
Research Article
Fruit Fly Optimization Algorithm Based on Single-Gene
Mutation for High-Dimensional Unconstrained
Optimization Problems

Xiao-dong Guo ,1 Xue-liang Zhang ,1 and Li-fang Wang 2

1School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2School of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China

Correspondence should be addressed to Li-fang Wang; wanglifang@tyust.edu.cn

Received 6 August 2020; Revised 19 October 2020; Accepted 1 November 2020; Published 17 November 2020

Academic Editor: S. A. Edalatpanah

Copyright © 2020 Xiao-dong Guo et al. ,is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

,e fruit fly optimization (FFO) algorithm is a new swarm intelligence optimization algorithm. In this study, an adaptive FFO algorithm
based on single-gene mutation, named AFFOSM, is designed to aim at inefficiency under all-gene mutation mode when solving the
high-dimensional optimization problems. ,e use of a few adaptive strategies is core to the AFFOSM algorithm, including any given
population size, mutation modes chosen by a predefined probability, and variation extents changed with the optimization progress. At
first, an offspring individual is reproduced from historical best fruit fly individual, namely, elite reproduction mechanism. And then
either uniform mutation or Gauss mutation happens by a predefined probability in a randomly selected gene. Variation extent is
dynamically changed with the optimization progress. ,e simulation results show that AFFOSM algorithm has a better accuracy of
convergence and capability of global search than the ESSMER algorithm and several improved versions of the FFO algorithm.

1. Introduction

In the recent years, swarm intelligence has become a re-
search focus of optimization design field because of its
special advantages, such as simple to operate, quick con-
vergence rate, and powerful ability of global search. New
swarm intelligence technologies, such as genetic algorithms
(GAs) [1], ant colony optimization (ACO) [2], particle
swarm optimization (PSO) [3], artificial fish-swarm opti-
mization (AFSO) [4], artificial bee colony algorithm (ABC)
[5], firefly algorithm (FA) [6], FFO [7, 8], biogeography-
based optimization (BBO) [9], whale optimization algorithm
(WOA) [10], butterfly optimization algorithm (BOA) [11],
gaining sharing knowledge-based algorithm (GSK) [12], and
their respective improved versions are emerging in endlessly
and have been widely applied to the fields of optimization
design [13–20].

Fruit fly is an insect which eats plants that are decaying,
especially fruits. Fruit flies acquire chemical information in

their environment through smell and taste receptors on the
surface of their bodies and then regulate behaviors, such as
foraging, aggregation, mating, and spawning. In these
processes, olfactory plays an important role over long dis-
tances and shorter ranges.

FFO algorithm [7, 8] is proposed by Pan in 2011. FFO
simulates the foraging behavior of fruit flies and is a fast,
structure-simple, and easily realized algorithm. ,erefore, it
already attracted broad attention in recent years [21–44] and
has been successfully applied to a wide range of practical
problems [45–52].

Fruit flies have olfactory and visual abilities superior to
other species. When foraging, fruit flies first use their own
olfactory organs to smell the odor from food source and
exchange odor information to the surrounding fruit flies, a
process known as the olfactory foraging phase.,en, the flies
used their visual organs to find and fly to the locations of the
flies that had gathered the best odor information, a process
named the vision foraging phase.

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 9676279, 8 pages
https://doi.org/10.1155/2020/9676279

mailto:wanglifang@tyust.edu.cn
https://orcid.org/0000-0002-4318-4204
https://orcid.org/0000-0003-0626-6814
https://orcid.org/0000-0002-7555-3692
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/9676279

A series of studies show that some unreasonable algo-
rithmic design makes FFO algorithm ill-equipped to jump
out of local extremum and to handle complex, high-di-
mensional, and nonlinear problems. So with this as the
starting point of the paper, a small population, adaptive and
improved version of the FFO algorithm, named AFFOSM, is
developed based on the single-gene mutation mode, in
which the only one gene of an offspring is different from the
elite individual.

On the contrary to a single-gene mutation mode, all-
gene mutation mode is adopted by most of optimization
algorithms, such as FFO, PSO, and ABC algorithm, in which
each gene of an offspring is different from the elite or parent
individual.

,e efficiency of the AFFOSM algorithm presented in
this research is evaluated by solving 6 test problems. Op-
timization results demonstrate that AFFOSM is very com-
petitive compared to the state-of-the-art single-gene
optimization methods.

,e rest of the paper is structured as follows. Section 2
describes the related research work about the further
analysis and modification to FFO Algorithm. Section 3
describes the developments of FFO algorithm, from all-gene
mutation to single-gene mutation. AFFOSM algorithm
developed in this study will be covered in detail in Section 4.
Test problems and optimization results are presented and
discussed in Sections 5. Section 6 summarizes the main
findings of this study and suggests directions for future.

