—oc2(t)[ 1] 3 ()
gl X, F,
8
LT -
L a, (1)

0 a,(1)S,
2R,

o ]

where L, i =1, 2, 3, 4, are appropriate dimensional ma-
[L,,L,)" and S, = [L;, L,]. Carrying out simple

T

(38)
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Thus,

F,1 (TR, 0
I, +11, 2 _
F, 0 R,

[aﬁ (OS,R;'ST 0 w } [Fl ]

0 o ()S'R;'S, | ) LF;

This completes the proof of inequality. O

(39)

Remark 4. From Lemma 3, the following double integral
inequality can be written as

t—a; t—a; t—a(t) pt—al(t)
J j i (5)R, i (s)dsdd + J j
0

t—a(t) t-a, 0

. F' (R, 07[F
w (s)sz(s)dsdezl ] l “ :|
F,] L0 RJLF,

Compared with inequality (32), two aspects can be
shown:

(1) If S; =0 and S, =0, then (32) is reduced to (40)
which it is a more general form. Based on Schur
complement, (32) can be written as

(40)

R, 0 o (OF[S, a (DF,S]

* Ry 0 0 >0. (41)
* % R, ~()

* ok * R,

(i) It provides the freedom matrices S; and S,, which
lead to reduced conservativeness.

(2) The right-hand side of (32) has information of
nonlinear delayed terms oZ (t) and o3 (£). Time-delay
terms appear in this term. It is the advantage to deal
with a larger time delay system which can help to
reduce conservatism.

4. Novel Lyapunov Functionals

In this section, we propose two novel Lyapunov functionals,
which are the main contributions of this paper.

Proposition 1. For system (10) with given scalars 0., 0,, T,
and 1, and positive definite matrices M; and N,
i=1,2, 3,4, the following function can be Lyapunov func-
tional candidate:

Mathematical Problems in Engineering

V(D) =V () + V), (), (42)

where

-1,

Vi) =1,(0) L Y X" ()M, x (s)ds+1, (£) jz:m) x" (s)M,x (s)ds

t-0,
o] Y ON s

t—o(t)
+0,(1) L_ (N, (s)ds—T,

—(x(t-1y) = x(t=T(£) M, (x(t-x(t -7 (t))))
~(x(t-1(t)-x(t—1,)) M, (x(t—7(t) - x(t—T,))

~(y(t-0)-y(t-a () N, (y(t—0,)-y(t-0(1)))

~(y(t-0() - y(t-0,)) Ny (y(t-0(t) -y (t-0,)),

Vip)=1 (t)< j i X (5)M3x (s)dsdf - 7]1 (M1, (t)>

+T2(t) x (s)M4x(s)dsd6 1, (M1, (t))

y (s)N3y(s)dsd9 15 (t)N3113(t)>

t— U(t)
+0'2(t)

t—o.

t 0y
+0, (t)<
< y ()N, 3 (s)dsd6— 7L (t)N 1, (t)>,

=T x(s)

() 71 (£)

m®=x(t-1)- [

=7,y (s)

t-1(t) Tz(f)

1 (6) = x(t— () - j

f*ﬂl y(s)
t-a(t) 0y ()

13 (t):}"(t_al)_J

t-o(t) y (s)

ds.
o, (O

7 () = y(t—a(t))—j
(43)
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Proof. By Lemma 1, V() is a positive definite function
which completes the proof. O

Remark 5. The construction of Lyapunov functionals is
usually in the form of ALFA and MILFA. The special formed
function (42) in Proposition 1 is based on Jensen integral
inequality and relax double integral inequality, respectively.
It is obtained in the following points:

(i) The proposed functions are the product of the time-
varying delays; the time-varying delays and rate of
the change of the time-varying delays are associated
with 7(t), o(t), 7(t), and o (t). Thus, the proposed
functional may be of some advantage to find the
stability conditions for genetic regulatory networks
with interval time-varying delays.

(ii) There are nonpositive definite terms, ie., —(x(t—
1) = x(t—1(0)) M, (x(t - 1)) = x(t - T())), - (x
(t-7(t) - x(t— 1)) M, (x(t - (1)) - x(t - 1)),
~(y (t=0) = y(t=a ()N, (y(t-g) - y(t— o
(), and —(y(t-o(t) - y(t- 02)) N, (y(t-
(1)) — y(t 0,)) in V, (t) and T1 (1%)111 (t)M;n, (t)
-7, (1‘)112 (M yn, (1), -0, (t)113 (t)N5y5(t), and
—0'2(1’)}’]4 ()N, (t) in Vi, (t). These terms would

x(t), y (), x(t —7,),x(t -

() y(s)

