
Research Article
Global Bounded Classical Solutions for a Gradient-Driven
Mathematical Model of Antiangiogenesis in Tumor Growth

Xiaofei Yang and Bo Lu

Department of Mathematics, Henan Institute of Science and Technology, Xinxiang 453003, China

Correspondence should be addressed to Bo Lu; cheersnow@163.com

Received 17 April 2019; Revised 7 November 2019; Accepted 13 December 2019; Published 9 January 2020

Academic Editor: Andrzej Swierniak

Copyright © 2020 Xiaofei Yang and Bo Lu. 0is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In this paper, we consider a gradient-driven mathematical model of antiangiogenesis in tumor growth. In the model, the
movement of endothelial cells is governed by diffusion of themselves and chemotaxis in response to gradients of tumor angiogenic
factors and angiostatin. 0e concentration of tumor angiogenic factors and angiostatin is assumed to diffuse and decay. 0e
resulting system consists of three parabolic partial differential equations. In the present paper, we study the global existence and
boundedness of classical solutions of the system under homogeneous Neumann boundary conditions.

1. Introduction

Angiogenesis is a crucial step in the metastatic cascade of
solid tumors growth. During this process, besides tumor
angiogenic factors, a primary tumor also secretes substances
(angiostatin [1] and endostatin [2]) to inhibit the formation
of a vasculature around the secondary tumors [1, 3]. In order
to describe explicitly the effects of antiangiogenesis and
explain why a primary tumor can inhibit angiogenesis in a
secondary tumor, Anderson et al. [4] proposed the following
system of evolution equations:

nt � d1nxx − χ(c)ncx( 􏼁x − α(a)nax( 􏼁x,

ct � d2cxx − f(c, n, x),

at � d3axx − g(a, n, x).

⎧⎪⎪⎨

⎪⎪⎩
(1)

0e relevant variables involved respectively are repre-
sented as follows:

(i) n(x, t): the endothelial cell tip density in point x at
time t

(ii) c(x, t): the concentrations of tumor angiogenic
factors in point x at time t

(iii) a(x, t): the concentrations of angiostatin in point x
at time t

(iv) di: diffusion coefficients (i � 1, 2, 3)
(v) χ(c): chemotactic functions of tumor angiogenic

factors
(vi) α(a): chemotactic functions of angiostatin
(vii) f(c, n, x): uptake/loss and decay function of tumor

angiogenic factors
(viii) g(a, n, x): uptake/loss and decay function of

angiostatin

Here, x ∈ (0, L) and (0, L) is the interval in which the
blood vessel and the secondary tumor are located. 0e
endothelial cell receptors become desensitized to high
concentration of tumor angiogenic factors as assumed in [4];
we therefore take the chemotactic function.

χ(c) � χ0
k

k + c
. (2)

Here, the parameters χ0 > 0 and k> 0 denote the max-
imum chemotactic response and the severity of the degree of
hyposensitization, respectively. To model the dose-depen-
dent response of an endothelial cell to angiostatin, we take
the angiostatin chemotactic function α(a) � α0a [4], where
α0 is a real number. We shall subsequently consider the
following system:
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nt � d1nxx − χ0
k

k + c
ncx􏼠 􏼡

x

− α0 anax( 􏼁x, x ∈ Ω, t> 0,

ct � d2cxx − f(c, n, x), x ∈ Ω, t> 0,

at � d3axx − g(a, n, x), x ∈ Ω, t> 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

We consider the case in which the blood vessel is located
at x1 and the secondary tumor is located at x2, where
0< x1 < x2 <L. If the interval (0, L) is sufficiently long (i.e., L
is large enough), we can neglect the influence of both ends.
Hence, we consider (3) with the special no-flux boundary
conditions:

nx � cx � ax � 0, x ∈ zΩ , t> 0, (4)

and the initial conditions

n(x, 0) � n0(x),

c(x, 0) � c0(x),

a(x, 0) � v0(x),

x ∈ Ω,

(5)

where Ω ≔ (0, L) and (n0(x), c0(x), n0(x)) ∈ (W1,2(Ω))3.
With regard to the functions f and g throughout this paper,
we shall assume that f, g ∈ C1([0,∞) × [0,∞) ×Ω) are
nonnegative with

f(0, n, x) � g(0, n, x) � 0, (n, x) ∈ ([0,∞) ×Ω). (6)