2. Related Work

It is worth noting that, in the FFO algorithm, fruit fly in-
dividual is represented in its coordinates in a 2D plane, and
the corresponding variable value is calculated as the re-
ciprocal of the Euclidean distance between individual and
ordinate origin, as illustrated in Figure 1.

Another noteworthy thing about the FFO algorithm is
elitist reproduction strategy. Once a historical best solution
is found, fruit fly individuals will fly to it and look for the
food resources around it before a newly best solution is
found.

,ere are also some disadvantages as follows:

(1) ,e ability to solve the problem whose theoretical
optimal solution is negative is not available.

(2) It is difficult and time-consuming for population
initialization when definition domain is far away
from ordinate origin.

(3) Obviously, it is not good choice that search range is
fixed, compared to dynamic one.

(4) Most of searching behavior happens around ordinate
origin due to nonuniform search in definition do-
main. FFO algorithm is workable to deal with a class
of problems, such as quite a lot of test function whose
theoretical optimal solution is very close to zero and
is poor for most of the optimization problems in
practical projects.

(5) Elitist reproduction strategy could make fruit fly
swarm easy to fall into local extremum and not
capable to solve complex, high-dimensional and
nonlinear problems.

Given the abovementioned facts, many improvements
have been made in recent years.

Fu-qiang Xu and Tao [53] presented the G-FFO algo-
rithm with sign processing in a randommanner. Inspired by
probability estimation for code words in adaptive arithmetic
coding, a FFO algorithm with adaptive sign processing
(FFOASP) is proposed [54].

Wu Lei et al. propose SEDI-FFO algorithm in which
more fruit flies would fly in the search direction that was best
for finding the optimal solution or at least in a direction close
to the optimal direction [34].

Based on hybrid location information exchange mech-
anism, HFFO algorithm is proposed that enables flies to
communicate with each other and conduct local search in a
swarm-based approach [36].

Fan et al. propose WFFO algorithm in which an effective
whale-inspired hunting strategy is introduced to replace the
random search plan of the original FFO [38].

Niu et al. propose an improved FFO algorithm based on
differential evolution (DFFO) by modifying the expression of
the smell concentration judgment value and by introducing a
differential vector to replace the stochastic search [52].

CEFFO algorithm is proposed in which trend search is
applied to enhance the local searching capability of fruit fly
swarm, and coevolution mechanism is employed to avoid
the premature convergence and improve the ability of global
searching [40].

SCA_FFO algorithm [41] is developed by introducing
the logic of the sine-cosine algorithm.,e fruit fly individual
adopts the way to fly outward or inward to find the global
optimum.

3. FFO: FromAll-Gene to Single-GeneMutation

In general, the nonconstrained optimization problem can be
formulated as an n-dimensional minimization problem as
follows:

(0, 0)

Dist 1

Dist 3

FlyGroup

Fly1 (X1, Y1)
smell1

Food

Iterative
evolution

Fly2 (X2, Y2)

Fly3 (X3, Y3)
smell3

S2 = 1/Dist2
Smell2 = Function (S2)

X

Y

Figure 1: Foraging process of fruit fly.

2 Mathematical Problems in Engineering

minf(x),

s.t. x � x1, x2, . . . , xn(,

xj ∈ lj, uj , j � 1, 2, . . . , n,

(1)

where f is a boundary objective function, x � (x1, x2, . . . ,

xn) is the set of decision variables, n is the dimensionality,
and lj and uj are the lower and upper bounds of the decision
variable xj, respectively.

3.1. FFO Algorithm. In FFO, fruit fly individual is repre-
sented in its coordinates in a plane and generated in uniform
mutation around historically best solution, also called
current population location:

Xi � X axis ± σ × rand(),

Yi � Y axis ± σ × rand(),
(2)

where (Xi, Yi), (X axis, Y axis)is the coordinate pair of
current individual xi and current population δ,σ is the
amplitude of uniform mutation, and rand is the uniformly
distributed random numbers between 0 and 1. ,e value of
xi is the reciprocal of the Euclidean distance between fruit fly
individual and ordinate origin:

xi �
1

�������

X
2
i + Y

2
i

 . (3)

It can be found that the mechanism of individual rep-
resenting limits the performance of FFO.

3.2. LGMS-FFO Algorithm. Shan et al. [55] use one-di-
mensional coordinate of fruit fly to denote the individual
location, and then, let it be equal to the value of xi, which can
be formulated as follows:

xi � Xi,

δ � X axis.
(4)

Based on a new linear generation mechanism of can-
didate solution, LGMS-FFO algorithm is proposed:

ω � ω0 × αIter,

xi � δ ± ω ×[l +(u − l) × rand()],
(5)

where ω is a weight factor to tune variation extent, ω0 is the
initial weight, α is the weight coefficient, and Iter is the
current generation.

