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,e fruit fly optimization (FFO) algorithm is a new swarm intelligence optimization algorithm. In this study, an adaptive FFO algorithm
based on single-gene mutation, named AFFOSM, is designed to aim at inefficiency under all-gene mutation mode when solving the
high-dimensional optimization problems. ,e use of a few adaptive strategies is core to the AFFOSM algorithm, including any given
population size, mutation modes chosen by a predefined probability, and variation extents changed with the optimization progress. At
first, an offspring individual is reproduced from historical best fruit fly individual, namely, elite reproduction mechanism. And then
either uniform mutation or Gauss mutation happens by a predefined probability in a randomly selected gene. Variation extent is
dynamically changed with the optimization progress. ,e simulation results show that AFFOSM algorithm has a better accuracy of
convergence and capability of global search than the ESSMER algorithm and several improved versions of the FFO algorithm.

1. Introduction

In the recent years, swarm intelligence has become a re-
search focus of optimization design field because of its
special advantages, such as simple to operate, quick con-
vergence rate, and powerful ability of global search. New
swarm intelligence technologies, such as genetic algorithms
(GAs) [1], ant colony optimization (ACO) [2], particle
swarm optimization (PSO) [3], artificial fish-swarm opti-
mization (AFSO) [4], artificial bee colony algorithm (ABC)
[5], firefly algorithm (FA) [6], FFO [7, 8], biogeography-
based optimization (BBO) [9], whale optimization algorithm
(WOA) [10], butterfly optimization algorithm (BOA) [11],
gaining sharing knowledge-based algorithm (GSK) [12], and
their respective improved versions are emerging in endlessly
and have been widely applied to the fields of optimization
design [13–20].

Fruit fly is an insect which eats plants that are decaying,
especially fruits. Fruit flies acquire chemical information in

their environment through smell and taste receptors on the
surface of their bodies and then regulate behaviors, such as
foraging, aggregation, mating, and spawning. In these
processes, olfactory plays an important role over long dis-
tances and shorter ranges.

FFO algorithm [7, 8] is proposed by Pan in 2011. FFO
simulates the foraging behavior of fruit flies and is a fast,
structure-simple, and easily realized algorithm. ,erefore, it
already attracted broad attention in recent years [21–44] and
has been successfully applied to a wide range of practical
problems [45–52].

Fruit flies have olfactory and visual abilities superior to
other species. When foraging, fruit flies first use their own
olfactory organs to smell the odor from food source and
exchange odor information to the surrounding fruit flies, a
process known as the olfactory foraging phase.,en, the flies
used their visual organs to find and fly to the locations of the
flies that had gathered the best odor information, a process
named the vision foraging phase.
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A series of studies show that some unreasonable algo-
rithmic design makes FFO algorithm ill-equipped to jump
out of local extremum and to handle complex, high-di-
mensional, and nonlinear problems. So with this as the
starting point of the paper, a small population, adaptive and
improved version of the FFO algorithm, named AFFOSM, is
developed based on the single-gene mutation mode, in
which the only one gene of an offspring is different from the
elite individual.

On the contrary to a single-gene mutation mode, all-
gene mutation mode is adopted by most of optimization
algorithms, such as FFO, PSO, and ABC algorithm, in which
each gene of an offspring is different from the elite or parent
individual.

,e efficiency of the AFFOSM algorithm presented in
this research is evaluated by solving 6 test problems. Op-
timization results demonstrate that AFFOSM is very com-
petitive compared to the state-of-the-art single-gene
optimization methods.

,e rest of the paper is structured as follows. Section 2
describes the related research work about the further
analysis and modification to FFO Algorithm. Section 3
describes the developments of FFO algorithm, from all-gene
mutation to single-gene mutation. AFFOSM algorithm
developed in this study will be covered in detail in Section 4.
Test problems and optimization results are presented and
discussed in Sections 5. Section 6 summarizes the main
findings of this study and suggests directions for future.

2. Related Work

It is worth noting that, in the FFO algorithm, fruit fly in-
dividual is represented in its coordinates in a 2D plane, and
the corresponding variable value is calculated as the re-
ciprocal of the Euclidean distance between individual and
ordinate origin, as illustrated in Figure 1.

Another noteworthy thing about the FFO algorithm is
elitist reproduction strategy. Once a historical best solution
is found, fruit fly individuals will fly to it and look for the
food resources around it before a newly best solution is
found.