E(t) = col 4

-1, 91’2 (1) t-0, J 0 01

x(t-1)x(t-1,
Ty =T~ T

() =1t0) -1,

7, (1) = 1, - (),
T, =1-1(t),
031 = 0, =035

o,(t) =0(t) -0y,

0,(t) =0, -0 (),

7)., x(t=7(1), y(t-0,), y(t

). foe=o). [ s

t-0, t-o t T t
J bAQIN J ds, J J *(9) 450, J I *() 4sd, 9
t-o(t) 0 (1) t-s, 0, (1) t-1, J o ‘r1 t-r(t) J 077 (¢)

JH“ Jt *) 45dp, r J ) 4o, ij V) 4sdp, ra(t J Y00 4o,

) x(t=7(t), y(t=0,), y(t -

11

play an important role in relaxing the stability
condition.

Remark 6. The new Lyapunov functional has different forms
compared with [32, 33], i.e., there are two double integral

oo oA (M x(9dsde, () [0

7, (1) It 7(t)
(s)M4x(s)dsd6 o [ [o" i (s)N3

y(s)dsde and o, (1) [0 [57” 57 (IN, 7 (5)dsd6. These

terms are increasing the 1nformat10n in stability conditions
which can help in delay conditions for GRNs with interval
time-varying delays.

terms,
t— r(t .

5. Main Results

In this section, we analyse the asymptotic stability of genetic
regulatory networks (10) with time-varying delays. The main
theorem given below shows that the stability criteria can be
expressed in the terms of the feasibility of the linear matrix
inequalities (LMIs).

For simplification, the following vectors and matrices are
defined for later use:

—-0,), y(t-o(t)

J'f*Tl x(s) ds, thm ) ds, Jt Mds,

—() 7, (£) t-r, T, (f) t-o, 01

0 01 (t) t-0,

605 (t)

0,), y(t—0a(t))
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dd =1- O'(t),
1 (t) = ey — e,
1, () = es ey,
13 (t) = e —eys,
1y (t) = eg — ey
- e —e; -
v = e +e;—2ey, s
Le; —e; + 6e;; — 12¢;, |
[ €~ ¢
Y, = e +es—2ey >
Le, —eg + 6e,, — 12e,
- es — e -
Y3 = e; +es—2ep :
Les —e; +6e, — 12¢4
[ eg — ey 1
Yy = €s +eg — 2es »
Leg —eg + 6e;; — 12e,; |
[ e —ep (44)
Ys = g
| e, +2e;; — 6e,;
Ve = [ ey—ey
6 — >
| e, +2e;, — 6ey,
- es—e, -
Yy = es +eq—2e; s
Le; —e, +6ey3 — 12¢4
- e — e, -
Vg = ey +e; —2e6 ;
Leg — e, + 6e,5 — 12e,, |
B,
T o=
L E, |
‘B,
Ty =
LE, |
SO
T3 =
L F |
F, ]
Ty =
L Fy |
And e; € R is defined as e;=  stable, if there exist matrices P e ST, R, €S

[Ouxiiotyn In Oux(asoipa | fori=1,2, .., 28.

Theorem 1. For given scalars 0,, 05, T, T,, 04 and 1,4, the
genetic regulatory networks (10) with time-varying delays
subject to assumptions 1 and 2 which are asymptotically

(i=1,2,3,4,6), R € S W, X; € S™"(i=1,2,3,4),
and M;, N; e S7"(i=1,2,3,4), diagonal matrices
A, e ST" and Hp e ST"(i=1,2), and any matrices
S, T; € R*™ (i =1, 2,3, 4) such that the following linear
matrix inequalities (LMIs) hold:
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W, —-1(t)M,>0, W, + 7(t)M, >0, (45)
W,-a(#)N,>0,W,+d(t)N,>0, (46)
X, - 7(t)M; >0, X, + 7(£)M, >0, (47)
X,—0(t)N;>0, X, +0(t)N,>0, (48)
T T T oT T
X, ES, 1,FT, Z, ES§ 1,FT,
x 1, W, 0 <O, |« -1,,%, 0 <0,
* * —yz * * _71
(49)
T T T T T
X, E}Sy 0yFT, X, E S 0yF,Ts
x —0, W, 0 <0,| % -0, W, 0 <0,
* * —74 * * —y::’
(50)
T Tl T Tl
20, FIT, FIT! v, FiT, FIT}
x =2, 0 >0, = -2, 0 |>0, (51)
* * —§1 * * _§3
where
3 =10, + 1, D + Oy + Q (1(1))
1 2%, S, 2, 0 (52)
T T
- T—ﬂl mmm s
21 x W, 0 Z,
. 1 |7, S,
Y, =720, + 1,0, + Oy + Q. (1(t) - —n =
2 = L0+ 1,0, 0 x oot T, 1
2, 0
[ g
0 2,
(53)
5 ‘ 1 [27; S
Ly=01¥, + 0¥V + ¥ +Q,(a(1) - 0—21712 . } %34 T,
152
-y, Ty
(54)
5 . 1 (7, S
Ly=0Y+ 0¥ + ¥+ Q,(0(1) - 0—21712 } 2%44 T,
1)
-y Ty
0 2,
(55)
Q(z(t),0(1) = Q. (7)) + Q, (0 (1)), (56)