Moreover, we suppose that there exist δ1 > 0 and δ2 > 0
such that

f(c, n, x)≤ c δ1 + n( 􏼁, (c, n, x) ∈ ([0,∞) ×[0,∞) ×Ω),

(7)

g(a, n, x)≤ a δ2 + n( 􏼁, (a, n, x) ∈ ([0,∞) ×[0,∞) ×Ω).

(8)

We note that the assumptions (6)–(8) have a definite
biological meaning. For example, we can respectively take
the uptake functions:

f(c, n, x) � c δ +
n

1 + c
􏼒 􏼓,

g(a, n, x) �
an

1 + a
,

(9)

as the prototypes of (6)–(8), which mean tumor angiogenic
factors and angiostatin are consumed by endothelial cells
according to Michaelis–Menten kinetics [5]. 0e steady-
state solution of (3) with a no-flux boundary condition is
examined by the authors in [4]. Moreover, Wei and Cui [6]
prove the existence and uniqueness of global classical so-
lution for system (3). It is interesting to investigate whether
or not the tumor becomes vascularized in model (3) after a
long period of time (i.e., endothelial cells at the tips of the
capillaries connect with the tumor). 0erefore, as a first step,

we shall study the global existence and boundedness of
(3)–(5) solutions for the problem (3)–(5) under the as-
sumptions (6)–(8). Our main result reads as follows.

Theorem 1. Let (n0, c0, a0) ∈ (W1,2(Ω))3 and let the as-
sumptions (6)–(8) hold. /en, the problem (3)–(5) has a
unique global classical solution which is bounded in
Ω × (0,∞).

Remark 1. Compared with the previous work of Wei and
Cui [6], we further obtain the boundedness of the global
classical solution.

0e rest of the paper is organized as follows. In Section 2,
we give the existence of local solution for system (3) and
some basic properties of the solution for the problem
(3)–(5). In Section 3, we study global existence and
boundedness of the classical solution. Finally, we give the
conclusion section.

2. Preliminaries

In this section, we provide some preliminary results which
will be used in the proof of the main results. 0e first result
concerns local existence of a classical solution to the problem
(3)–(5). 0e idea of its proof is based on arguments in [7, 8].

Lemma 1. Assume that the initial data are nonnegative and
satisfy (n0, c0, a0) ∈ (W1,2(Ω))3. /en, the problem (3)–(5)
possesses a unique local-in-time nonnegative classical
solution:

(n, c, a) ∈ C 0, Tmax􏼂 􏼁; W
1,r

(Ω)􏼐 􏼑∩C
2,1 Ω × 0, Tmax( 􏼁( 􏼁􏼐 􏼑,

(10)

where Tmax is the maximal existence time. Moreover, if for
each T> 0 there exists a constant C(T) such that

‖(n(t), c(t), a(t))‖L∞(Ω) ≤C(T), 0< t<min T, Tmax􏼈 􏼉,

thenTmax � +∞.

(11)

Proof. Let u ≔ (n, c, a)T. 0en, the system (3) can be written
as

ut � A(u)ux( 􏼁x + F(u), x ∈ Ω, t> 0,

ux � 0, x ∈ zΩ , t> 0,

u(x, 0) � n0(x), c0(x), a0(x)( 􏼁, x ∈ Ω,

⎧⎪⎪⎨

⎪⎪⎩

(12)

where

A(u) �

d1 − χ(c)n − α(a)n

0 d2 0

0 0 d3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

F(u) �

0

− f(c, n, x)

− g(a, n, x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(13)
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Applying 0eorem 14.4, 0eorem 14.6, and 0eorem
15.5 of [9], we complete the proof of Lemma 1.