Obviously, all-gene mutation mode is used to generate
offspring individuals in FFO and LGMS-FFO algorithms.
However, the higher dimensionality the functions to be
optimized are, the lower the probability of excellent indi-
viduals is. ,is in turn has caused a low convergence rate for
solving high-dimensional functions.

3.3. IFFO Algorithm. Different from FFO and LGMS-FFO,
single-gene mutation mode is introduced that only one gene
is selected randomly to mutate in the IFFO algorithm. It is

demonstrated that the single-gene mutation mode is a better
choice in performance than the all-gene mutation mode for
solving high-dimensional functions.

IFFO algorithm is presented in which a control pa-
rameter σ is used to tune self-adaptively the search scope in a
random direction of current swarm location, and offspring
individuals are generated in the single-gene uniform mu-
tation mode [28]:

σ⟵σmax × exp log
σmin

σmax
 ×

Iter
Itermax

 ,

xi,d⟵ δd ± σ × rand(),

xi,j⟵δj, i � 1, 2, . . . , k, j � 1, 2, . . . , n, j≠d,

⎧⎪⎨

⎪⎩

(6)

where σmax is the maximum radius, σmin is the minimum
radius, and d is a random integer between 1 and n.

4. AFFOSM Algorithm

ESSMER algorithm, an improved evolutionary strategy with
single-gene mutation and elite reproduction, is presented for
solving high-dimensional function [56]. In the ESSMER
algorithm, the best father individual is chosen to generate
λ + k offsprings, λ by Gauss mutation, and k by uniform
mutation:

xi,d � δd + σtN(0, 1),

xi,j � δj, i � 1, 2, . . . , λ, j � 1, 2, . . . , n, j≠ d,

⎧⎪⎨

⎪⎩

xi,d � δd + ld + ud − ld(rand(),

xi,j � δj, i � 1, 2, . . . , k, j � 1, 2, . . . , n, j≠ d,

⎧⎪⎨

⎪⎩

(7)

where d is a random integer between 1 and n. σt is a variation
extent related to the optimization process, and its initial
value σ0 is equal to 2. σt is reduced by a quarter once the
stagnant iterations (recorded as flag) reach a default
iteration.

Inspired by ESSMER, AFFOSM algorithm, an adaptive
FFO algorithm based on single-gene mutation, is designed in
this article. At first, an offspring individual is reproduced
from historical best father individual. And a randomly se-
lected gene is modified by either uniform mutation or Gauss
mutation occurring by a predefined probability. Compared
with ESSMER, the initial variation extents are entirely de-
pendent on the problems to be optimized. ,e initial am-
plitude of uniform variation is equal to the width of the
definition domain, a very broad range. ,e initial amplitude
of Gauss mutation is equal to a tenth of the definition
domain, a relatively little range.

In the process of optimization, the amplitude σf of
uniform variation is cyclically adjusted. At the beginning
of each iteration, σf is reduced by a quarter. σf will
be reverted to the initial value until a better solution is
achieved or a predefined accuracy is reached.

,e amplitude σs of Gauss mutation is dynamically
changed with the optimization progress. ,ose continuous

Mathematical Problems in Engineering 3

stagnant iterations are recorded by a variable namedflag. ,e
amplitude σs remains unchanged as long as flag is less than a
predefined value, such as 30. Otherwise, the amplitude σs is
reduced successively by a quarter unless flag is not less than
30. Meanwhile, a variable, written as σtemp, is used to save and
restore the new amplitude σs once a better solution is found.

AFFOSM algorithm mainly includes 3 steps as follows:

Step 1. Initialization.

Set population size N and maximum iteration
itermax. Set σmax⟵u − l, σmin⟵10−7,
σf⟵σmax, and σs⟵σmax/10.

Step 2. Osphresis foraging phase.

Update the mutation amplitudes.
Before a new iteration, the mutation am-

plitudes are updated as follows:
σf⟵ σf × 0.75
if σf < σmin, then σf⟵ σmax
if flag � 30, then σs⟵ σs × 0.75,

σtemp⟵ σs, flag⟵ 0
Where the variable σtemp is used to guar-

antee the continuity of the Gauss mutation
amplitude.
Generate new solutions

For each individual, the uniform mutation
is executed with probability 0.2:

xi,d � δd ± σfrand(),

xi,j � δj, j � 1, 2, . . . , n, j≠ d.

⎧⎨

⎩ (8)

,eGauss mutation is executed with probability 0.8:

xi,d � δd + σsN(0, 1),

xi,j � δj, j � 1, 2, . . . , n, j≠ d,

⎧⎨

⎩ (9)

where d is a random integer between 1 and n.
Step 3. Vision foraging phase.