13

Q. (7(1) = el Pe, + el (R, + Ry)e, +ei (R, — R, )e,
- Tdenge5 - eZR3e4
T
+(—Aey + Weyg) (1,W) + 1, W,) (-Ae; + Wey)
+(~Ae, + Wey,)"
‘['2 T2 T~
X(?IXI +% 2) (—Ae; + Weyg) + v, Wy

+ V’g (5(2 + M3)V/3 + W?XII//S + 1//;1\7141#7,

(57)
Q,(z(t) = Sym{ (Ley — e5)" A, (~Ce, + Des)
+es Ay (~Ce, + Des)} +el Pe, + el Rye,
e, 1" e ]"
+[ 2] Rs[ 2] +egR6e6
€9 €9
es ' [e
o] wl]
€10 €10
—e!Rye, +(~Ce, + Des)"
x (0,W3 + 0,,W,) (-Ce, + De;)
2 2
+(-Ce, + DeS)T<ﬁX3 + 4)
2 2
x (—Ce, + Des)
+ Y Wy, + vy (X + N3y, + v Xy
+ ¥ Ny
T T
- Sym{ (eg = Ley) Hy +(eyo — Leg) Hzew},
(58)

Q, (2(1), 7(1)) = ©,7° () + Dy 7(t) + Dy,
@, = 3§3M3623 + Td3§5M4ezs)
o, = ‘3;3 (M, =27, M;)ey; — Tdegs (M + M, +21,M,)e;s
+e3,M,e,,
- Syrn{r/lT ()M ep; — Td’T; (t)M4525}’
D, = 653(T%M3 + T1M1)ez3
+ Tdegs(T§M4 +1,M, + TlMl)eZS - Tzeg4M2‘324
+ SYm{Tﬂﬁ ()M 3e53 — Tsz’72T (t)M4ezs}
- Sym{ (e5- es)TMl (€23 = T4er5)
+(es - 64)TM2 (Taess = ‘324)}
- E2 (0 M, () - (M1, 1)

21
+Sym { nTT<t>M3 (e = 7aes + 7 (0)ery) }
+1, (M (T4e5 — ey + T(t)ey3)
(59)



14 Mathematical Problems in Engineering

o ]T[ Aol2
¥, = 36N 3655 + 04635 N 56 ®) ) i=1

O, (0 (1), (1)) = ¥,0° (t) + ¥,0(t) + ¥, [
¥, = ‘gs (N} =20,N3)ex Jy = fi(s) + Ay f(s)))ds,

Vi) =

T T
— 04655 (N} + Ny +20,N,)es + €5,N, 8,5

v, =[ (R x(s)ds+J x7 ()R, (s)ds
- SYm{’?sT ()N €36 — 04773 (t)N4628}’ ’ *Ttl . 1 t=(t) ’
D, = e;6(0fN3 + crlNl)e26 + Li x (s)R3x(s)ds
+ Tde;(‘f%Nz; +0,N, + ‘71N1)925 - Uze§7N2‘327 t . t () T
T T + J x" ($)Ryy(s)ds + J
+ Sym{aln3 (t)Nzeys — 05041, (t)N4eZ6} t-0, fy(s)

