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+is paper proposes the shrink Gaussian distribution quantum-behaved optimization (SG-QPSO) algorithm to solve economic
dispatch (ED) problems from the power systems area. By shrinking the Gaussian probability distribution near the learning
inclination point of each particle iteratively, SG-QPSOmaintains a strong global search capability at the beginning and strengthen
its local search capability gradually. In this way, SG-QPSO improves the weak local search ability of QPSO and meets the needs of
solving the ED optimization problem at different stages. +e performance of the SG-QPSO algorithm was obtained by evaluating
three different power systems containing many nonlinear features such as the ramp rate limits, prohibited operating zones, and
nonsmooth cost functions and compared with other existing optimization algorithms in terms of solution quality, convergence,
and robustness. Experimental results show that the SG-QPSO algorithm outperforms any other evaluated optimization algo-
rithms in solving ED problems.

1. Introduction

Solving economic dispatch (ED) problem is to ensure that
the power production is safe, high-quality and meets the
customer’s electricity demand by using various technical and
management measures to make the power production
equipment in the best working state and reach the lowest
cost of the power system. Simultaneously, the nonlinear
characteristics of the generator, such as ramp rate limit,
prohibited operating area, and nonsmooth cost function,
should be considered. +erefore, the ED problem is a
complex nonlinear problem with many constraints.

Traditionally, the ED problem can be solved by various
mathematical programming methods, including lambda
iterative method, the base point [1], the interior point
method [2], the gradient method [3], and the dynamic
programming method [4]. However, these deterministic
numerical methods do not work effectively for problems
with hard constraints such as nonsmooth and nonconvex
cost functions, or suffer “dimensional disasters.” +erefore,
in order to effectively address the issues of the nonlinear

characteristics of practical power systems, many swarm
intelligence algorithms or evolutionary algorithms are used
to solve multiconstrained optimization problems, including
genetic algorithms (GA) [5], particle swarm optimization
(PSO) [6], differential evolution (DE) [7], evolutionary
programming (EP) [8, 9], tabu search (TS) [10], neural
network (NN) [11, 12], ant colony search algorithm (ACSA)
[13], artificial immune system (AIS) [14, 15], honey bee
colony algorithm [16], firefly algorithm [17], and the hybrid
method [18].

Besides, some improved algorithms are proposed. For
example, Kaboli proposes an artificial cooperative search
(ACS) [19] optimization algorithm, which is provided by
balancing exploration of the problem’s search space and
exploitation of better results through the use of two advanced
evolutionary operators and only one control parameter.
Pandey proposes an improved FWA with Chaotic Sequence
Operator (IFWA-CSO) [20], in which the global search ability
of FWA has been strengthened. Sun uses the improved
particle swarm optimization algorithm RDPSO (Random
Drift Particle Swarm Optimization) to solve the power
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optimization problem [21]. In order to improve the local
search capability of PSO, KHAMSAWANG and Grag adopt a
hybrid method of differential evolution or genetic algorithm
to enhance the local capability [22, 23]. Besides, Khan et al.
control the diversity of particle swarm to avoid the algorithm
falling into the local optimal [24–26]. Besides, other improved
algorithms such as the iterated-based optimization method
[27], dynamically controlled particle swarm optimization
method [28] are also performed well on ED problems.

However, for these methods, the major deficiencies still
are highly sensitive to the initial value of the control pa-
rameters and a large number of control parameters or some
situations such as trap into local optima and premature
easily occur. +erefore, it is difficult to obtain satisfactory
and feasible solutions for multiconstrained, nonlinear op-
timization problems. +e quantum-behaved particle swarm
optimization (QPSO) algorithm is a variant PSO algorithm
that has strong and robust global search ability but has
relatively low convergence speed and local search ability.

+erefore, this paper proposes a shrink Gaussian distri-
bution quantum-behaved optimization (SG-QPSO) algo-
rithm to solve ED problems from the power systems area. By
shrinking the Gaussian probability distribution near the
learning inclination point of each particle iteratively, SG-
QPSO not only maintains a strong global search capability at
the early search stage but also strengthens the local search
capability at the later stage. In this way, the proposed SG-
QPSO improves the weak local search ability of QPSO and
meets the needs of solving the ED optimization problem at
different stages. Besides, SG-QPSO has fewer parameters than
other optimization algorithms, such as genetic algorithms,
differential evolution, or other one-dimensional search al-
gorithms like the Powell algorithm, which is easier to control.