Evaluate each new solution. If a better solution
is discovered, then update δ and set flag, σf, and
σs to be 0, σmax, and σtemp. Otherwise, let flag
equal to flag + 1 and return Step 2.

,e computational complexity of AFFOSM is related to
the size of populations N and the number of iterations
itermax.,e computational complexity of one fruit fly at each
iteration is one, and then, the computational complexity of
AFFOSM can be summarized as O(N × itermax), which is
the same as original FFO, IFFO, and ESSMER.

5. Test Functions and Results Analysis

To verify the proposed AFFOSM algorithm, a total of 6
benchmark problems with different characteristics are listed
in Table 1 where n denotes the dimensionality of the
functions andf(x∗) is the global optimal.

As another improved version of FFO algorithm, SFFO
[57] adjusts adaptively its search along an appropriate de-
cision variable from its previous experience in generating
promising solutions.

Table 1: Test function.

Function Expression Definition domain f(x∗)

f1 f(x) �
n−1
i�1 (100(xi+1 − x2

i)2 + (1 − xi)
2) [−30, 30] 0

f2 f(x) �
n
i�1 x2

i
[−100, 100] 0

f3 f(x) � −20 exp(−0.2
�����������
(1/n)

n
i�1 x2

i

) − exp((1/n)

n
i�1 cos(2πxi)) + 20 + e [−32, 32] 0

f4 f(x) � n
i�1 |xi sin(xi) + 0.1xi| [−10, 10] 0

f5 f(x) � (1/4000)
n
i�1 x2

i −
n
i�1 cos(xi/

�
i

√
) + 1 [−600, 600] 0

f6 f(x) �
n
i�1(x2

i − 10 cos(2πxi) + 10) [−5.12, 5.12] 0
Functions f1 and f2 are unimodal. Function f1 is the Rosenbrock function, also referred to as the valley or banana function. Its global minimum lies in a
narrow, parabolic valley. Function f2 is the sphere function, also referred to as the harmonic function with the only global minimum. Functions f3–f6 are,
respectively, Ackley, Alpine, Griewank, and Rastrigin function. ,ey are multimodal, and each of them has a large number of local minima and is difficult to
be optimized.

Table 2: ,e performance on test functions with n� 100 and 200.

Function ESSMER IFFO SFFO AFFOSM

f1
n� 100 1.49E+ 02 1.91E+ 02 1.68E+ 02 1.25E+ 02

/1.04E+ 02 /4.08E+ 02 /6.20E+ 02 /5.02E+ 01

n� 200 4.31E+ 02 4.46E+ 02 4.59E+ 02 3.31E+ 02
/4.02E+ 02 /4.38E+ 02 /7.01E+ 02 /3.16E+ 02

f2
n� 100 3.98E− 14 3.97E− 16 3.66E− 16 7.43E− 43

/4.63E− 14 /9.66E− 17 /1.12E− 16 /6.64E− 42

n� 200 1.34E− 07 3.25E− 15 3.01E− 15 1.15E− 22
/1.69E− 07 /6.09E− 16 /4.12E− 16 /1.61E− 22

f3
n� 100 5.27E− 08 7.51E− 09 7.74E− 09 5.37E− 13

/5.15E− 08 /7.90E− 10 /9.77E− 10 /1.91E− 13

n� 200 6.13E− 05 1.47E− 08 1.53E− 08 1.34E− 12
/2.56E− 05 /1.17E− 09 /1.21E− 09 /1.08E− 12

f4
n� 100 1.32E− 07 1.16E− 07 1.37E− 07 4.10E− 14

/1.37E− 07 /5.39E− 08 /4.56E− 08 /8.40E− 15

n� 200 4.53E− 04 6.63E− 07 6.73E− 07 3.84E− 12
/1.71E− 04 /1.51E− 07 /1.23E− 07 /2.27E− 12

f5
n� 100 2.14E− 01 9.90E− 03 1.23E− 02 7.40E− 03

/1.45E− 01 /2.41E− 02 /2.21E− 02 /2.51E− 02

n� 200 2.95E− 01 9.90E− 03 1.23E− 02 9.90E− 03
/1.76E− 01 /2.72E− 02 /1.81E− 02 /1.22E− 02

f6
n� 100 1.26E− 12 9.95E− 01 9.95E− 01 2.01E− 07

/1.28E− 02 /7.88E− 01 /7.86E− 01 /4.96E− 01

n� 200 3.76E− 06 1.69E+ 01 1.89E+ 01 2.00E+ 00
/7.57E− 01 /5.38E+ 00 /3.77E+ 00 /1.49E+ 00

R n� 100 3.17 2.667 2.833 1.333
n� 200 3.264 2.556 2.819 1.361

4 Mathematical Problems in Engineering

In the ESSMER algorithm, population size N� 10, λ�

8, k � 2, and σ0 � 2. For IFFO and SFFO algorithms, N� 3
and σmax � (u − l)/2. For the AFFOSM algorithm, N� 3,
σmax � u − l, and σmin � 10−7 for all algorithms.