~ Sym{ (e - es)TN1 (26 — 04€28) } R [ f{(z))) ]ds + J: 3y Rgy (s)ds,

— T — t t
‘ +(68 e7) N2 (GdeZS 627) ‘/3 (t) J J X (S)Wlx (s)dsd@
o(t), r T =7,
_T(’b (O)N3715 ()1, (t)N4’14(t)> -1yt
o J J i ()W (s)dsdo
. 7, J O
+ SYm{Wg (t)N; (e — 045 + 7(t)eys) C
+’74T ()N (0qe5 —e; + ;r(t)elé)}’ L -0, J@ y(OWs (s)dsdf
t—o, rt
(60) J J (W, 7 (s)dsd6,
7y = diag{W, —2(OM,, 3(W, =7 (OMy)} V() = J j i ()X, i (5)dsdfdu
W, = diag{W, + 1(t)M,,3(W, + 7(t)M,)}, i3 _9
5, = diag{W, - ()N, 3(W, - 6 (ON,)], j 1 J J ()X, i (s)dsdOdu
Wy = diag{W, + 6 (t)N,,3(W, + 0 (t)N,)}, J J J X (s)dsded
— . 4 s s)dsdfdu
T, = diag{2(X, — 7()M;), 4(W, — 7(1)M;)}, t-0, Ju y »
— . . . t—o, rt-o;
T, = diag{2 (X, + T(OM,),4(X, + T(OM,)}, j j j T ()X, 7 (s)dsdbdu.
X5 = diag{2 (X, — 0 (t)N;),4(X, — a(t)N;)}, (63)
Ly = diag{2(X, + 0 (t)N,), 4(X, + 6 (N}
H;; i diag{W“%’ s }4 ; 5{44+ % 21’45(3) i, N, resul;i[s(?reover, we consider the following simple calculation
W, = diag{W,,3W,,5W,}, 1 '
Xy = diag{X;,1,3X;,0,5X ), i (Tl (O (M1, (t)) = 7(O)n) ()M, (1)
X; = diag{2X;,4X;},
! ?ag{ p 4% + Sym{n{ ()M 315 (t)},
M, = diag{M,,3M,,5M,},
= . . d
N, = diag{N,,3N,,5N,}, i=1,3, a(72(t),1§(t)1\/[4,72(t)) = 1 (s (M1, ()
Y = col{y, ¥, 3, Yo Vs, Vo V7 s .
(61) + Syming (OM1g (1)}, 68
d .
3 (@ O (ON3115(8)) = 5 (D5 (DN715 ()
Proof. We first consider the following Lyapunov functional + Sym{qz (t)Nsn;, (t)},

candidate: ;
Vi) =V, () +V,; (1) (62) E(UZ (t)’74T(t)N4’14(t)) = _d(t)’74T(t)N4’74(t)

1 =Vo +V,; 1),
+ Sym{n; (DN ()},

where V() = Z?;l V;(t) and V;(¢) is defined in Proposi-
tion 1: where
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=T x(s)

S5
t-r() Ty (£)

N5 () = 1, (Ox(t—1)) —x(t — 1)) + 70 (t — 7(8)) — i‘(t)J

t—7(t) x(s
(s) ds,
t=1, T2 (t)

M6 () = T, ()T (x(t—1(1) — 150 (t —7(2)) + x(t — 7,) — 7(t) J

(65)
t—o
1oy(s)
ds,
t-a(t) 0 (t)

t—o(t)
y(s)

ds.
oy 0y ()

() =0, ®)y({t-0,)-y(t-0)+oyt-0())- 6(t)J

ng (t) = 0, (o ()y(t =0 (1) —azy(t—o () + y(t—0,) - 0(t) j

Then, taking time derivatives of V (t) along the trajectory =~ where
of system (10) yields:

4
Vo(t) = Y Vi), (66)
i=1

_ x()1' TP 07[x(t)
wo- (oI
y(®) 1 Lo PILy()

+2(Ly () = fF(yON Ay @) + 2 (y () A3 (£) = E (1)Sym{TT, }E (8),

(67)

V,(t) = x" (£) (R, + Ry)x(t) + x" (t - 7,) (R = R)x (t - 7,)
— (1 =7()x" (t = T(O))Ryx (t = T(£)) = x" (t = 75)Ryx (t — 7,) + ¥" ()R, ¥ (£)

AR

fy@®)
T
_(1_(.7“))[ y(t—o(t) ]RS[ y(t-o®) ]
fy(t=-a(t) fy(t-a@®)
< x" (1) (R, + Ry)x(t) + x" (t —1,) (Ry = R))x(t — 1,) — 74" (£ = T(t))Ryx (£ — (1))
y(t) ]TR y(t)
fFow) | L fw)
T y(t-a@) 1" y(t—a(t)
+y <r—al><R6—R4>y(t—ol>—ad[f(y(t_g(t)))] Rs[f(y(t_a(t)))]
— ¥ (t- 0y)Rey (t - 0,) = E (DHILE(),

;VT (t—0,)Rsy(t—0,)
(68)

T (t - )Ry (E - 1) + 9T (DR (1) [

t

Vi) = & (6) (1, W, + 1, W,)x(8) + 3 (5) (0, W5 + 0, W) (1) - 1, J X (s)W, % (s)ds

t-7

t t—o

_ r KT (W, (s)ds - o, J T (W, (s)ds

=1,

YT (W, 5 (s)ds — J
t—0,

t t—1, (69)

(W & ()ds - J T (W, (s)ds

t=7,

= & OILED - 1, j

t—1,

-0, JZ_JI Y (W, 3 (s)ds — J

t-o

Yy ()W, 7 (s)ds,
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2 2 2 2
AOR xT(t)(%Xl +%X2)x(t) + f(t)(%)@ +%X4)y<t>