+e remaining chapters of this paper are arranged as
follows: Section 2 describes the proposed SG-QPSO in detail.
Section 3 describes the mathematical formulation of the ED
problem in detail. Section 4 shows the experimental results
obtained by SG-QPSO on three power systems, compares its
results with previous algorithms, and analyzes its merits and
disadvantages. Section 5 summarizes this article and in-
troduces the focus of future work.

2. The Proposed Algorithm

In this section, we first introduce the theoretical aspect of the
canonical QPSO algorithm and then analyze its advantages
and disadvantages when dealing with ED problems. Based
on the analysis above, an improved QPSO algorithm called
SG-QPSO is proposed, and its process of solving the ED
problem is given as a flowchart.

2.1. QPSO Algorithm. +e crucial issue of QPSO is how to
design a reasonable potential energy field [29]. Clerc analyzed
the dynamic evolution process and showed that each particle
gradually converges to a point [30]. In other words, those
points attract the particles swarm during the search process.
+ose points are named learning inclination points (LIPs) in
QPSO, and its current position is calculated as follows:

p
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i,t · P
j
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i,t G
j
t , (1)
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form distribution, P
j
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+e updated formulation of each particle in QPSO is as
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i,t ∈ (0, 1) is a random variable generated by uniform
distribution, Lj

i,t is the length between the current position of
each particle and the mean personal best position, and its
definition is as follows:
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+e mean personal best position is calculated by the
following:

C
j
t � 

M

1
P

j
i,t. (4)

By simulating the strong uncertainty of the superposition
of states in the quantum system, QPSO makes it possible to
cover the whole probability search space during the search
process. Simultaneously, the algorithm uses the mean personal
best position to guide the particles to gradually aggregate to
LIPs. +is delay strategy makes the algorithm convergence
slowly and helps the algorithms enhance their global search
ability.+e details of the QPSO algorithm can be found in [29].

2.2.&e SG-QPSO Algorithm. When the area near the global
or local optima is tiny, particles in QPSO are easier to skip this
area for the range of update area of each particle is large. At
the same time, considering that Gaussian distribution is in-
troduced to generate random variables sequence may weaken
the global search ability, a shrink Gaussian distribution
quantum-behaved particle swarm optimization (SG-QPSO).
In SG-QPSO, the variance of Gaussian distribution declines
linearly to shrink the area of each particle near its LIP, which
enhances the local search ability gradually and maintains the
global search ability of QPSO during the search process. +e
update formula of the SG-QPSO algorithm is as follows:
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(5)

where k is random values generated by using the uniform
probability distribution functions in the range [0, 1]. +e
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learning inclination point p andmean personal best position
C is calculated by equations (1) and (4). Note that the
number of particles in a particle swarm is M:

σt � σ0 + σ1 − σ0(  ·
T − t

T
. (6)

In equation (6), σ denotes the variance of Gaussian
distribution, declining linearly from the initial value σ1 and
the end value σ0 in the search process. T is the maximum
number of fitness evaluations and t represents the current
iteration step. +e Pseudocode of the SG-QPSO algorithm is
shown in Algorithm 1.

3. Solving ED Problem with SG-QPSO

3.1.MathematicalModel of Power SystemEconomicDispatch.
+eED problem can be reduced to an optimization problem.
Its goal is to determine the power output level of the online
generator and further minimize the total fuel cost of all
generators within a period while satisfying various nonlinear
constraints.

3.1.1. Objective Function. +e objective function of ED
problem can be defined as follows:

minimizeFcost � 

Ng

j�1
Fj Pj , (7)

where Fj(Pj) is the cost function of jth generator set, Pj Is
the actual output of the jth generator set, and Ng is the total
number of generators in the power system.

+e cost function of each generator set is related to the
actual power put into the system and is usually modeled with
a smooth quadratic function:

Fj Pj  � aj + bjPj + cjP
2
j . (8)

aj, bj, and cj is the cost correlation coefficient of the jth
generator set.

