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In the contouring process, the trajectory generated by the computer numerical control (CNC) machine tool is a result of the
multiaxis coordinated motion. /e contour error has a direct impact on the accuracy of the machined product. To obtain higher
contouring accuracy of the multiaxis motion control system, this paper presents a cross-coupled control approach based on the
extended state observer sliding mode control. First, a single-axis sliding mode controller is designed, and an extended state
observer is used to estimate system disturbances and improve the system robustness. /en, the cross-coupled control approach
handles the coordinated motion of multiple axes to improve the contour control accuracy. Next, a simulation study is conducted
on the three-axis motion platform. Its result shows that the control algorithm is effective in reducing tracking errors and
contour errors.

1. Introduction

With the rapid development of the modern industry, there is
an increasing demand on higher accuracy for the multiaxis
manufacturing systems. To improve the contouring accu-
racy, many experts and scholars are devoted to researching
various single-axis tracking control strategies, thereby im-
proving the contour motion control accuracy indirectly
[1–3]. However, this conventional contour controller based
on the single-axis uncoupled control cannot fundamentally
solve the problem of contour control. For example, when an
axis has a large error under disturbances, the other axes do
not take necessary measures to reduce the impact of the
performance degradation of the axis on the overall per-
formance because they still consider that the axis works
normally. /erefore, to solve the shortcomings of such a
single-axis uncoupled controller, it is necessary to introduce
a coupledmechanism amongmultiple axes, with the contour
error as the control target, to directly reduce the contour
error and improve the contouring accuracy.

Karen proposed the cross-coupled control (CCC) to
solve the contour motion problem of the two-axis feed
system. On this basis, variable gain CCC is further proposed

[4, 5]. Since then, more research studies on optimized CCC
have been reported [6–10]. In CCC, the multiaxis control
system is considered as organic whole where internal
components are interconnected. /e error compensation is
calculated using the relations between the axes and fed back
to each single axis for correction, thereby improving the
matching and coordination between the axes. By changing
the open-loop to the closed-loop contour control, CCC
achieves the purpose of contour control and improves the
control accuracy of the system.

/e development of the contour control technology
results in increased complexity of the cross-coupled con-
troller enhanced robust stability, and better coordination,
but the anti-interference capacity is less improved. /e
multiaxis motion platform is susceptible to external dis-
turbances in the machining process, which affects the po-
sition accuracy and contour accuracy of the CNCmachining
system. /erefore, this paper introduces an extended state
observer (ESO) to estimate the disturbances and combines it
with the sliding mode controller (SMC) to improve the
position tracking accuracy of the single axis. Moreover, the
cross-coupled controller is used to deal with the coordinated
motion among the axes to ensure the accuracy of the contour
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control. /e simulation study on the three-axis motion
platform demonstrates that the approach can effectively
reduce the impact of external disturbances, improve the
coordination among the axes, and ensure the tracking ac-
curacy and contour accuracy.

2. Contour Error Model

Mismatch of dynamic characteristics of each axis motor is
the main cause of contour error [11]./is paper applies CCC
to coordinate the motion of each axis. /e contour error is
calculated by selecting the appropriate CCC gain. /en, the
contour error compensation is assigned to each axis, re-
spectively. /erefore, it is critical to build a more accurate
contour error model. For the noncircular arbitrary contour,
literature [12] proposes an effective two-axis contour error
vector estimation approach and further introduces the
multiaxis contour error estimation.

/e diagram of 3-axis motion contour error vectors is
shown in Figure 1.

P and R are actual position and reference position, re-
spectively, e represents the tracking error between the ref-
erence position and the actual position, ε is the contour
error, for the deviation between the actual position and the
desired contour, and t is the normalized tangential vector.
Because it is difficult to calculate the precise value of contour
error in practice, the estimation of contour error 􏽢ε is
adopted. Contour error estimation 􏽢ε depends on tracking
error e and normalize tangential vector t; when tracking
error ‖e‖ is small enough, the contour error ε can be closely
approximated by the contour error estimation vector 􏽢ε.