,ese algorithms are coded on Matlab 7.1 and run on
Windows 10 operating system and Intel(R) Core(TM) i7-
6600U CPU @ 2.60GHz 2.81GHz with 8G RAM.

Each problem is run 25 times independently. ,e me-
dian/standard deviations over these 25 runs and the average
rank of four algorithms on Friedman’s test [58] are reported
in Table 2. Comparisons of convergence curves on n� 100
are also presented in Figure 2.

Comparing with the ESSMER algorithm, the AFFOSM
algorithm performs better for functions f1–f5 with both

2 4 6 8 10 12 14
×104

2

4

6

8

Fitness evaluations

lo
gf

 (x
)

Function f1

AFFOSM
ESSMER

IFFO
SFFO

2 4 6 8 10 12 14
×104Fitness evaluations

AFFOSM
ESSMER

IFFO
SFFO

Function f3

–10

–5

0

lo
gf

 (x
)

2 4 6 8 10 12 14
×104Fitness evaluations

AFFOSM
ESSMER

IFFO
SFFO

Function f2

–20

–10

–15

–5

5

0

lo
gf

 (x
)

2 4 6 8 10 12 14
×104Fitness evaluations

AFFOSM
ESSMER

IFFO
SFFO

Function f4

–10

–5

0

lo
gf

 (x
)

2 4 6 8 10 12 14
×104Fitness evaluations

AFFOSM
ESSMER

IFFO
SFFO

Function f5

–2

–1

0

1

2

3

lo
gf

 (x
)

2 4 6 8 10 12 14
×104Fitness evaluations

AFFOSM
ESSMER

IFFO
SFFO

Function f6

–10

–5

0

lo
gf

 (x
)

Figure 2: Performance comparison on test functions on n� 100.

Mathematical Problems in Engineering 5

n� 100 and n� 200. AFFOSM algorithm produces a smaller
median; the 0, 29, 5, 7, and 2 orders of magnitude reduced
with n� 100 and the 0, 15, 7, 8, and 2 orders with n� 200,
respectively.

Comparing with the IFFO algorithm on n � 100, the
AFFOSM algorithm performs better for all test functions.
,e smaller median is gained with the 0, 27, 4, 7, 0, and 6
orders of magnitude reduced. Comparing with the IFFO
algorithm on n � 200, the AFFOSM algorithm performs
better for functions f1, f2, f3, and f4. ,e smaller median
is gained with the 0, 7, 4, and 5 orders of magnitude
reduced. Meanwhile, the same median value is gained for
function f5.

Comparing with the SFFO algorithm on n� 100, the
AFFOSM algorithm performs better for all test functions.
,e smaller median is gained with the 0, 27, 4, 7, 1, and 6
orders of magnitude reduced.

Comparing with the IFFO algorithm on n� 200, the
AFFOSM algorithm performs better for functions f1, f2, f3,
f4, and f5. ,e smaller median is gained with the 0, 7, 4, 5,
and 1 orders of magnitude reduced.

For test functions f1, f2, f3, f4, and f5, AFFOSM performs
best on both n� 100 and n� 200. ESSMER algorithm,
meanwhile, performs the best only for function f6 on both
n� 100 and n� 200. ,e IFFO algorithm performs the best
only in the case of function f5 on n� 200. Unfortunately, the
SFFO algorithm is the best one in no case.

Similarly, the average rank R on Friedman’s test shows
the proposed AFFOSM scheme is superior to other ones
based on single-gene mutation.

6. Conclusion and Future Work

For high-dimensional problems, the algorithms based on
single-gene mutation have better performance on conver-
gency and accuracy than those based on all-gene mutation.
To overcome the shortage of the FFO to solve the high-
dimensional optimization problems, single-gene mutation
and adaptive mutation range control technique are intro-
duced into the AFFOSM algorithm proposed in this article.
In the AFFOSM algorithm, the main function of Gauss
mutation is to search locally around the historic best so-
lution. Uniform mutation not only plays a role to search
globally in the whole space but also improves the efficiency
of local search when uniform mutation range is significantly
smaller than the Gauss mutation range. Unrelated to iter-
ations, mutation range is adjusted by the reference of the
optimization progression. Simulations show that the
AFFOSM algorithm is better than those based on single-
gene mutation, such as ESSMER, IFFO, and SFFO.

An interesting topic for future research would be in-
vestigating the real impact of some parameters values in
AFFOSM to analyze their contributions to the algorithm
performance.