3.1.2. Constrains of ED Problem. In this work, we consider
the following constraints of the ED problem:

(a) Power balance constraints
+e power balance constraints are expressed as
follows:



Ng

j�1
Pj � PD + PL. (9)

+e total power generation of the system is equal to the
load demand of the system plus transmission loss. In
other words, the total power generation 

Ng

j�1 Pj should
be equal to the total power demand PD plus trans-
mission network loss PL while minimizing total power
generation costs. PL is usually approximated by the
Krone loss formula, which represents the relationship

between the transmission loss and the output level of
the system generator set:

PL � 

Ng

j�1


Ng

k�1
PjBjkPk + 

Ng

j�1
PjBj0 + B00, (10)

where 1≤ j, k≤Ng the number of generators in the
generator set, Bj0, Bjk, B00 is called loss coef-
ficient.Bjk is a Ng × Ng matrix.

(b) Inequality constraints

P
min
j <Pj <P

max
j , j � 1, 2, . . . , Ng . (11)

According to the design requirements of the gen-
erator, the amount of power generated by each unit
must vary between its minimum Pmin

j and maximum
Pmax

j production limits.
(c) Ramp rate limitation

During the actual operation of the generator set, the
operating range of all online units is limited by their
ramp rate limitation. According to [5], the inequality
constraint due to the slope limitation is as follows:

(i) If the amount of power generation increases

Pj − P
0
j ≤URj, (12)

(ii) If the amount of power generation decreases

P
0
j − Pj ≤DRj, (13)

(d) Prohibited operating areas
Since the steam valve operates in the bearing (i.e.,
vibration), the system contains some prohibited
operating zones. In the actual power system, the
load demand of the power system must avoid
prohibited zones. +erefore, if the constraints in
(11) are considered, the feasible operating area of
the jth generator set can be described in the fol-
lowing way:

P
min
j ≤Pj ≤P

l
j,1,

P
u
j,k−1 ≤Pj ≤P

l
j,k, k � 2, 3, . . . , nj,

P
u
j,nj
≤Pj ≤P

max
j ,

(14)

where Pl
j,k and Pu

j,k is +e upper and lower boundaries
of the kth prohibited zone of the jth generator set, nj is
the number of prohibited zones of the jth generator set.

3.1.3. &e Mathematical Formulation of ED Problem.
Combining the equations (11)–(13), we obtained the
following:

Max P
min
j , Pj − DRj ≤Pj ≤min P

max
j , P

0
j + URj . (15)
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+erefore, considering the feasible operation zones, we
can express the ED problem as the following constrained
optimization problem:

minimizeFcost � 
N

j�1
Fj Pj 

subject to
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P
u
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max
j , P

0
j + URj .

(16)

3.2. Solving ED Problem Using SG-QPSO. Before applying
the SG-QPSO algorithm to the ED problem, make the
following provisions:

Each component in a single particle represents a gen-
eration unit, so each particle represents a candidate solution
for a given ED problem. +e current position of the tth
particle Pg,i with Ng generation units can be given by the
following:

Pg,i � P i,1, P i,1, P i,2, . . . , P i,Ng
 , i � 1, 2, . . . , M, (17)

where M is the population size, which is the index to
generate jth unit, and P is the output power of the ith
generating unit in the jth particle.

3.2.1. Objective Function and Constraint Handling. +e
equality constraints in the formula can be handled by adding
penalty terms. +e objective function becomes as follows:

minimizeF � 
N

j�1
Fj Pj  + Kn 

N

j�1
Pj − PD − PL




, (18)

where Kn is called the penalty coefficient and is a positive
real number, which increases with the number of iterations.
+e penalty term in equation (18) is the equality constraint
in equation (9). When the ED problem is restricted, it is
solved by a population-based search method (such as SG-
QPSO). If the equality constraint is violated, the value of the
penalty term is nonzero.

On the one hand, when the candidate solution violates
the equation-constrained candidate solution, equation
(18) gives a larger objective function value so that the
candidate solution has a greater probability of being
discarded. On the other hand, when the equality con-
straint is not violated, the penalty term is zero. No matter
how large the penalty coefficient is, the final penalty term
value is zero. +erefore, the final objective function value
is obtained by adding the value of the penalty term to the
given objective function value so as to control each

candidate solution in the population to approach the
feasible solution area.