0e following statement plays a crucial role in the proof
of the main result. □

Lemma 2. Assume that the initial data
(n0(x), c0(x), n0(x)) ∈ (W1,2(Ω))3 are nonnegative func-
tions. Let f and g satisfy (6)–(8). /en, the solution of the
system (3) satisfies

􏽚
Ω

n(x, t)dx � 􏽚
Ω

n0(x)dx, for all t ∈ 0, Tmax( 􏼁, (14)

‖c(·, t)‖L∞(Ω) ≤ c0
����

����L∞(Ω)
, for all t ∈ 0, Tmax( 􏼁, (15)

as well as

‖a(·, t)‖L∞(Ω) ≤ a0
����

����L∞(Ω)
, for all t ∈ 0, Tmax( 􏼁. (16)

Proof. By a spatial integration of the first equation in (3), we
immediately obtain

d
dt

􏽚
Ω

n(x, t)dx � 0, (17)

which implies (14). Since f and g are nonnegative functions,
we get

ct ≤ d2cxx,

at ≤ d2axx.
(18)

0erefore, the estimates (15) and (16) follow from an
application of the comparison principle for the heat
equation. □

3. Global Existence and
Boundedness of Solutions

In this section, we consider the global existence and
boundedness of classical solutions to the problem (3)–(5).

Firstly, we have an estimate for cx and ax in Lebesgue space
L2(Ω).

Lemma 3. Suppose that (n0, c0, a0) ∈ (W1,2(Ω))3. /en,
there exists C> 0 such that

cx(·, t)
����

����L2(Ω)
≤C, (19)

ax(·, t)
����

����L2(Ω)
≤C, (20)

for all t ∈ (0, Tmax).

Proof. An application of the variation-of-constants formula
shows that

cx(·, t)
����

����L2(Ω)
≤ e

− tA2c0􏼐 􏼑
x

�����

�����L2(Ω)

+ 􏽚
t

0
e

− (t− s)A2f(c(·, s), n(·, s), ·)􏼐 􏼑
x

�����

�����L2(Ω)
ds,

(21)

where A2 is the realization of the operator − d2(·)xx in Lp(Ω)

equipped with homogeneous Neumann boundary condi-
tions. According to the smoothing estimates for the Neu-
mann heat semigroup [10], we can find C1 > 0 and C2 > 0
such that

e
− tA2φ􏼐 􏼑

x

�����

�����L2(Ω)
≤C1 φx

����
����L2(Ω)

, for allφ ∈W
1,2

(Ω),

e
− tA2φ􏼐 􏼑

x

�����

�����Lp(Ω)
≤C2 1 + t

− (1/2)− (1/2)((1/q)− (1/p))
􏼐 􏼑‖φ‖Lq(Ω) ,

for allφ ∈ L
q
(Ω),

(22)

where 1≤ q≤p≤∞. 0en, from (7) and (14), we can
estimate

cx(·, t)
����

����L2(Ω)
≤C1 c0x

����
����L2(Ω)

+ C2 􏽚
t

0
1 +(t − s)

− (3/4)
􏼐 􏼑‖f(c(·, s), n(·, s), ·)‖L1(Ω)ds

≤C1 c0
����

����W1,2(Ω)
+ C2 􏽚

t

0
1 +(t − s)

− (3/4)
􏼐 􏼑 c(·, s) δ1 + n(·, s)( 􏼁

����
����L1(Ω)

ds

≤C1 c0
����

����W1,2(Ω)
+ C2 􏽚

t

0
1 +(t − s)

− (3/4)
􏼐 􏼑 δ1 + n(·, s)( 􏼁

����
����L1(Ω)

‖c(·, s)‖L∞(Ω)ds

≤C for all t ∈ 0, Tmax( 􏼁.

(23)

Using similar arguments to the variation-of-constants
formula of the third equation in (3), we obtain the
boundedness of ‖ax(·, t)‖ for all t ∈ (0, Tmax). □

With the above mentioned result in hand, we are in a
position to establish a uniform bound on n based on the idea
of the proof in [11].
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Proposition 1. Let (n0, c0, a0) ∈ (W1,2(Ω))3. /en, system
(3) has a unique global classical solution that is bounded in
Ω × (0,∞).