Another interesting topic for future research would be
applying the AFFOSM algorithm to solve constraint or
multiobjective optimization problems and practical engi-
neering problems such as benchmark structural optimiza-
tion problems.

Data Availability

,e data and code used to support the findings of this study
are available from the corresponding author upon request.

Conflicts of Interest

,e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

,is work was supported by the National Natural Science
Foundation of China (Grant no. 61003053).

References

[1] J. J. Grefenstette, “Genetic algorithms and machine learning,”
Machine Learning, vol. 3, no. 2, pp. 95–99, 1988.

[2] E. Bonabeau and H. M. Botee, “Evolving ant colony opti-
mization,” Advances in Complex Systems, vol. 1998, no. 1,
pp. 149–159, 1998.

[3] Eberhart and Y. Shi, “Particle swarm optimization: devel-
opments, applications and resources,” in Proceedings of the
Congress on Evolutionary Computation, IEEE, Seoul, South
Korea, August 2002.

[4] X. L. Li, “An optimizing method based on autonomous
animats: fish-swarm algorithm,” Systems Engineering-2eory
& Practice, vol. 22, no. 11, pp. 32–38, 2002.

[5] D. Karaboga and B. Basturk, “A powerful and efficient al-
gorithm for numerical function optimization: artificial bee
colony (ABC) algorithm,” Journal of Global Optimization,
vol. 39, no. 3, pp. 459–471, 2007.

[6] X. S. Yang, “Firefly algorithm: levy flights and global opti-
mization,” 2010, https://arxiv.org/abs/1003.1464.

[7] W. T. Pan, Fruit Fly Optimization Algorithm, Tsang Hai
publishing, Taibei, China, 2011.

[8] W. T. Pan, “A new evolutionary computation approach: fruit
fly optimization algorithm,” in Proceedings of the Conference
of Digital Technology and Innovation Management, pp. 382–
391, Taipei, Taiwan, November 2011.

[9] H. Garg and Harish, “An efficient biogeography based op-
timization algorithm for solving reliability optimization
problems,” Swarm and Evolutionary Computation, vol. 24,
pp. 1–10, 2015.

[10] S. Mirjalili and A. Lewis, “,e whale optimization algorithm,”
Advances in Engineering Software, vol. 95, pp. 51–67, 2016.

[11] S. Arora and S. Singh, “Butterfly optimization algorithm: a
novel approach for global optimization,” Soft Computing,
vol. 23, pp. 715–734, 2018.

[12] A. W. Mohamed, A. A. Hadi, and A. K. Mohamed, “Gaining-
sharing knowledge based algorithm for solving optimization
problems: a novel nature-inspired algorithm,” International
Journal of Machine Learning and Cybernetics, vol. 11, no. 7,
pp. 1501–1529, 2020.

[13] X. J. Bi and Y. J. Wang, “A modified artificial bee colony
algorithm and its application,” Journal of Harbin Engineering
University, vol. 33, no. 1, pp. 117–123, 2012.

[14] H. Garg and S. P. Sharma, “Multi-objective reliability-re-
dundancy allocation problem using particle swarm optimi-
zation,” Computers & Industrial Engineering, vol. 64, no. 1,
pp. 247–255, 2013.

6 Mathematical Problems in Engineering

https://arxiv.org/abs/1003.1464

[15] G. G. Wang, L. Guo, A. H. Gandomi, G. S. Hao, and H.Wang,
“Chaotic krill herd algorithm,” Information Sciences, vol. 274,
pp. 17–34, 2014.

[16] H. Garg and Harish, “A hybrid PSO-GA algorithm for
constrained optimization problems,” Applied Mathematics
and Computation, vol. 274, pp. 292–305, 2016.

[17] G. G. Wang and Y. Tan, “Improving metaheuristic algorithms
with information feedback models,” IEEE Transactions on
Cybernetics, vol. 49, no. 2, pp. 542–555, 2019.

[18] R. S. Patwal, N. Narang, and H. Garg, “A novel TVAC-PSO
basedmutation strategies algorithm for generation scheduling
of pumped storage hydrothermal system incorporating solar
units,” Energy, vol. 142, no. 1, pp. 822–837, 2018.

[19] A. W. Mohamed, A. A. Hadi, and K. M. Jambi, “Novel
mutation strategy for enhancing shade and lshade algorithms
for global numerical optimization,” Swarm and Evolutionary
Computation, vol. 50, Article ID 100455, 2019.

[20] A. W. Mohamed, A. A. Hadi, A. M. Fattouh, and K. M. Jambi,
“LSHADE with semi-parameter adaptation hybrid with
CMA-ES for solving CEC 2017 benchmark problems,” in
Proceedings of the 2017 IEEE Congress on Evolutionary
Computation (CEC), pp. 145–152, San Sebastian, Spain, June
2017.