4. Experiments

4.1. &e Summary of &ree Power Systems. +ree real power
systems are used to verify the effectiveness of SG-QPSO,
with considering the ramp rate limit and the prohibited
zones. Other optimization methods are also tested on these
three systems for comprehensive performance comparison,
including binary-coded GA [5], PSO with inertial weights
[6], DE [7], Ant Colony Search Algorithm (ACSA) [13],
artificial immune system (AIS) [14], bee colony optimization
(BCO) [16], firefly algorithm (FA) [17], standard PSO
(SPSO) with shrinkage and inertial weights [31], chaotic PSO
(CPSO) [32], antipredatory PSO (APSO) [33], mixed gra-
dient descent PSO (HGPSO) [31], mixed PSO with mutation
(HPSOM) [31], QPSO [29], and GQPSO [34]; the Hopfield
neural network (NN) was also tested. Note that, for each
system, all test methods use the same objective function.

System 1: the system consists of 6 thermal units, 26 bus
bars, and 46 transmission lines. +e load demand is
1263MW.+e characteristics of the 6 thermal units are
given in Tables 1 and 2. In the normal operation of the
system, the loss factor with a basic capacity of 100MVA
is shown in Table 3. It is a small system and is the easiest
problem among three test systems, and the dimension
of the ED problem is 6. As shown in Table 2, there are
12 prohibited zones in this system, and 13 inequality
constraints are generated according to these prohibited
zones.
System 2: this system has 15 thermal units, the char-
acteristics of which are given in Tables 4 and 5.+e load
demand of the system is 2630MW. Due to space
constraints, the loss coefficient matrix is not listed. +is
system is a medium-scale system, and its ED problem
has 15 dimensions. As shown in Table 5, the power
generating units 2, 5, 6, and 12 have 11 prohibited
zones. +erefore, according to the inequality con-
straints described above regarding its ED problem, the
ED problem of this system is relatively difficult to
optimize compared with System 1.
System 3: the system contains 40 units in a large-scale
hybrid power generation system named Tai power
system. +e load demand of the system is 8550MW.
Due to space constraints, unit parameters and loss
factors are not listed.+e dimension of the ED problem
of this system is 40. In the ED problem of this system,
each power generation unit has no prohibited zone, so
there are fewer unequal constraints, but this does not
significantly reduce the difficulty of the problem. +e
large size and multiple fuel options attribute of this
system make the ED problem to be one of the most
difficult to solve among the three systems.

4.2. Parameters Setting. For each of these three systems, the
maximum number of iterations to execute the objective
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function of each optimization algorithm is set to 20,000.
Simultaneously, two sets of experiments are performed on
each system for each algorithm. One has a population size of
M� 100 and a maximum number of generation of
Gmax � 200, another population size of M� 20 and
Gmax � 1000. On each system, each algorithm performed
100 independent experiments with a given maximum
generation Gmax and population size M. +e penalty coef-
ficient in the objective function is set to Kt � 100

�
t

√
, where t

is the current number of generations.

+e other experimental configuration settings are as
follows: +e size of the crossover probability pc � 0.8, and
the size of the mutation probability pm � 0.1 in GA; the
constant mutation factor used by the DE algorithm is
fm � 0.4, and the size of the crossover rate is CR� 0.8; for
PSO with inertia weight, the inertia weight decreases linearly
from 0.9 to 0.4 during the search process, the acceleration
coefficients c1 � c2 � 2.0 and Vmax � ((Pmax

j − Pmin
j )/2); for

SG-QPSO, during the search process, the variance of the
Gaussian distribution σ decreases linearly from 5 to 0.001.

Input: Input parameters: σ1 and σ0
Output: Fitness value of EDPs
Step 1: Initialize the current position of each particle, and set its personal best position to be its current position;
Step 2: Set t� 0;
Step 3: While the termination condition is not met, perform the following steps;
Step 4: Set t� t+1 and compute the mean best position Ci

t;
Step 5: From i� 1 executes the following steps;
Step 6: Evaluate the value of X, and update Gt and Pi

t;
Step 7: Update position of each particle according to (2);
Step 8: set i� i+1, and return to Setp 5 until i�M;
Step 9: Return to Step 3;
Step 10: Return result

ALGORITHM 1: +e pseudocode of SG-QPSO algorithm.