Proof. Let A1 denote the realization of the operator − d1(·)xx

under homogeneous Neumann boundary conditions in
Lp(Ω). We obtain from the variation-of-constants formula

n(·, t) � e
− tA1n0 − χ0 􏽚

t

0
e

− (t− s)A1
k

k + c(·, s)
n(·, s)cx(·, s)􏼠 􏼡

x

ds − α0 􏽚
t

0
e

− (t− s)A1 a(·, s)n(·, s)ax(·, s)( 􏼁xds, (24)

together with the maximum principle and (22) that

‖n(·, t)‖L∞(Ω) ≤ e
− tA1n0

����
����L∞(Ω)

+ χ0 􏽚
t

0
e

− (t− s)A1
k

k + c(·, s)
n(·, s)cx(·, s)􏼠 􏼡

x

��������

��������
L∞(Ω)

ds

+ α0 􏽚
t

0
e

− (t− s)A1 a(·, s)n(·, s)ax(·, s)( 􏼁x

�����

�����L∞(Ω)
ds

≤ n0
����

����L∞(Ω)
+ C2χ0 􏽚

t

0
1 +(t − s)

− (3/4)
􏼐 􏼑

k

k + c(·, s)
n(·, s)cx(·, s)􏼠 􏼡

��������

��������
L2(Ω)

ds

+ C2α0 􏽚
t

0
1 +(t − s)

− (3/4)
􏼐 􏼑 a(·, s)n(·, s)ax(·, s)( 􏼁x

����
����L2(Ω)

ds.

(25)

Here, by means of Hölder’s inequality and the non-
negative of c, we can estimate both

k

k + c(·, s)
n(·, s)cx(·, s)􏼠 􏼡

��������

��������
L2(Ω)

≤ ‖n(·, s)‖L2(Ω) cx(·, s)
����

����L2(Ω)

≤ ‖n(·, s)‖
(1/2)
L∞(Ω)‖n(·, s)‖

(1/2)

L1(Ω) cx(·, s)
����

����L2(Ω)

· a(·, s)n(·, s)ax(·, s)( 􏼁x

����
����L2(Ω)

≤ ‖a(·, s)n(·, s)‖L2(Ω) ax(·, s)
����

����L2(Ω)

≤ ‖n(·, s)‖
(1/2)
L∞(Ω)‖n(·, s)‖

(1/2)

L1(Ω)‖a(·, s)‖L∞(Ω) cx(·, s)
����

����L2(Ω)
.

(26)

From (14), (16), (19), and (20), there exists C> 0 such
that

sup
t∈(0,T)

‖n(·, t)‖L∞(Ω) ≤ n0
����

����L∞(Ω)
+ C 􏽚

t

0
1 +(t − s)

− (3/4)
􏼐 􏼑ds sup

t∈(0,T)

‖n(·, t)‖
(1/2)
L∞(Ω), (27)
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for all T ∈ (0, Tmax). 0us, recalling estimates (15) and (16),
the boundedness of (n, c, a) in Ω × (0,∞) results upon an
application of Lemma 1. □

4. Conclusions

We consider a gradient-driven mathematical model of an-
giogenic response of endothelial cells to a secondary tumor
proposed by Anderson et al. in [4]. 0e model consists of
three semilinear parabolic PDEs and assumes that the en-
dothelial cells respond chemotactically to two opposing
chemical gradients: a gradient of tumor angiogenic factor
and a gradient of angiostatin.0e blood vessel is usually very
long. We consider the case in which both the primary tumor
and the secondary tumor are located in the middle of the
blood vessel. 0e influence of both ends of the blood vessel is
neglected. 0erefore, we impose homogeneous Neumann
boundary conditions on the model. We study the global
existence and boundedness of classical solutions of the
model. 0e result can be viewed as the first step to know the
large time behavior for the endothelial cell density in tumor
growth.
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