Define the normalized estimated contouring error vector
n:

n � η1t + η2e, (1)

which satisfies the following condition:

〈n, t〉 � 0, (2)

‖n‖ � 1, (3)

‖t‖ � 1. (4)

/e relation between η1 and η2 can be derived from the
above condition:

η1 � − η2 · 〈e, t〉. (5)

Combining formulas (3) and (5), according to the
properties of the vector inner product, the following are
obtained:

η1 � ∓
〈e, t〉

�����������

‖e‖2 − 〈e, t〉2
􏽱 ,

η2 � ±
1

�����������

‖e‖2 − 〈e, t〉2
􏽱 ,

(6)

in which the signs of η1 and η2 determine the direction of the
normalized estimation contour error vector. Because the

angle between the normalized estimated contour error and
the tracking error is within the range [− 90°, 90°] and satisfies
〈n, e〉≥ 0, η1 and η2 can be further determined as

η1 � −
〈e, t〉

�����������

‖e‖2 − 〈e, t〉2
􏽱 ,

η2 � −
1

�����������

‖e‖2 − 〈e, t〉2
􏽱 .

(7)

It can be seen from Figure 1 and equation (1) that the
estimated contour error vector 􏽢ε is the inner product of the
normalized estimated contouring error vector n and the
tracking error vector e, that is,

‖􏽢ε‖ � 〈n, e〉. (8)

/erefore, the estimated contour error vector is
􏽢ε � ‖􏽢ε‖ · n � 〈n, e〉 · n. (9)

/emagnitude of the estimated contour error vector can
be regulated by the cross-coupled controller and compen-
sated for each axis along the direction of the estimated
contour error vector, wherein how much compensation is
made for each axis is determined by the cross-coupled gain.
/erefore, the cross-coupled gain can be obtained directly
from the normalized estimated contour error vector.

Let n � [nx, ny, nz]T, and CCC gain C � [Cx, Cy, Cz]T

can be expressed directly as

Ci � ni,

i � x, y, z.
(10)

/e contour error is

ε � Cxex + Cyey + Czez. (11)

Since this approach is efficient for coupling calculation of
nonlinear contours, it is used to estimate the contour error
coupled gain in the cross-coupled controller in this paper.

Contour
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Figure 1: Contour error vector graph of 3-axis motion control
systems.
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3. System Model

Of all permanent magnet synchronous motors (PMSM), the
permanent magnet linear synchronous motor (PMLSM) is a
special type of motor in which the stator is arranged in a
straight line while the mover moves linearly along the stator
direction. Driven by the electromagnetic force, the linear
motor provides direct linear motion with the absence of a
mechanical transmission mechanism, thus eliminating the
additional mechanical losses. It features high efficiency and
high motion control accuracy, which are ideal for the ap-
plications with linear motion control characteristics, such as
precision machine tools and automated production lines.

PMLSMs which are perpendicular to each other are used
to contour control the three-axis motion platform in this
paper. /e mechanical motion equation is

Fe � Kfiq � M _v + Bv + d, (12)

where Fe is the electromagnetic thrust, Kf is the electro-
magnetic thrust coefficient, M is the total mass of the mover
and the load carried by the mover, B is the viscous friction
coefficient, v is the speed of the motor mover, _v is the ac-
celeration of the motor mover, and d is the external
disturbance.

/e motor position q and the motor speed v are selected
as system state variables, and the state equation of PMLSM
can be written as

_q � v,

_v � −
B

M
_q +

Kf

M
u + d.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)

u � iq is the motor control input. /e direct drive three-axis
motion platform system model can be represented by three
second-order differential equations:

€q1 � −
B1

M1
_q1 +

Kf1

M1
u1 + d1,

€q2 � −
B2

M2
_q2 +

Kf2

M2
u2 + d2,

€q3 � −
B3

M3
_q3 +

Kf3

M3
u3 + d3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

4. Controller Design

In the actual machining process, the multiaxis motion
control systems generally have uncertain nonlinearities,
strong coupling, and external disturbances, which affect the
position accuracy and contour accuracy of the CNC ma-
chining systems. /erefore, to meet the machining accuracy
requirement of the three-axis motion platform, this paper
designs the controller from two aspects: single-axis position
control and contour control. For the single-axis motion, an
ESO-based sliding mode controller is used to improve
single-axis position tracking accuracy and single-axis

robustness is ensured. For the motion between axes, the
CCC algorithm is used to improve contour control accuracy.
/e proposed contour error CCC scheme is shown in
Figure 2.

qx d， qy d， and qz d are the reference input position of x,
y, and z axes, respectively, and qx， qy， and qz are actual
output position of three axes. ε is the contour error. Px, Py,
and Pz represent the controlled object of three axes.