Table 1: 6 units of power generation capacity and coefficient.

Unit Pmin
j Pmax

j aj bj cj

1 100 500 240 7.0 0.0070
2 50 200 200 10.0 0.0095
3 80 300 220 8.5 0.0090
4 50 150 200 11.0 0.0090
5 50 220 220 10.5 0.0080
6 50 120 190 12.0 0.0075

Table 2: Slope limit and prohibited zones of the generator set 6-unit system.

Unit P0
j URj DRj Prohibited zones

1 440 80 120 [210, 240][350, 380]
2 170 50 90 [90, 110][140, 160]
3 200 65 100 [150, 170][210, 240]
4 150 50 90 [80, 90][110, 120]
5 190 50 90 [90, 110][140, 150]
6 110 50 90 [75, 85][100, 105]

Table 3: Loss factor b of 6-unit system.

Bij 1 2 3 4 5 6

1 0.0017 0.0012 0.0007 −0.0001 −0.0005 −0.0002
2 0.0012 0.0014 0.0009 0.0001 −0.0006 −0.0001
3 0.0007 0.0009 0.0031 0 −0.001 −0.0006
4 −0.0001 0.0001 0 0.0024 −0.0006 −0.0008
5 −0.0005 −0.0006 −0.001 −0.0006 0.0129 −0.0002
6 −0.0002 −0.0001 −0.0006 −0.0008 −0.0002 0.0150
B0i −0.0004 −0.0001 0.0007 0.0001 0.0002 −0.0007
B00 0.056
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+e algorithm parameters of ACSA, BCO, AIS, and FA are
set according to the corresponding literature. +e parameter
configuration of other PSO variables, namely SPSO, CPSO,
APSO, HGPSO, HPSOM, QPSO, and GQPSO, is the same as
the parameters suggested in the literature. +e parameter
setting of Hopfield NN is consistent with that in literature.

4.3. Experiment Results and Analysis. Table 6 lists the total
cost of each method for the ED problem of System 1. From
Table 6, the average cost and standard deviation of 100 runs
of SG-QPSO are better than other methods, which shows
that the performance and robustness of SG-QPSO on System
1 is better than other algorithms. Under the two experi-
mental configurations, the CPSO algorithm is the second
best method of the system in terms of the mean cost. When
M� 100 and Gmax � 200, the worst performance optimiza-
tion algorithm is APSO, and the mean cost obtained in 100
runs is 15473.3164$/h. For this system, Hopfield NN pro-
duces the worst results. When M� 20 and Gmax � 1000, the
mean cost of SPSO performs the worst, although the lowest

cost found in 100 runs is 15442.9130 $/h, which is better than
other comparison algorithms other than SG-QPSO. When
M� 100 and Gmax � 200, the SG-QPSO algorithm obtained
the best solution, the lowest standard deviation, and the best
mean cost.

Table 7 lists the solution vector Pj(j � 1, 2, . . . , 6) rel-
ative to the best solution. +e minimum cost of SG-QPSO
running 100 times is 15442.7831 $/h when M� 100 and
Gmax � 200. To prove that the equality constraints in (16) are
satisfied, we add the power loss (12.4173MW) to the load
demand (1263MW) for a total of 1275.4173MW. By
comparing the sum to the total power output
(1276.4183MW), we can find that the equality constraints
(i.e., power balance constraints) are well satisfied. Figure 1
visualizes the convergence of all test methods on the ED
problem of System 1 for an average of 100 experiments,
indicating that SG-QPSO has better convergence than other
algorithms.

Table 8 lists the mean cost, minimum and maximum
cost, and the standard deviation values obtained by per-
forming 100 experiments with each algorithm of the ED

Table 5: Slope limitation and prohibition zone for the 15-unit system of the generator set.

Unit P0
j URj DRj Prohibited zones

1 400 80 120
2 300 80 120 [185, 225][305, 335][420, 450]
3 105 130 130
4 100 130 130
5 90 80 120 [180, 200][305, 335][390, 420]
6 400 80 120 [230, 255][365, 395][430, 455]
7 350 80 120
8 95 65 100
9 105 60 100
10 110 60 100
11 60 80 80
12 40 80 80 [30, 40][55, 65]
13 30 80 80
14 20 55 55
15 20 55 55

Table 4: Slope limit and prohibited zones of the generator set 15-unit system.