,ere are also some disadvantages as follows:

(1) ,e ability to solve the problem whose theoretical
optimal solution is negative is not available.

(2) It is difficult and time-consuming for population
initialization when definition domain is far away
from ordinate origin.

(3) Obviously, it is not good choice that search range is
fixed, compared to dynamic one.

(4) Most of searching behavior happens around ordinate
origin due to nonuniform search in definition do-
main. FFO algorithm is workable to deal with a class
of problems, such as quite a lot of test function whose
theoretical optimal solution is very close to zero and
is poor for most of the optimization problems in
practical projects.

(5) Elitist reproduction strategy could make fruit fly
swarm easy to fall into local extremum and not
capable to solve complex, high-dimensional and
nonlinear problems.

Given the abovementioned facts, many improvements
have been made in recent years.

Fu-qiang Xu and Tao [53] presented the G-FFO algo-
rithm with sign processing in a randommanner. Inspired by
probability estimation for code words in adaptive arithmetic
coding, a FFO algorithm with adaptive sign processing
(FFOASP) is proposed [54].

Wu Lei et al. propose SEDI-FFO algorithm in which
more fruit flies would fly in the search direction that was best
for finding the optimal solution or at least in a direction close
to the optimal direction [34].

Based on hybrid location information exchange mech-
anism, HFFO algorithm is proposed that enables flies to
communicate with each other and conduct local search in a
swarm-based approach [36].

Fan et al. propose WFFO algorithm in which an effective
whale-inspired hunting strategy is introduced to replace the
random search plan of the original FFO [38].

Niu et al. propose an improved FFO algorithm based on
differential evolution (DFFO) by modifying the expression of
the smell concentration judgment value and by introducing a
differential vector to replace the stochastic search [52].

CEFFO algorithm is proposed in which trend search is
applied to enhance the local searching capability of fruit fly
swarm, and coevolution mechanism is employed to avoid
the premature convergence and improve the ability of global
searching [40].

SCA_FFO algorithm [41] is developed by introducing
the logic of the sine-cosine algorithm.,e fruit fly individual
adopts the way to fly outward or inward to find the global
optimum.

3. FFO: FromAll-Gene to Single-GeneMutation

In general, the nonconstrained optimization problem can be
formulated as an n-dimensional minimization problem as
follows:
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Figure 1: Foraging process of fruit fly.
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minf(x),

s.t. x � x1, x2, . . . , xn( ,

xj ∈ lj, uj , j � 1, 2, . . . , n,

(1)

where f is a boundary objective function, x � (x1, x2, . . . ,

xn) is the set of decision variables, n is the dimensionality,
and lj and uj are the lower and upper bounds of the decision
variable xj, respectively.

3.1. FFO Algorithm. In FFO, fruit fly individual is repre-
sented in its coordinates in a plane and generated in uniform
mutation around historically best solution, also called
current population location:

Xi � X axis ± σ × rand( ),

Yi � Y axis ± σ × rand( ),
(2)

where (Xi, Yi), (X axis, Y axis)is the coordinate pair of
current individual xi and current population δ,σ is the
amplitude of uniform mutation, and rand is the uniformly
distributed random numbers between 0 and 1. ,e value of
xi is the reciprocal of the Euclidean distance between fruit fly
individual and ordinate origin:

xi �
1

�������

X
2
i + Y

2
i

 . (3)

It can be found that the mechanism of individual rep-
resenting limits the performance of FFO.

3.2. LGMS-FFO Algorithm. Shan et al. [55] use one-di-
mensional coordinate of fruit fly to denote the individual
location, and then, let it be equal to the value of xi, which can
be formulated as follows:

xi � Xi,

δ � X axis.
(4)

Based on a new linear generation mechanism of can-
didate solution, LGMS-FFO algorithm is proposed:

ω � ω0 × αIter,

xi � δ ± ω ×[l +(u − l) × rand( )],
(5)

where ω is a weight factor to tune variation extent, ω0 is the
initial weight, α is the weight coefficient, and Iter is the
current generation.

Obviously, all-gene mutation mode is used to generate
offspring individuals in FFO and LGMS-FFO algorithms.
However, the higher dimensionality the functions to be
optimized are, the lower the probability of excellent indi-
viduals is. ,is in turn has caused a low convergence rate for
solving high-dimensional functions.