And

-|
Jt ! Jt " y (S)X4y(s)dsd6 £r (OILE (1) _J
I
I

t t

T X xodsdo— [ [ %7 (59X, (s)dsdd —
J, J..] J

t-1, J 0

J; T ()X, 7 (s)dsdd

-1, t—o;

t

r T ()X, i (s)dsd — Jt

t
Jy‘T(s)X3y(s)dsd6 (70)
t-0, t-1, t—o, J 6

t-1, t—1(t) t-0,

t-1, t-7(t) t-0,
J T ()X, (s)dsdf — I L x'T(s)dec(s)dsdG—J )L} yT ()X, 7 (s)dsdd

—7( t-7, t—o(t

t-1,

—o(t) rt— J(t) ) " ) t-o, T )
J s)X4y (s)dsd@ — 1, (1) J X7 ($)X,x(s)ds — 0, (1) Jt_ " Y ($)X,y(s)ds.

t—7(t)

where
V=V () + V), (), (71)
) _ . ‘ ) '
v, (t)=T(t)<Jt_ L (s)Mlx(s)dsL_ i (S)sz(s)ds>

+ 1, (O (- 1)Mx(t-1)) - Tx (- T(D)Mx(t - 1(t)))
+ 1, (1) (1% (E = T(O)Myx (£ = 1(D) = & (£ = 1,) M,k (t - 1,))
—2(x(t—1)) —x(t— 1)) M, (x(t — 7)) - T4% (£ = T(1)))

—2(x(t—1(8) - x(t-1,)) M, (1,5 (t - () - x(t - 7,))

-7 -7, t—1(t) t-7(t)
. %(t)(]t )Jt XT(u)Myc(u)duds—J- tj xT(u)M4x(u)duds)

t—(t t-7, s

t-1,

r 1 (t)(rl O (- 1)Myx (t - 1)) - J i (s)My'c(s)ds)

t—1(t)

t—7(t)

+ 1, (t)(‘rd72 Mx" (t—T(O))Mx(t - (1)) - I X" (s)M4x(s)ds>

t-7,

- % (71 ()Msn, (£) = T (O, ()M g, (£) + Sym{n} ())Msns (6)}+ Sym{r; (M, (D}),
21

(72)
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t-0, t-o(t)

V,z(t)=d(t)<j yT(s)Nlj/(s)ds—j j/T(s)sz/(s)ds>

+ o, (O (t= )Ny (t-0,) - 0.9 (t=a(OINj(t - (1))
+ 0,0 (045" (t = (EIN,y (t =0 (1) = ' (t—0,)N,j(t - 0,))
= 2(y(t=01) =yt =0()) Ny (y(t = 1) = 043 (t = 0 (1))
—2(y(t=0() = y(t-0,)) Ny (043 (t = 0(t) = ¥ (t - 03))

t—o (t) t—0,

t—0, t—0, t—o(t) pt—o(t)
. am(J J j (u)N3y(u)duds—J j j (u)N4y(u)duds> (73)
t-o(t) Js t-0, s
r 0,003 - aNle-a)- [ 5TON )
T . t=o(t) T .
+ Uz(t)<ad02(t)y (t—a(t))N4y(t—a(t))—L_ y (s)N4y(s)ds>
- aiz (o@®n5 (ON315 (D) = 0 (Dng (IN . () + Sym{rs (DN, (D} + Sym{ng (IN s (D)}).
21
So, the time derivative of V;(t) can be rewritten as
follows:
V()= & 0)(Q (x(1), 7(1) + Qy (0 (1), 5 ()EE) + 7(8)
t-1, t-1(t)
. (I L E OME(s - I A (s)sz(s)ds>
t—1(t) rt-7(t)
. 'r(t)(J J 7 ()M (w)duds - L J i (u)Mp’c(u)duds)
t—7(t) T )
-1 (t)J X (s)M3x(s)ds 7, (t) L_ x" ()M x (s)ds (74)
t—o(t)
+a(t)(j YT ()N, 3 (s)ds — Jt_ yT(s)sz/(s)ds>
) t—0, T ) t—o(t) pt-o(t) T )
+ a(t)(L y (u)N3y(u)duds—J.t7 J y (u)N4y(u)duds>
t-0, t—o (t) T )
. (t)J g (s)N3y(s)ds—az(t)J S ONG s,

where
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Q (), 7(1) = 7, (& (t - 1) Mx(t - 1)) = %" (£ = T(O)M, 5 (t - 7(1)))
+ 1, (1)1 (t = T(O)Myx (£ = 1(D) = & (£ 1,) My (t - 1))
—2(x(t—1)) —x(t— 1)) M, (x(t — 1)) - T4% (£ = T(1)))
—2(x(t—1(t) = x(t-1,)) M, (1,5 (t - () - x(t - 1,)) (75)
+ (O (t-1)Myx(t—1,) + 140 (D% (£ = T(E)Mx(t - 7(1))
— () (M, (8) + T (8)rg; ()M, (1) = Sym{ry (6)Mn5(6)}
- Sym{rlg (t)M 41, (t)} = @,7° (t) + D, 7(t) + D,