/e workflow is described as follows:

(1) /ree-axis tracking error ex, ey, and ez is obtained by
the reference input and the actual output of each axis

(2) /ree-axis tracking errors are combined with the
contour error gains Cx, Cy, and Cz to obtain the
contour error ε

(3) /ree-axis tracking errors are processed with the
sliding mode controllers of x, y, and z axes, re-
spectively, to obtain the control signals ux, uy, and uz

(4) After processed by the cross-coupled controller,
the contour error is combined with Cx, Cy, and Cz

to obtain the contour error compensation of each
axis

(5) By taking the sliding mode control amount and the
actual output of each axis as the input signals of the
ESO, the observations of the position signals, speed
signals, and disturbance signals of the respective axis
are generated and fed back to the SMC

(6) ux, uy, and uz and the contour error compensation of
each axis are superimposed as the total control
amount which is applied on each axis actuator with
perturbation; thus, the contour motion control is
achieved.

4.1. Extended State Observer Design. /e single-axis motion
control is susceptible to disturbance, thereby degrading the
control performance. To solve this problem, an ESO-based
disturbance compensation approach is proposed in this
section. /e basic idea for ESO is to take the disturbance
quantity in the system as a state quantity and combine it with
the original state variables to construct the extended state
observations; then, we can use a few measurable data in the
system model to estimate the external disturbances and
system state information that cannot be measured. As a
result, the impact of disturbances on the system can be
traded off to improve the system’s antidisturbance and
robustness [13, 14].

Assume the state variables x1 � q and x2 � v � _q, and
system (15) can be written as the following state equation:

_x � Ax + G
Kf

M
u + d􏼠 􏼡,

y � Cx,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(15)

in which x �
x1
x2

􏼢 􏼣 �
q

_q
􏼢 􏼣, A �

0 1
0 − (B/M)

􏼢 􏼣, G �

0
1􏼢 􏼣, and C � 1 0􏼂 􏼃.
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/e ESO is designed as follows:

_􏽢q � 􏽢_q +
α1
σ

(q − 􏽢q),

_􏽢_q �
Kf

M
u + 􏽢d +

α2
σ2

(q − 􏽢q),

_􏽢d �
α3
σ3

(q − 􏽢q).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

With this ESO, if t⟶∞, obtain 􏽢q⟶ q, 􏽢_q⟶ _q, and
􏽢d⟶ d, where 􏽢q, 􏽢_q, and 􏽢d are observer states. σ > 0, and α1,
α2, and α3 are positive real numbers, and the polynomial
s3 + α1s2 + α2s + α3 satisfies the Hurwitz criterion.

Define μ � μ1 μ2 μ3􏼂 􏼃
T.

μ1 � q − 􏽢q/σ2, μ2 � _q − 􏽢_q/σ, and μ3 � d − 􏽢d.
Due to

σ _μ1 �
_q − _􏽢q

σ
�
1
σ

_q − 􏽢_q +
α1
σ

(y − 􏽢q)􏼒 􏼓􏼒 􏼓 �
1
σ

_q − 􏽢_q −
α1
σ

(y − 􏽢q)􏼒 􏼓 � −
α1
σ2

(q − 􏽢q) +
1
σ

( _q − 􏽢_q) � − α1μ1 + μ2,

σ _μ2 � σ
€q −

_􏽢_q

σ
�

Kf

M
u + d −

Kf

M
u + 􏽢d +

α2
σ2

(y − 􏽢q)􏼠 􏼡􏼠 􏼡 � d − 􏽢d −
α2
σ2

(y − 􏽢q)

� −
α2
σ2

(q − 􏽢q) +(d − 􏽢d) � − α2μ1 + μ3,

σ _μ3 � σ( _d −
_􏽢d) � σ _d −

α3
σ3

(y − 􏽢q)􏼒 􏼓 � σ _d −
α3
σ2

(y − 􏽢q) � − α3μ1 + σ _d.

(17)
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Figure 2: Contour error control structure diagram of the ESO SMC-based three-axis motion system.
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/e observation error state equation can be written as
follows:

σ _μ � Aμ + σG _d, (18)

in which A �

− α1 1 0
− α2 0 1
− α3 0 0

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ and G �

0
0
1

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦.