3.3. IFFO Algorithm. Different from FFO and LGMS-FFO,
single-gene mutation mode is introduced that only one gene
is selected randomly to mutate in the IFFO algorithm. It is

demonstrated that the single-gene mutation mode is a better
choice in performance than the all-gene mutation mode for
solving high-dimensional functions.

IFFO algorithm is presented in which a control pa-
rameter σ is used to tune self-adaptively the search scope in a
random direction of current swarm location, and offspring
individuals are generated in the single-gene uniform mu-
tation mode [28]:

σ⟵σmax × exp log
σmin

σmax
  ×

Iter
Itermax

 ,

xi,d⟵ δd ± σ × rand( ),

xi,j⟵δj, i � 1, 2, . . . , k, j � 1, 2, . . . , n, j≠d,

⎧⎪⎨

⎪⎩

(6)

where σmax is the maximum radius, σmin is the minimum
radius, and d is a random integer between 1 and n.

4. AFFOSM Algorithm

ESSMER algorithm, an improved evolutionary strategy with
single-gene mutation and elite reproduction, is presented for
solving high-dimensional function [56]. In the ESSMER
algorithm, the best father individual is chosen to generate
λ + k offsprings, λ by Gauss mutation, and k by uniform
mutation:

xi,d � δd + σtN(0, 1),

xi,j � δj, i � 1, 2, . . . , λ, j � 1, 2, . . . , n, j≠ d,

⎧⎪⎨

⎪⎩

xi,d � δd + ld + ud − ld( rand( ),

xi,j � δj, i � 1, 2, . . . , k, j � 1, 2, . . . , n, j≠ d,

⎧⎪⎨

⎪⎩

(7)

where d is a random integer between 1 and n. σt is a variation
extent related to the optimization process, and its initial
value σ0 is equal to 2. σt is reduced by a quarter once the
stagnant iterations (recorded as flag) reach a default
iteration.

Inspired by ESSMER, AFFOSM algorithm, an adaptive
FFO algorithm based on single-gene mutation, is designed in
this article. At first, an offspring individual is reproduced
from historical best father individual. And a randomly se-
lected gene is modified by either uniform mutation or Gauss
mutation occurring by a predefined probability. Compared
with ESSMER, the initial variation extents are entirely de-
pendent on the problems to be optimized. ,e initial am-
plitude of uniform variation is equal to the width of the
definition domain, a very broad range. ,e initial amplitude
of Gauss mutation is equal to a tenth of the definition
domain, a relatively little range.

In the process of optimization, the amplitude σf of
uniform variation is cyclically adjusted. At the beginning
of each iteration, σf is reduced by a quarter. σf will
be reverted to the initial value until a better solution is
achieved or a predefined accuracy is reached.

,e amplitude σs of Gauss mutation is dynamically
changed with the optimization progress. ,ose continuous
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stagnant iterations are recorded by a variable namedflag. ,e
amplitude σs remains unchanged as long as flag is less than a
predefined value, such as 30. Otherwise, the amplitude σs is
reduced successively by a quarter unless flag is not less than
30. Meanwhile, a variable, written as σtemp, is used to save and
restore the new amplitude σs once a better solution is found.

AFFOSM algorithm mainly includes 3 steps as follows:

Step 1. Initialization.

Set population size N and maximum iteration
itermax. Set σmax⟵u − l, σmin⟵10−7,
σf⟵σmax, and σs⟵σmax/10.

Step 2. Osphresis foraging phase.

Update the mutation amplitudes.
Before a new iteration, the mutation am-

plitudes are updated as follows:
σf⟵ σf × 0.75
if σf < σmin, then σf⟵ σmax
if flag � 30, then σs⟵ σs × 0.75,

σtemp⟵ σs, flag⟵ 0
Where the variable σtemp is used to guar-

antee the continuity of the Gauss mutation
amplitude.
Generate new solutions

For each individual, the uniform mutation
is executed with probability 0.2:

xi,d � δd ± σfrand(),

xi,j � δj, j � 1, 2, . . . , n, j≠ d.

⎧⎨

⎩ (8)

,eGauss mutation is executed with probability 0.8:

xi,d � δd + σsN(0, 1),

xi,j � δj, j � 1, 2, . . . , n, j≠ d,

⎧⎨

⎩ (9)

where d is a random integer between 1 and n.
Step 3. Vision foraging phase.