O, (a(),6(0) =0, (3 (t - 0Ny (t—0)) — 0,5 (t= ()N, 3(t -0 (1))
+ 0, (045" (£ =T (OINLJ (=0 (1) = " (£ 0,)Ny (t - ,))
—2(y(t=0) = y(t =0 () N, (y(t - 01) = 043 (t = (1))
= 2(y(t =0 () = y(t = 02)) Ny (043 (t =0 (1) = (£ - 0,)) (76)
+ a2 (1)) (t-0,)N;y(t—0,) + 0402 () (t -0 ()N, y(t - (b))
— o (1) (ON3715 (1) + 0 () (N7, () = Sym{ys (ON37, ()}
— Sym{n; (DN, 75 (1)} = W,0° (1) + 10 (1) + ¥,

Utilizing Lemmas 2 and 3, the single integral terms and
the double integral terms of V3(t) V,(t), and V](t) re-
spectively, can be as follows:

) Tr A (W, x()ds — o, ji YT (W5 (s)ds — Tz(t)J U ()X, (5)ds

t-1, t-(t)
t

t

t-0, t t t
—o, () L_m YT ()X, 5 (s)ds - J L}xT (5)X & (s)dsdf - L Je 7 ()X (s)dsdO

(77)
t-1, t-1(t) t-0,
—_— L_ & OMsx(9ds =7 (1) L_ (M, ()ds — o, (1) L_ I ON (9ds
o) o 4 T N T
—0,(t) Jt_ ¥y ($)N,y(s)ds< & (t)y Ty (t),
where According to (11), it follows that there exist diagonal

1, = diag{W,, Wy, X, + My, X, + Ny, Xy, Xy M, N, matrices H, and H,; then,

W, = diag{W,,3W,,5W,},

1

= diag{X,,1,3X,,1,5X;1} 0< -2(f(y(®) - L)’(f))THlf(y(t))
% g{z)lc+1 4%, l}ﬂ — ~2(f(y(t= o) - Ly(t o @O) H, f (y(t = 0 (1))

VI, = diag{M,,3M,, 5M,}, = & (OSym{II}E (o).
N iag{N,, 3N, 5N,},

(79)

4
¥ = col{yy, Vo, W3, Vs Vso Yo ¥y, Vg - Therefore, combining with (66), (74), (75), and (79), we
(78) have
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V() = & (0)(Q(r (1), 0 (1), 7(1), 0 ())E(H) - J ;t x'(5) (W, = 7()M)x (s)ds

t—1(t) t—0,
. j X (s) (Wz—r(t)Mz)x(s)ds—J O, =Ny (s

t—o(t

t—o (t) t-1,

jt_ﬁ () (X, - (M) (s)dsd0 (80)

YOy -sON)y@ds - [

t—0,

0

t—o(t)

-
j o r (9%, - H(OM,)i (5)dsd0 _j Zm J T @) (X, - 6Oy ()udd
|

t— a(t)
J 5T (w) (X, - 6 ((ON,) 7 ()dude,

t-0,

where Utilizing Lemmas 5 and 6, then the single and double
Q2 (), o (£), 7(£), 5(£)) = Sym{IL,} + II, + I, + II, + II, integrals in (80) are estimated as follows:
+ Sym{IL} + Q, (7, (£), 7, (1))
+ O, (0, (1), 0, (1)) = Q, (7(1))
+Q, (0 (1))
(81)

—(jtrl( () (W = (M) (s + me () (W, - 'T(t)Mz)x(s)ds>
t-7(t =T,
(82)
L or B . . E,
<-—& (1) (H (x(t),T(t) =, (x(1),7(1))) &(t),
T2 E, E,
t-0, T ) ) =0 (t) T . .
_(L o y () (W4 —a(t)Ny)y(s)ds + J y (S (Wy—0a(t)N,)y (s)ds)
\ T E -0, (83)
< ——fT(t)[ ] (H,(a(t),a(t)) -, (a(t), G(t)))[ ] (t),
012 E,
t-1, t-1, t—7(t) rt-1(t)
_(J”m je () (%, - 7(6) M) (s)dsdf + JH Je () (x, - ‘T(t)M4)x(s)dsd9)
F 1 F 2 (89
< —€T(t)[ v ] (H5(x(0),7(1)) - %(r(r)‘r(r)))[ . ]E(t),
2 2
t-0, t—0, t—o(t) pt—o(t)
_<Lw) R ACIE IO AT TEL T I i MU CIC IO y(s)dsde>
: (85)