Characteristic equation of matrix A:

|λΙ − A| �

λ + α1 − 1 0

α2 λ − 1

α3 0 λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 0. (19)

/en,

λ + α1( 􏼁λ2 + α3 + α2λ � 0, (20)

λ3 + α1λ
2

+ α2λ + α3 � 0. (21)

By selecting αi(i � 1, 2, 3), make A satisfy the Hurwitz
criterion.

4.2. Design of the Sliding Mode Controller Based on the Ex-
tended State Observer. /e sliding mode function is chosen
as

s � _e + ce, (22)

in which c> 0 and e � q − qd.
Sliding mode controller based on the extended state

observer is designed as

u �
Kf

M
􏼠 􏼡

− 1

(− k􏽢s − 􏽢ω − 􏽢d), (23)

in which 􏽢s � 􏽢_e + c􏽢e, 􏽢e � 􏽢q − qd, 􏽢_e � 􏽢_q − _qd, and
􏽢ω � c􏽢_e − €qd − B/M􏽢_q.

/en, the sliding mode controller can be written as

u �
Kf

M
􏼠 􏼡

− 1

€qd +
B

M
􏽢_q − c􏽢_e − k􏽢s − 􏽢d􏼒 􏼓. (24)

Take the Lyapunov function as

V �
1
2
s
2
. (25)

/en,

_V � s _s � s(€e + c _e) � s
Kf

M
u + d −

B

M
_q − €qd + c _e􏼠 􏼡

� s
B

M
􏽢_q − c􏽢_e − k􏽢s − 􏽢d + d −

B

M
_q + c _e􏼒 􏼓

� s −
B

M
􏽥_q + c􏽥_e + 􏽥d − k􏽢s􏼒 􏼓 � − ks􏽢s + s −

B

M
􏽥_q + c􏽥_e + 􏽥d􏼒 􏼓,

(26)

in which 􏽥_q � _q − 􏽢_q，􏽥_e � _e − 􏽢_e， and 􏽥d � d − 􏽢d.
Obviously, take the appropriate value k, and ensure _V≤ 0.

4.3. Cross-Coupled Controller. To improve the contouring
accuracy, address the matching between the axes, and
achieve interaxis coordinated control; the cross-coupled
controller is introduced. /e cross-coupled controller uses a
PID control algorithm. /e PID controller has a simple
control algorithm and small computation amount. Fur-
thermore, it can ensure the system real-time performance,
effectively reduce the system contour error, and improve the
contouring accuracy.

5. Experiments

To verify the effectiveness of the multiaxis contour error
control approach proposed in this paper, a simulation test is
conducted, in which three PMLSMs are used as the control
objects of the three-axis CNC system, and the 3D saddle-
shape curve and screw-shape curve are selected for vali-
dation. /e multiaxis CNC system is susceptible to distur-
bances. /e three axes x, y, and z use dx � 800 sin(πt),
dy � 900 sin(2πt), and dz � 800 sin(4πt) to simulate the
disturbance, respectively.

To reduce the impact of disturbance and improve the
tracking accuracy, the sliding mode control algorithm is
applied to each axis; the disturbance on each axis is observed
by an ESO. Control system objects and controller param-
eters are shown in Table 1.

/e parameters of the cross-coupled PID controller are
Kp � 0.01, Ki � 0.2, and K d � 0.02, respectively.

Case 1. 3D saddle-shape curve is selected for simulation.
/e desired curve is starting from (2,0,0.5).

x � 2 cos(2πt)(mm),

y � 3 sin(2πt)(mm),

z � 0.5 cos(4πt)(mm).

⎧⎪⎪⎨

⎪⎪⎩
(27)

Simulation results are shown in Figure 3.
Figure 3(a) shows the saddle-shape curve output in the

three-dimensional space, and Figure 3(b) shows x, y, and z

three-axis’s position tracking, where the solid line is the
single-axis desired trajectory, and the dotted line is the actual
motion trajectory. Figure 3(c) is contour error, Figure 3(d) is
the perturbation on three axes and its observation, and
Figure 3(e) is the varying cross-coupled gains.

It can be seen from the simulation results Figures 3(b)
and 3(d) that the uniaxial position is well tracked with the
proposed single-axis sliding mode control algorithm, and
the disturbances of each axis are effectively estimated with
the extended state observer. Meanwhile, with the presence of
the cross-coupled controller, the contour curve is well
tracked. /ere is only a small contour error in the initial
stage. /is can be easily seen by comparing the input and
output of the 3D saddle curve.