Evaluate each new solution. If a better solution
is discovered, then update δ and set flag, σf, and
σs to be 0, σmax, and σtemp. Otherwise, let flag
equal to flag + 1 and return Step 2.

,e computational complexity of AFFOSM is related to
the size of populations N and the number of iterations
itermax.,e computational complexity of one fruit fly at each
iteration is one, and then, the computational complexity of
AFFOSM can be summarized as O(N × itermax), which is
the same as original FFO, IFFO, and ESSMER.

5. Test Functions and Results Analysis

To verify the proposed AFFOSM algorithm, a total of 6
benchmark problems with different characteristics are listed
in Table 1 where n denotes the dimensionality of the
functions andf(x∗) is the global optimal.

As another improved version of FFO algorithm, SFFO
[57] adjusts adaptively its search along an appropriate de-
cision variable from its previous experience in generating
promising solutions.

Table 1: Test function.

Function Expression Definition domain f(x∗)

f1 f(x) � 
n−1
i�1 (100(xi+1 − x2

i )2 + (1 − xi)
2) [−30, 30] 0

f2 f(x) � 
n
i�1 x2

i
[−100, 100] 0

f3 f(x) � −20 exp(−0.2
�����������
(1/n) 

n
i�1 x2

i


) − exp((1/n) 

n
i�1 cos(2πxi)) + 20 + e [−32, 32] 0

f4 f(x) � n
i�1 |xi sin(xi) + 0.1xi| [−10, 10] 0

f5 f(x) � (1/4000) 
n
i�1 x2

i − 
n
i�1 cos(xi/

�
i

√
) + 1 [−600, 600] 0

f6 f(x) � 
n
i�1(x2

i − 10 cos(2πxi) + 10) [−5.12, 5.12] 0
Functions f1 and f2 are unimodal. Function f1 is the Rosenbrock function, also referred to as the valley or banana function. Its global minimum lies in a
narrow, parabolic valley. Function f2 is the sphere function, also referred to as the harmonic function with the only global minimum. Functions f3–f6 are,
respectively, Ackley, Alpine, Griewank, and Rastrigin function. ,ey are multimodal, and each of them has a large number of local minima and is difficult to
be optimized.

Table 2: ,e performance on test functions with n� 100 and 200.

Function ESSMER IFFO SFFO AFFOSM

f1
n� 100 1.49E+ 02 1.91E+ 02 1.68E+ 02 1.25E+ 02

/1.04E+ 02 /4.08E+ 02 /6.20E+ 02 /5.02E+ 01

n� 200 4.31E+ 02 4.46E+ 02 4.59E+ 02 3.31E+ 02
/4.02E+ 02 /4.38E+ 02 /7.01E+ 02 /3.16E+ 02

f2
n� 100 3.98E− 14 3.97E− 16 3.66E− 16 7.43E− 43

/4.63E− 14 /9.66E− 17 /1.12E− 16 /6.64E− 42

n� 200 1.34E− 07 3.25E− 15 3.01E− 15 1.15E− 22
/1.69E− 07 /6.09E− 16 /4.12E− 16 /1.61E− 22

f3
n� 100 5.27E− 08 7.51E− 09 7.74E− 09 5.37E− 13

/5.15E− 08 /7.90E− 10 /9.77E− 10 /1.91E− 13

n� 200 6.13E− 05 1.47E− 08 1.53E− 08 1.34E− 12
/2.56E− 05 /1.17E− 09 /1.21E− 09 /1.08E− 12

f4
n� 100 1.32E− 07 1.16E− 07 1.37E− 07 4.10E− 14

/1.37E− 07 /5.39E− 08 /4.56E− 08 /8.40E− 15

n� 200 4.53E− 04 6.63E− 07 6.73E− 07 3.84E− 12
/1.71E− 04 /1.51E− 07 /1.23E− 07 /2.27E− 12

f5
n� 100 2.14E− 01 9.90E− 03 1.23E− 02 7.40E− 03

/1.45E− 01 /2.41E− 02 /2.21E− 02 /2.51E− 02

n� 200 2.95E− 01 9.90E− 03 1.23E− 02 9.90E− 03
/1.76E− 01 /2.72E− 02 /1.81E− 02 /1.22E− 02

f6
n� 100 1.26E− 12 9.95E− 01 9.95E− 01 2.01E− 07

/1.28E− 02 /7.88E− 01 /7.86E− 01 /4.96E− 01

n� 200 3.76E− 06 1.69E+ 01 1.89E+ 01 2.00E+ 00
/7.57E− 01 /5.38E+ 00 /3.77E+ 00 /1.49E+ 00

R n� 100 3.17 2.667 2.833 1.333
n� 200 3.264 2.556 2.819 1.361
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In the ESSMER algorithm, population size N� 10, λ�

8, k � 2, and σ0 � 2. For IFFO and SFFO algorithms, N� 3
and σmax � (u − l)/2. For the AFFOSM algorithm, N� 3,
σmax � u − l, and σmin � 10−7 for all algorithms.

,ese algorithms are coded on Matlab 7.1 and run on
Windows 10 operating system and Intel(R) Core(TM) i7-
6600U CPU @ 2.60GHz 2.81GHz with 8G RAM.

Each problem is run 25 times independently. ,e me-
dian/standard deviations over these 25 runs and the average
rank of four algorithms on Friedman’s test [58] are reported
in Table 2. Comparisons of convergence curves on n� 100
are also presented in Figure 2.

Comparing with the ESSMER algorithm, the AFFOSM
algorithm performs better for functions f1–f5 with both
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Figure 2: Performance comparison on test functions on n� 100.
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n� 100 and n� 200. AFFOSM algorithm produces a smaller
median; the 0, 29, 5, 7, and 2 orders of magnitude reduced
with n� 100 and the 0, 15, 7, 8, and 2 orders with n� 200,
respectively.

Comparing with the IFFO algorithm on n � 100, the
AFFOSM algorithm performs better for all test functions.
,e smaller median is gained with the 0, 27, 4, 7, 0, and 6
orders of magnitude reduced. Comparing with the IFFO
algorithm on n � 200, the AFFOSM algorithm performs
better for functions f1, f2, f3, and f4. ,e smaller median
is gained with the 0, 7, 4, and 5 orders of magnitude
reduced. Meanwhile, the same median value is gained for
function f5.

Comparing with the SFFO algorithm on n� 100, the
AFFOSM algorithm performs better for all test functions.
,e smaller median is gained with the 0, 27, 4, 7, 1, and 6
orders of magnitude reduced.

Comparing with the IFFO algorithm on n� 200, the
AFFOSM algorithm performs better for functions f1, f2, f3,
f4, and f5. ,e smaller median is gained with the 0, 7, 4, 5,
and 1 orders of magnitude reduced.

For test functions f1, f2, f3, f4, and f5, AFFOSM performs
best on both n� 100 and n� 200. ESSMER algorithm,
meanwhile, performs the best only for function f6 on both
n� 100 and n� 200. ,e IFFO algorithm performs the best
only in the case of function f5 on n� 200. Unfortunately, the
SFFO algorithm is the best one in no case.

Similarly, the average rank R on Friedman’s test shows
the proposed AFFOSM scheme is superior to other ones
based on single-gene mutation.

6. Conclusion and Future Work

For high-dimensional problems, the algorithms based on
single-gene mutation have better performance on conver-
gency and accuracy than those based on all-gene mutation.
To overcome the shortage of the FFO to solve the high-
dimensional optimization problems, single-gene mutation
and adaptive mutation range control technique are intro-
duced into the AFFOSM algorithm proposed in this article.
In the AFFOSM algorithm, the main function of Gauss
mutation is to search locally around the historic best so-
lution. Uniform mutation not only plays a role to search
globally in the whole space but also improves the efficiency
of local search when uniform mutation range is significantly
smaller than the Gauss mutation range. Unrelated to iter-
ations, mutation range is adjusted by the reference of the
optimization progression. Simulations show that the
AFFOSM algorithm is better than those based on single-
gene mutation, such as ESSMER, IFFO, and SFFO.

An interesting topic for future research would be in-
vestigating the real impact of some parameters values in
AFFOSM to analyze their contributions to the algorithm
performance.

Another interesting topic for future research would be
applying the AFFOSM algorithm to solve constraint or
multiobjective optimization problems and practical engi-
neering problems such as benchmark structural optimiza-
tion problems.
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