T
<-¢ (t)[ ] (Hy(a(t),0 () =T, (a(t), G(t)))[ ]E(t),
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where

Ty (r(6),7(1) =

Z\(1(1),7(1) =

F(o(t),0(t) =

X5 (1(1),7(0)) =

4 (o(t),0(t) =

Mathematical Problems in Engineering

T T Ta1
* <1 Tl(t))Wz
T
T,(t)  — _
28,7, sy 0
a1
T, (t) 1
LT ',
T
[ t) \— t t
(HJZ())% AUNNCON
To1 T T
)\
* <1 + o )>"7/4
1
0, (1) — _
2,7, S) 0
T
K, (0(t),a(t) = ,
) e
0 0 Ogroyig,
T

Z, 0
Hy(z(t),7(t) = ]

[ 0 %,
[ ()T, X, ' T) 0 l
0 TN LT,

Z, 0
Hy(o(t),0(t) = ,

L0 &,
[ o (t)F, 2, 'F} 0
0 o (LTS F,

W\ = diag{W, — ()M, 3(W, - 7(t)M,)},

W, = diag{W, + 1()M,,3(W, + () M,)},

N

{
W = diag{W, - 6 ()N,3(W, - (t)N,)},
4 = diag{W, + ¢ (£)N,,3(W, + a(t)N,)},

2,

diag{2 (X, — 7()M;),4(W, - T()M;)},

2,

diag{2 (X, + 7(t)M,), 4(X, + T()M,)},

L5 = diag{2(X, - 6 (t)N,), 4(X, - 6 (N;)},

Xy = diag{2 (X, + 0 ()N,), 4(X, + 0 (H)N )}

(86)
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Combining (82)-(84), we have
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where

V()= E O (@), 7))+, (a(t),a(1)E®)), (87)
Y, (z(t),7(t)) = azrz (t) + a7 (t) + ay,
rF [T, TE o ]rF,
a,=o, + ,
LF,1 [ o TIZ,'T, JLF,
rE [ 1,7, T 0 rF, F, 1 [20,1,%, T 0 F,
a, =0, + - ,
LE,1 [ o 1TZ'r, ILF, F, 0 20, TL T, JLF,
T2 = T2 a7 —1cT TZ T2
1+—2 W, -28,%7,'S 25, +(1-—2s
E, r ( 721> ' T 2mr T2 ' < 721> : E,
= 0, (1) + 0 - ] [ ]
E2 — — E2
. Doy, —(1 - 2)5{7/;151
o1 Ty
rl ]T{yl O ”FII rl }T e 0 [Fll
— + N
B 0 2,ILF, F, 0 o 2T LF,
Y, (0(),5(t) = byo® () + by (t) + by,
T —=1..T
F,71' [1,2,T) 0 F,
bZ = \Ilz + >
T~ —
EF, 0 TiZ;'T,|LF,
L [Es rsaw;'st-w, S, - S, E, Fy1"[20,T,2,'T" 0 F,
by =¥ -— - ,
2 E, * %4 - SZ%;I\% E, F, 0 20’1T§§371T3 F,
[ 0y \— 0, —_|.T o o
E - (1 + 0_221>W3 - 72184W4 184 0_—2215‘3 +<1 - 0—221>S4 E
3 3
by = 0, 50 + ¥4 [ } ]
E4 — E4
. Qg7 —(1 - 2)5§W3133
L 031 071
rs H% 0 ] {Fg‘ rz ]T AT ' Ty 0 {F3j|
- + .
F4 0 §4 F4 _ F4 0 0?T§%3_1T3 F4

(88)
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Since Y, (7(#),7(t)) and Y, (o(t),0(t)) are convex
functions when 2a, > 0 and 2b, > 0, it can be guaranteed that
if the following conditions hold Y, (7(¢), 7(t)) <0, for all
7(t) € [1,,7,] when

Y, (7,,7(t)) <0,
Y, (7,,7(1)) <0, (89)

2a, > 0.
and Yy(a(t),if(t)) <0, for all o(¢t) € [0y, 0,], when

Y, (0,0(1)) <0,
Y, (0,0())<0, (90)
2b,>0.

Thus, it can be concluded that
Y, (z(t),7(t)) +Yy(0(t),c'7(t))<0, (91)

for all 7(¢) € [7;,7,] and o(¢) € [0}, 0,].