[21] C. Li, S. Xu, W. Li, and L. Hu, “A novel modified fly opti-
mization algorithm for designing the self-tuning proportional
integral derivative controller,” Journal of Convergence Infor-
mation Technology, vol. 7, no. 16, pp. 69–77, 2012.

[22] L.Wang, X. L. Zhang, and S. Y.Wang, “A novel binary fruit fly
optimization algorithm for solving the multidimensional
knapsack problem,” Knowledge-Based Systems, vol. 48,
pp. 17–23, 2013.

[23] J. Y. Han, C. Z. Liu, and L. G. Wang, “Dynamic double
subgroups cooperative fruit fly optimization algorithm,”
Pattern Recognition & Artificial Intelligence, vol. 26, no. 11,
pp. 1057–1067, 2013.

[24] J. Y. Han and C. Z. Liu, “Efficient fruit fly optimization al-
gorithm with reverse cognition,” Computer Engineering,
vol. 11, pp. 223–225, 2013.

[25] J. Y. Han and C. Z. Liu, “Fruit fly optimization algorithm
based on history cognition,” Journal of Frontiers of Computer
Science & Technology, vol. 8, no. 3, pp. 368–375, 2014.

[26] X. Yuan, X. Dai, J. Zhao, and Q. He, “On a novel multi-swarm
fruit fly optimization algorithm and its application,” Applied
Mathematics and Computation, vol. 233, no. 3, pp. 260–271,
2014.

[27] X. L. Zheng, L. Wang, and S. Y. Wang, “A novel fruit fly
optimization algorithm for the semiconductor final testing
scheduling problem,” Knowledge-Based Systems, vol. 57,
pp. 95–103, 2014.

[28] Q. K. Pan, H. Y. Sang, J. H. Duan, and L. Gao, “An improved
fruit fly optimization algorithm for continuous function
optimization problems,” Knowledge-Based Systems, vol. 62,
pp. 69–83, 2014.

[29] C. Z. Liu and J. Y. Han, “Adaptive fruit fly optimization
algorithm based on bacterial migration,” Computer Engi-
neering &Science, vol. 36, no. 4, pp. 690–696, 2014.

[30] J. Ning, B. Wang, H. Li, and B. Xu, “Research on and ap-
plication of diminishing step fruit fly optimization algorithm,”
Journal of Shenzhen University Science and Engineering,
vol. 31, no. 4, pp. 367–373, 2014.

[31] Z. X. Liu, Y. F. Wang, and Y. Zhang, “Multiple population
fruit fly optimization algorithm for automatic warehouse
order picking operation scheduling problem,” Journal of

Wuhan University of Technology, vol. 36, no. 3, pp. 71–75,
2014.

[32] X. D. Guo, L. F. Wang, and X. L. Zhang, “Fruit fly optimi-
zation algorithm based on adaptive step size,” Journal of North
University of China, vol. 9, no. 1, 2016.

[33] W. Wang and X. Liu, “Melt index prediction by least squares
support vector machines with an adaptive mutation fruit fly
optimization algorithm,” Chemometrics and Intelligent Lab-
oratory Systems, vol. 141, pp. 79–87, 2015.

[34] L. Wu, W. Xiao, and L. Zhang, “An improved fruit fly op-
timization algorithm based on selecting evolutionary direc-
tion intelligently,” International Journal of Computational
Intelligence Systems, vol. 9, no. 1, pp. 80–90, 2016.

[35] Y. Wang and L. Feng, “Novel double subgroups and partition
sampling based fruit fly optimization algorithm,” Journal of
ZheJiang University (Engineering Science), vol. 51, pp. 2292–
2298, 2017.

[36] S. X. Lv, Y. R. Zeng, and L. Wang, “An effective fruit fly
optimization algorithm with hybrid information exchange
and its applications,” International Journal of Machine
Learning & Cybernetics, vol. 9, no. 10, pp. 1623–1648, 2017.

[37] T. S. Du, X. T. Ke, J. G. Liao, and Y. J. Shen, “DSLC-FOA:
improved fruit fly optimization algorithm for application to
structural engineering design optimization problems,” Ap-
plied Mathematical Modelling, vol. 55, pp. 314–339, 2018.

[38] Y. Fan, P. Wang, A. A. Heidari et al., “Boosted hunting-based
fruit fly optimization and advances in real-world problems,”
Expert Systems with Applications, vol. 159, Article ID 113502,
2020.

[39] W. Zhong, J. Niu, Y. Liang, X. Kong, and F. Qian, “Multi-
strategy fruit fly optimization algorithm and its application,”
Ciesc Journal, vol. 66, no. 12, pp. 4888–4894, 2015.