Unit Pmin
j Pmax

j aj bj cj

1 150 455 671 10.1 0.000299
2 150 455 574 10.2 0.000183
3 20 130 374 8.8 0.001126
4 20 130 374 8.8 0.001126
5 150 470 461 10.4 0.000205
6 135 460 630 10.1 0.000301

135 465 548 9.8 0.000364
8 60 300 227 11.2 0.000338
9 25 162 173 11.2 0.000807
10 25 160 175 10.7 0.001203
11 20 80 186 10.2 0.003586
12 20 80 230 9.9 0.005513
13 25 85 225 13.1 0.000371
14 15 55 309 12.1 0.001929
15 15 55 323 12.4 0.004447
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problem on System 2. Obviously, in any experiment con-
figurations, SG-QPSO obtained the lowest cost. It can be
seen that whenM� 100 and Gmax � 200, QPSO ranks second
with a mean cost of 15455.6220$/h. When M� 20 and
Gmax � 1000, the second-best method is HPSOM, and its
average cost is 32811.3701$/h. In the two experimental
settings, the worst-performing optimization algorithms are
BCO (mean cost 33113. 0149$/h) and GA (mean cost
33188.5443$/h).

Table 9 lists the results of the ED problem of each al-
gorithm on System 3. From this table, in all the algorithms of
the two experiment configurations, SG-QPSO achieved the
best results. When M � 100, Gmax � 200, the second-best
performing algorithm is HPSOM, and the average cost

obtained in 100 experiments is 131614.7211 $/h. In this set of
experiments, GA performed the worst among all the algo-
rithms participating in the test.

In two different experiments configurations, the best
solution to the system is obtained through the SG-QPSO
algorithm. +e minimum cost of the algorithm in 100 runs
was 32663.2635 $/h. Table 10 shows the corresponding total
power generation cost for the best solution is 32663.2635 $/h
when M� 20 and Gmax � 1000. From Table 9, the difference
between the available load (2659.5748MW–29.5683MW)
and the load demand (2630MW) is 0.0065, which proves
that the power balance equation constraint in (9) and (18) is
satisfied. Figure 2 shows that for this ED problem, the SG-
QPSO method has better convergence than other

Table 7: M � 100, Gmax � 200 SG-QPSO system 1 (6-unit system).

Power output:P1(MW) ∼ P6(MW)

445.5381 172.8535 263.7547 141.3865 163.7148 89.1707
Total power output(MW) 1276.4183
Power loss(MW) 12.4173
Total generation cost($/h) 15442.7631
+e best solution is obtained with 100 runs.

Table 6: Results obtained by System 1 (6 unit system).

Min. Cost Mean. Cost Std. Cost Max. Cost
Hopfield NN 15485.9374 15485.9374 0 15485.9374

M � 100, Gmax � 200
GA 15445.5961 15465.1757 9.7336 15491.4797
DE 15444.9466 15450.1339 6.9854 15472.0651
ACSA 15445.3052 15459.5170 12.0247 15511.5269
BCO 15444.5837 15459.9441 8.4816 15482.3963
AIS 15446.3283 15456.6660 7.3954 15481.2766
FA 15445.9448 15461.3003 9.3385 15501.3958
PSO 15444.7756 15466.5658 7.9185 15483.9700
SPSO 15443.0188 15452.4764 9.5316 15490.2621
CPSO 15442.9892 15449.1213 5.8048 15466.3953
APSO 15445.5109 15473.3164 12.9048 15538.6016
HGPSO 15447.1055 15462.6151 10.6456 15497.0335
HPSOM 15443.6281 15449.2603 6.2745 15479.8640
QPSO 15442.9803 15455.6220 11.6388 15482.2709
G-QPSO 15443.2303 15473.3521 42.1254 15493.2412
SG-QPSO 15442.7831 15445.0319 3.2756 15455.3582