Finally, by applying Schur complement to (87), then
LMIs are equivalent to (91), which implies V () <0 for
a sufficient small scalar € > 0. Therefore, if LMIs (45)-(51)
hold, then GRNs (10) are asymptotically stable. This com-
pletes our proof. O

Remark 7. In the proof of Theorem 1, the function V (¢) is
usually shown in [20, 31, 35] for the proof of sufficient
condition which leads to a less conservative stability con-
dition. Although, Li et al. [35] added function V(¢) that
related information interval of time-varying delays 7 (t) and
o (t), adding information of time-varying delays may reduce
conservativeness but the number of decision variables in
LMI are more than the original function V(). Thus, our
Lyapunov functional V(¢) is not necessary to add in-
formation related in time-varying delays 7(t) and o (t).

Remark 8. Utilizing Lemma 5 in double integral terms (84)
and (85) affects LMI condition (91) which is in the form of
nonlinear time-delayed terms 72 (t) and o? (¢). The stability
criterion is obtained unfeasible by MATLAB LMI tools.
However, it can be easy to find negative conditions for
a quadratic function with time-varying delays by using the
convex function [44].

Remark 9. The estimation of the derivative of the new
Lyapunov functions V5 (t) and V,(t) are considered to-
gether which appear in (82)-(85). By employing extended
relaxed one integral inequality (Lemma 5) and the extended
relaxed double integral inequality (Lemma 6), it ensures that
the conservativeness in stability condition is reduced
compared with [32, 33]. Moreover, the estimation of the
double integral terms in the derivative forms (84) and (85)
guarantees our approach to be less conservative than one in
[35]. The effectiveness of this method will be demonstrated
in numerical simulation.
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TaBLE 1: The maximum allowable delay bound (MADB) of 7 (t) for
different 7.

Methods 0.1 0.5 1
Corollary 3.1, [34] 53 5.45 5.94
Theorem 1, [20] 5.5 5.91 6.41
Theorem 1, [35] 9.26 9.66 10.16
Theorem 1 9.15 9.75 10.35
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FIGURE 1: The trajectories of mRNAs and proteins.

Remark 10. The stability criterion of Theorem 1 in the form
LMIs (45)-(51) can be easy to examine by using LMI toolbox
in MATLAB [45].

Remark 11. The improved stability conditions by con-
structing new Lyapunov functionals are based on LMIs and
the dimension of the LMIs depends on the number of the
genes in GRNs. Thus, the computational burden problem
goes up. This problem is the issue in studying needs of LMI
optimization in applied mathematics and the optimization
research. Hence, further new techniques are developed to
reduce the conservativeness caused by the time delays such
as the delay-fractioning approach.

6. Numerical Example
In this section, we provide numerical example with a sim-

ulation to demonstrate the effectiveness of our results.

Example 1. Consider the genetic regulatory networks (10)
with the following parameters [46]:

A = diag{3, 3, 3},
C = diag{2.5, 2.5, 2.5},

0 0 =25 (92)
W=|[-25 0 0
0 -25 0

D = diag{0.8,0.8, 0.8}, f;(y,)=y?/1+y?, i=1,2,3,
and K = diag{0.65, 0.65, 0.65}.

Assume o, =0.1, 0, =0.3, 7, = 1.5, and 0, =0.7, and
the maximum allowable delay bound (MADB) of 7, with
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respect to various 7; which is obtained in Table 1. Moreover,
the time-varying delays 7(¢) and o (¢) are assumed to 7(¢) =
5.4sin? (5/18t) + 0.1 and o () = 0.2sin?(3.5¢) + 0.1. So, the
trajectories of mRNA and proteins are given in Figure 1 with
the initial conditions m = [0.6, 1, 1.5]", t € [-5.5, 0] and
p=11,2, 0.8]%, t € [-0.3,0]. And the unique equilibrium
point (m*, p*) of (5) is m*=[0.78 0.78 0.78]T and
p*=1[0.25 0.25 0.25]".

7. Conclusions

In this paper, the stability analysis problem for genetic
regulatory networks (GRNs) with time-varying delays is
studied. The new Lyapunov functionals have been estab-
lished for deriving the stability criterion for genetic regu-
latory networks with time-varying delays to reduce the
conservativeness of the stability condition. This paper fo-
cuses on the construction of new Lyapunov functionals
based on Jensen’s inequality and relaxed double integral
inequality. By employing Lemmas 5 and 6, new delay de-
pendent sufficient conditions are expressed in the terms of
linear matrix inequalities (LMIs) to ensure that it is as-
ymptotically stable for GRNs with time-varying delays.
Finally, a numerical example was given to illustrate the
effectiveness of the theoretical result and to show less
conservativeness than some existing results in the literature.
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