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In recent years, Differential Evolution (DE) has shown excellent performance in solving optimization problems over continuous
space and has been widely used in many fields of science and engineering. How to avoid the local optimal solution and how to
improve the convergence performance of DE are hotpot problems for many researchers. In this paper, an improved differential
evolution algorithm based on dual-strategy (DSIDE) is proposed. -e DSIDE algorithm has two strategies. (1) An enhanced
mutation strategy based on “DE/rand/1,” which takes into account the influence of reference individuals on mutation and has
strong global exploration and convergence ability. (2) A novel adaptive strategy for scaling factor and crossover probability based
on fitness value has a positive impact on population diversity. -e DSIDE algorithm is verified with other seven state-of-the-art
DE variants under 30 benchmark functions. Furthermore, Wilcoxon sign rank-sum test, Friedman test, and Kruskal–Wallis test
are utilized to analyze the results. -e experiment results show that the proposed DSIDE algorithm can significantly improve the
global optimization performance.

1. Introduction

Differential Evolution (DE) is an emerging optimization
technique proposed by Storn and Price [1] in 1995, which
was initially used to solve Chebyshev polynomials. Later, it is
demonstrated that DE is also an effective method to solve
complex optimization problems. Similar to other intelligent
evolutionary algorithms, DE is a stochastic parallel opti-
mization algorithm based on swarm intelligence, which
guides optimization search by imitating heuristic swarm
intelligence generated by cooperation and competition
among individuals in the population.

In DE, the population consists of several individuals,
each of which representing a potential solution to an op-
timization problem. DE generates offspring individuals
through mutation, crossover, and selection, and the off-
spring individuals are expected to be closer to the optimal
solution. In the process of evolution, with the increase of
generations, the population diversity becomes worse,

leading to premature convergence or evolutionary stagna-
tion, which is undoubtedly fatal to the algorithm that de-
pends on the difference of population. Also, the performance
of DE is affected by control parameters [2, 3]. For different
optimization problems, these control parameters often need
a large number of repeated experiments to adjust to the
appropriate value for achieving better optimization effect.

To address these shortcomings in DE, many improve-
ments have been proposed, most of which focused on
control parameters and mutation strategies.

Population size NP, scaling factor F, and crossover
probability CR are three crucial control parameters in DE.
Experiments in many works of literatures show that the
performance of DE can be improved by adjusting these control
parameters. Omran et al. [4] proposed a self-adaptation
scheme (SDE), in which F was adaptive and CR was generated
by a normal distribution. Liu and Lampinen [5] proposed a
fuzzy adaptive differential evolution algorithm (FADE), which
used the fuzzy logic controller to adjust F, andCR
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dynamically and successfully evolved individuals and their
fitness values as input parameters of the logic controller. Brest
et al. [6] developed a new adaptive DE algorithm, named jDE,
applying F and CR to the individual level. If a better individual
is produced, these parameters would be retained; otherwise,
they would be adjusted according to two constants. Noman
et al. [7] proposed an adaptive differential evolution algorithm
(aDE), which was similar to jDE [6], except that the updating
of parameters in aDE depended on whether the offspring was
better than the average individual in the parent population.
Asafuddoula et al. [8] used roulette to select the suitable CR
value for each individual in each generation of the population.
Tanabe and Fukunaga [9] proposed the success-history-based
parameter adaptation for differential evolution (SHADE),
which generated new F and CR pairs by sampling the nearby
space of stored parameter pairs. Later, they came up with an
improved version called L-SHADE [10]. Based on SHADE, a
linear population size reduction strategy (LPSR) was adopted
to reduce the population size NP by a linear function con-
tinuously. Zhu et al. [11] proposed an adaptive population
tuning scheme (APTS) that dynamically adjusted the pop-
ulation size, in which redundant individuals were removed
from the population or “excellent” individuals were generated.
Zhao et al. [12] proposed a self-adaptive DE with population
adjustment scheme (SAPA) to tune the size of the offspring
population, which contained two kinds of population ad-
justment schemes. Pan et al. [13] proposed a parameter
adaptive DE algorithm on real-parameter optimization, in
which better control parameters F and CR are more likely to
survive and produce good offspring. An enhancing DE with
novel parameter control, referred to as DE-NPC, was pro-
posed by Meng et al. [14]. -e update of F and CR was based
on the location information of the population and the success
probability of CR, respectively, and a combined parabolic-
linear population size reduction schemewas adopted. Di Carlo
et al. [15] proposed a multipopulation adaptive version of
inflationaryDE algorithm (MP-AIDEA), the parameters F and
CR of which were adjusted together with the local restart
bubble size and the number of local restarts of Monotonic
Basin Hopping [16]. Li et al. [17] presented an enhanced
adaptive differential evolution algorithm (EJADE), in which
CR sorting mechanism and dynamic population reduction
strategy were introduced.

To improve the optimization performance and balance
the contradiction between global exploration and local ex-
ploitation, researchers have carried out a lot of work on
mutation strategy in DE. Das et al. [18] proposed an improved
algorithm based on “DE/current-to-best/1” strategy, which
made full use of the optimal individual information in the
neighborhood to guide the mutation operation. Zhang and
Sanderson [19] proposed an adaptive differential evolution
algorithm (JADE), which adopted “DE/current-to-pbest/1”
mutation model, used suboptimal solutions to improve
population diversity, and employed Cauchy and Normal
distribution to generate F and CR. Qin et al. [20] proposed a
self-adaptive DE (SaDE), which adopted four mutation
strategies to generate mutation individuals. -e selection of
mutation strategy would be affected by previous performance.
A DE algorithm (CoDE) using three mutation strategies and