M � 20, Gmax � 1000
GA 15446.4787 15465.9948 10.7090 15493.2033
DE 15442.9836 15455.2537 13.7447 15489.8981
ACSA 15445.3052 15462.5170 12.0247 15511.5269
BCO 15446.3788 15461.8471 11.6661 15503.2901
AIS 15443.1652 15458.0859 8.5894 15481.0627
FA 15447.1955 15466.3277 12.5520 15512.0039
PSO 15443.8360 15459.9688 13.3737 15529.6094
SPSO 15442.9130 15477.9615 33.7155 15597.4534
CPSO 15443.1280 15454.1791 8.0500 15460.4890
APSO 15444.8934 15459.4084 11.0307 15493.3795
HGPSO 15445.4041 15464.3992 11.5621 15494.0358
HPSOM 15443.1716 15464.8451 22.8483 15533.1786
QPSO 15443.0583 15465.4058 25.8660 15518.4093
G-QPSO 15443.5143 15469.2825 56. 4224 1503.1225
SG-QPSO 15442.8105 15453.9682 13.1657 15482.7553
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Figure 1: Convergence properties of the tested optimization methods for the 6-unit system with (a)M� 100 and Gmax � 200; (b)M� 20 and
Gmax � 1000.

Table 8: Results obtained by System 2 (15 unit system).

Min. cost Mean. cost Std. cost Max. cost
Hopfield NN 34281.4857 34281.4857 0 34281.4857

M � 100, Gmax � 200
GA 32939.5208 33106.0019 100.1279 33231.6216
DE 32818.5792 32990.8673 61.5145 33116.9340
ACSA 32785.6031 33051.7711 77.8005 33185.2761
BCO 32989.2341 33113.0149 69.7986 33301.4940
AIS 32895.9173 33017.6537 58.1230 33132.0191
FA 32901.6610 33081.0107 91.0111 33197.2718
PSO 32715.0957 32940.4603 121.8668 33450.0099
SPSO 32675.3597 32840.9538 93.5420 33049.5619
CPSO 32705.5390 32917.4052 111.2425 33138.0568
APSO 32687.9840 32948.0533 92.0044 33359.6609
HGPSO 32864.0501 33034.1894 63.9932 33280.2655
HPSOM 32697.2458 32819.5931 83.0907 33015.7284
QPSO 32689.3055 32802.9367 75.6095 33045.0659
G-QPSO 32702.2125 32853.1352 79.1024 33132.1642
SG-QPSO 32671.2583 32745.5195 57.6386 32947.5837

M � 20, Gmax � 1000
GA 32905.3592 33188.5443 88.9124 33273.1660
DE 32718.8201 32966.4332 110.32378 33213.3173
ACSA 32863.1770 33120.0202 86.6134 33256.2899
BCO 32789.2342 33030.8636 69.7986 33301.4940
AIS 32895.9173 33017.6537 58.1230 33132.0191
FA 32898.0118 33116.9006 96.3875 33310.7299
PSO 32735.6944 33039.0837 102.0513 33297.2240
SPSO 32697.1431 32933.5688 137.8462 33399.6968
CPSO 32774.8653 32897.7110 112.1387 33372.1291
APSO 32861.4413 32996.4562 84.8760 33255.0095
HGPSO 32782.2876 33019.8081 139.8065 33413.7438
HPSOM 32677.3925 32811.3701 74.8198 32992.3424
QPSO 32675.4806 32794.6370 98.5369 33106.1779
G-QPSO 36932.1185 32833.3232 183.1024 33132.4262
SG-QPSO 32663.2635 32758.6330 84.1633 32973.1083

Table 9: Results obtained by System 3 (40-unit system).

Min. Cost Mean. Cost Std. Cost Max. Cost
Hopfield
NN 136443.7361 136443.7361 0 136443.7361

M � 100, Gmax � 200
GA 133032.8559 135162.1174 766.2829 137015.1418
DE 130560.8784 131763.7215 672.3205 133321.1490
ACSA 130888.1295 133885.6102 981.6510 135768.9684
BCO 131611.6984 132963.8364 601.3297 134148.5434
AIS 130659.0464 132615.3328 629.3222 133885.6066
FA 131689.6980 133752.5505 778.3255 135385.4171
PSO 131782.8393 132854.3789 685.4071 134768.2045
SPSO 130015.4388 131732.2893 963.8586 134795.8482
CPSO 130076.3782 131893.6162 869.5377 133774.6663
APSO 131095.8262 132350.7739 581.2420 133824.5656
HGPSO 131673.7544 133013.4195 671.3449 135075.4546
HPSOM 130513.9921 131614.7211 591.2488 133070.5908
QPSO 130415.6348 131458.0662 578.0477 132863.7305
GQPSO 131323.2141 131721.2426 621.2423 133002.2331
SG-QPSO 130383.7947 131269.5009 490.5704 132458.4669