For comparison, the extended state observation for the
disturbances is cancelled, and tracking error and contour
error simulation results are shown in Figure 4.

It can be seen that, after canceling the extended state
disturbance observation, both the single-axis tracking error
and the overall contour error are significantly increased, and

Mathematical Problems in Engineering 5



Table 1: Parameters of the 3-axis PMLSM control system.

Parameters x axis y axis z axis
M 5.8 5.8 1.4
Kf 10.9 10.9 0.82
B 244 244 82
c 500 1000 500
k 100 150 120
α1 6 8 9
α2 11 19 26
α3 6 12 24
σ 0.01 0.01 0.01
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the control performance is degraded obviously. /e com-
parison of specific error values is shown in Table 2.

From the error comparison table, it can be intuitively
found that, with the presence of the extended state distur-
bance observation, the single-axis tracking error is signifi-
cantly smaller than that with the absence of the disturbance
observation./e average tracking error of the x axis drops to
10.19% from 0.0206 to 0.0021; the average tracking error of
the y axis drops to 42.42% from 0.0034 to 0.0014; and the
average tracking error of the z axis drops to 56.4% from
0.0039 to 0.0022. /e contour error is reduced significantly.
/e maximum contour error is reduced from 0.4650 to
0.1057, the average contour error is reduced from 0.2004 to
0.012, and the contour accuracy is improved by 16.7 times.

To further reflect the effectiveness of the control algo-
rithm, we choose another 3D screw-shape curve for simu-
lation analysis.

Case 2. Screw-shape curve is selected for simulation anal-
ysis. /e desired curve is starting from (3,0,0).

x � 3 cos(πt)(mm),

y � 3 sin(πt)(mm),

z � πt(mm).

⎧⎪⎪⎨

⎪⎪⎩
(28)

Simulation results are shown in Figure 5.
Figure 5(a) shows screw-shape curve contour tracking,

and Figure 5(b) shows x, y, and z three-axis’s position
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Figure 3: Simulation results of the 3-axis motion control system (saddle-shape curve with ESO). (a) Saddle-shape curve output. (b) /ree-
axis position tracking. (c) Contour error (with ESO). (d) Triaxial perturbation and its observation. (e) Cx, Cy, andCz.
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Table 2: Saddle-shape curve simulation error.

Simulation error (mm) With ESO Without ESO

Tracking error

Maximum value-x 0.0046 0.0383
Mean value-x 0.0021 0.0206

Maximum value-y 0.0151 0.0140
Mean value-y 0.0014 0.0034

Maximum value-z 0.0035 0.0061
Mean value-z 0.0022 0.0039

Contour error Maximum value 0.1057 0.4650
Mean value 0.0120 0.2004
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tracking, where the solid line is the single-axis desired
trajectory, and the dotted line is the actual motion trajectory.
Figure 5(c) is contour error, Figure 5(d) is the perturbation
on three axes and its observation, and Figure 5(e) is the
varying cross-coupled gains. /e results from the screw-
shape curve simulation show that the proposed cross-
coupled controller based on the ESO sliding mode control
algorithm not only produces better single-axis tracking
performance but also well tracks the contour curve. /e
simulation error of the screw-shape curve is shown in
Table 3.

In short, the simulation results of the saddle curve and
screw curve can effectively validate the effectiveness of the
proposed control approach.

6. Conclusions

For the multiaxis linkage control system using the three-axis
PMLSM servo drive, a contour error control algorithm based
on the extended state disturbance observation is proposed to
effectively reduce tracking error and contour error. /e ESO
can observe the disturbance signals to reduce the impact of
the disturbances. Combine ESO with the sliding mode

control algorithm to form the single-axis trajectory tracking
controller with an aim of ensuring single-axis tracking ac-
curacy and robustness. Moreover, the cross-coupled con-
troller is applied to handle interaxis coordinated motion,
make correction and compensation for the contour error of
each axis, and improve dynamic performance and parameter
matching of the system to ensure contour control accuracy.
Next, the control algorithm is applied to the three-axis
motion platform. /e saddle curve contour and spiral curve
contour are selected for simulation research. /e results
validate the effectiveness of the control algorithm.
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