[40] X. M. Han, Q. M. Liu, H. Z. Wang, and L. M. Wang, “Novel
fruit fly optimization algorithm with trend search and co-
evolution,” Knowledge Based Systems, vol. 141, pp. 1–17, 2018.

[41] Y. Fan, P. Wang, A. A. Heidari, M. Wang, and C. Li, “Ra-
tionalized fruit fly optimization with sine cosine algorithm: a
comprehensive analysis,” Expert Systems with Applications,
vol. 157, Article ID 113486, 2020.

[42] L.Wang, S. X. Lv, and Y. R. Zeng, “Literature survey of fruit fly
optimization algorithm,” Kongzhi Yu Juece/Control and De-
cision, vol. 32, no. 7, pp. 1153–1162, 2017.

[43] H. Han, “Analysis on fruit fly optimization algorithm,”
Computer Systems & Applications, vol. 22, pp. 783–791, 2017.

[44] L. Wang and X. L. Zheng, “Advances in fruit fly optimization
algorithms: control theory & applications,” 2017.

[45] W. T. Pan, “Using fruit fly optimization algorithm optimized
general regression neural network to construct the operating
performance of enterprises model,” Journal of Taiyuan Uni-
versity of Technology (Social ences Edition), vol. 29, no. 4,
pp. 1–5, 2011.

[46] W. T. Pan, “A new Fruit Fly Optimization Algorithm: taking
the financial distress model as an example,” Knowledge-Based
Systems, vol. 26, pp. 69–74, 2012.

[47] H. Li, S. Guo, H. Zhao, C. Su, and B. Wang, “Annual electric
load forecasting by a least squares support vector machine
with a fruit fly optimization algorithm,” Energies, vol. 5,
no. 12, pp. 4430–4445, 2012.

[48] H. Z. Li, S. Guo, and C. J. Li, “A hybrid forecasting model
based on fruit fly optimization algorithm and least squares
support vector machine:-the case of logistics demand fore-
casting of China,” Journal of Quantitative Economics, vol. 10,
no. 1, p. 378, 2012.

Mathematical Problems in Engineering 7

[49] D. Y. Shi, J. Lu, and L. J. Lu, “A judge model of the impact of
lane closure incident on individual vehicles on freeways based
on RFID technology and FOA-GRNN method,” Journal of
Wuhan University of Technology, vol. 34, pp. 63–68, 2012.

[50] X. Wang, K. Du, B. Qin, and H. J. Xu, “Drying rate modeling
based on FOALSSVR,” Control Engineering of China, vol. 19,
no. 7, pp. 630–638, 2012.

[51] H. Z. Li, S. Guo, C. J. Li, and J. Q. Sun, “A hybrid annual power
load forecasting model based on generalized regression neural
network with fruit fly optimization algorithm,” Knowledge-
Based Systems, vol. 37, pp. 378–387, 2013.

[52] J. Niu, W. Zhong, Y. Liang, N. Luo, and F. Qian, “Fruit fly
optimization algorithm based on differential evolution and its
application on gasification process operation optimization,”
Knowledge-Based Systems, vol. 88, pp. 253–263, 2015.

[53] F. Xu and Y. Tao, “,e improvement of fruit fly optimization
algorithm-using bivariable function as example,” in Pro-
ceedings of the 2012 2nd International Conference on Com-
puter and Information Application (ICCIA 2012),
pp. 1516–1520, Atlantis Press, Paris, France, May 2014.

[54] X. Guo, X. Zhang, and L. Wang, “Fruit fly optimisation al-
gorithm with adaptive sign processing,” International Journal
of Computing Science and Mathematics, vol. 6, no. 6,
pp. 538–545, 2015.

[55] D. Shan, G. Cao, and H. Dong, “LGMS-FOA an improved
fruit fly optimization algorithm for solving optimization
problems,” Mathematical Problems in Engineering, vol. 2013,
Article ID 108768, 9 pages, 2013.

[56] X. Wang and S. Yu, “Improved evolution strategies for high-
dimensional optimization,” Control 2eory & Applications of
China, vol. 23, no. 01, pp. 148–151, 2006.

[57] H. Y. Sang, Q. K. Pan, and P. Y. Duan, “Self-adaptive fruit fly
optimizer for global optimization,” Natural Computing,
vol. 18, no. 4, pp. 785–813, 2017.

[58] J. Derrac, S. Garćıa, D. Molina, and F. Herrera, “A practical
tutorial on the use of nonparametric statistical tests as a
methodology for comparing evolutionary and swarm intel-
ligence algorithms,” Swarm & Evolutionary Computation,
vol. 1, no. 1, pp. 3–18, 2011.

8 Mathematical Problems in Engineering