M � 20, Gmax � 1000
GA 133435.6906 135012.4985 729.3536 136274.9726
DE 129915.5635 130600.2269 1335.4343 137042.9461
ACSA 131167.3417 132844.7110 741.0843 13492.36245
BCO 130337.7290 131733.9439 589.8034 132999.8803
AIS 130133.9214 131482.2767 561.7950 132703.1884
FA 130948.8466 133511.4572 747.3692 134997.9243
PSO 130887.0844 132614.1979 618.8210 135008.7394
SPSO 129616.8801 130455.3715 1379.2113 138444.9147
CPSO 129638.4548 130812.0434 651.0647 134184.2693
APSO 130861.5242 132587.8486 675.0306 134044.6303
HGPSO 132072.2495 134012.5706 684.4951 135528.3862
HPSOM 129177.4413 130234.1694 529.5827 131281.3077
QPSO 129519.5044 130498.1964 573.5890 132264.9375
GQPSO 131213.3145 131417.2211 598.2213 133102.1132
SG-QPSO 129078.4705 129884.6948 549.4955 131198.4069
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algorithms, providing faster convergence speed and the best
final mean fitness value.

From Table 9, when M � 20, Gmax � 1000, the SG-QPSO
algorithm can obtain the best solution to the ED problem of
the system. Due to the space limitations of this article, we
only list the best results of total power output and system
transmission loss obtained when the minimum total cost is
129078.4705 $/h in Table 11. In order to prove that the

equality constraints in (9) and (18) are satisfied, we will
combine the left side of (9) (that is, total output power
(8631.9425MW)) and the right side of (9) (that is, power loss
(81.9390MW)) and the sum of the load demand (8550MW)
(8631.9425MW) is compared, and both satisfy the equality
constraints. In addition, as shown in Figure 3, SG-QPSO also
has the best convergence for the fitness value of the ED
problem of the system.
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Figure 2: Convergence properties of the tested optimization methods for the 15-unit system with (a) M � 100, Gmax � 200;
(b) M � 20, Gmax � 1000.

Table 10: M � 20, Gmax � 1000 SG-QPSO system 2 (15-unit system).

Power Output
P1 ∼ P4(MW) 455.1085 380.9460 126.6947 127.8492
P5 ∼ P8(MW) 170.7069 463.8439 427.6885 75.3608
P9 ∼ P12(MW) 50.7581 163.3610 77.6944 80.5684
P13 ∼ P15(MW) 25.7335 20.5853 12.6756

Total power output(MW) 2659.5748 Power loss(MW) 29.5683
Total generation cost($/h) 32663.2635

+e best solution is obtained with 100 runs.

Table 11: +e best solution obtained by using SG-QPSO for System 3 (40-unit system).
Total Power Output(MW) 8631.9425
Power loss(MW) 81.9390
Total generation cost($/h) 129078.4705
Use M � 20, Gmax � 1000 (100 runs).
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5. Conclusion

A shrink Gaussian distribution Quantum-behaved par-
ticle swarm optimization (SG-QPSO) algorithm is pro-
posed to effectively solve the power economic dispatch
problem by considering the nonlinear characteristics of
the generator. SG-QPSO yields better solutions of dif-
ferent systems compared to any other tested algorithms,
and highly similar optimization results among 100 in-
dependent trails of each system confirmed its robustness.
In addition, the performance of SG-QPSO shows a
stronger global search performance, which can be seen
from the relatively low system cost obtained in 100 runs.
+erefore, the SG-QPSO method is a promising tool for
solving ED problems and other optimization problems in
the industrial field. Our future work will focus on the
application of the SG-QPSO method on other industrial
problems, as well as the theoretical analysis of the algo-
rithm search mechanism.
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