three parameters for the random combination was presented
by Wang et al. [21]. Epitropakis et al. [22] proposed a novel
framework that specified the selection probability in the
mutation operation based on the distance between each in-
dividual and the mutation individual, thereby guiding the
population to global optimization. Mallipeddi et al. [23]
proposed the EPSDE algorithm, which was characterized by a
stochastic selection of mutation strategies and parameters in a
candidate pool consisting of three basic mutation strategies
and preset parameters. Xiang et al. [24] proposed an enhanced
differential evolution algorithm (EDE), which adopted a new
combined mutation strategy composed of “DE/current/1”
and “DE/pbest/1.” Cui et al. [25] proposed a DE algorithm
based on adaptive multiple subgroups (MPADE), which di-
vided the population into three subgroups according to fitness
values, each subgroup had its mutation strategy.Wu et al. [26]
presented a DE with multipopulation-based ensemble of
mutation strategies (MPEDE), which had three mutation
strategies, three indicator subgroups, and one reward sub-
group. After several evolutionary generations, the reward
subgroup was dynamically assigned to the best-performing
mutation strategy. Parameters with an adaptive learning
mechanism for the enhancement of differential evolution
(PALM-DE) were presented by Meng et al. [27]. Unlike the
external archive of the mutation strategy in JADE [19] and
SHADE [9], the inferior solution archive in PALM-DE
mutation strategy used a timestamp mechanism. In [28],
Meng et al. introduced a novel parabolic population size
reduction scheme and an enhanced timestamp-based mu-
tation strategy to tackle the weakness of previous mutation
strategy. Wei et al. [29] proposed the RPMDE algorithm,
designed the “DE/M_pbest-best/1” mutation strategy, used
the optimal individual group information to generate new
solutions, and adopted the random perturbation method to
avoid falling into the local optimal. Duan’s DPLDE [30] al-
gorithm used population diversity and population fitness to
determine individuals participating in mutation operation,
thus influencing the mutation strategy. Tian and Gao [31]
proposed NDE, which employed two mutation operators
based on neighborhood-based and an individual-based se-
lection probability to adjust the search performance of each
individual appropriately. Wang et al. [32] proposed the DE
algorithm based on particle swarm optimization (DEPSO),
which utilized the improved “DE/rand/1” mutation strategy
and PSO mutation strategy. Meng and Pan [33] presented
hierarchical archive based on mutation strategy with depth
information of evolution for the enhancement of differential
evolution (HARD-DE), the depth information in which was
the linkage of more than three different generations of
populations and was included into the mutation strategy. A
hybrid differential evolution algorithm based on “DE/target-
to-ci_mbest/1” mutation operation of CIPDE [34] and “DE/
target-to-pbest/1” mutation operation of JADE [19] was in-
troduced by Pan et al. [35]. Meng et al. [36] proposed depth
information-based DE with adaptive parameter control (Di-
DE), the mutation strategy of which contained a depth in-
formation-based external archive.

As mentioned above, mutation strategies and control
parameters affect the performance of DE, and “DE/rand/1”
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is widely used due to its strong global exploration ability and
good population diversity. Many researchers have refined
the mutation strategy. In this paper, an enhanced mutation
strategy based on “DE/rand/1” is proposed by introducing a
reference factor. Besides, according to the maximum,
minimum, average fitness value of population, and the fit-
ness value of the individual, the scaling factor and crossover
probability are changed to adjust the population diversity
effectively.

-e remainder of the paper is organized as follows.
Section 2 describes the basic DE algorithm. Section 3 pro-
vides the details of the proposed DSIDE. In Section 4, the
proposed DSIDE is compared and analyzed experimentally
with seven advanced DE algorithms, and the effectiveness of
the enhanced mutation strategy and the novel adaptive
strategy for control parameters in DSIDE is studied. Section
5 summarizes the work of this paper and points out the
future research direction.

2. The Basic Differential Evolution Algorithm

An unconstrained optimization problem is to find the ex-
tremum of a function, which can be expressed as follows:

min f x1, x2, . . . , xD( 

s.t. x
L
j ≤xj ≤x

U
j , j � 1, 2, . . . , D,

⎧⎨

⎩ (1)

where f(∗) denotes the fitness value, D represents the di-
mension of the problem, and xL

j and xU
j are the minimum

and maximum values of xj, respectively. -e process of
solving optimization problems in DE is divided into ini-
tialization, mutation, crossover, and selection.

2.1. Initialization. To establish a starting point, an initial
population must be created in the search space. Without loss
of generality, the jth component (j � 1, 2, . . . , D) of the ith
individuals (i � 1, 2, . . . ,NP) in the original population can
be expressed as follows:

x
0
i,j � x

L
i,j + rand∗ x

U
i,j − x

L
i,j , (2)

where rand returns a uniformly distributed random number
between 0 and 1 and L and U represent the lower and upper
bounds of solution space, respectively.

2.2. Mutation. -e mutation strategy of the DE algorithm
can be expressed as “DE/x/y,” where “DE” means differential
evolution algorithm, “x” represents the reference vector in
the mutation operation, and “y” denotes the number of
differential vectors in the mutation operation. -e most
common mutation strategy is to randomly select two dif-
ferent individuals in the population, scale their vector dif-
ferences, and then conduct vector synthesis with another
random individual. -e obtained mutation individual Vi is
as follows:

V
G+1
i � X

G
r1 + F · X

G
r2 − X

G
r3 , (3)

where r1, r2, and r3 are randomly generated integers
ranging from 1 to NP, and r1≠ r2≠ r3≠ i; G represents the
current generation number; and F denotes the scaling factor
and controls the amplification of the differential vector. -e
mutation strategy is shown in equation (3) and is known as
“DE/rand/1”.

2.3. Crossover. -e purpose of the crossover operation is to
generate the trial vector UG+1

i,j . -e binomial crossover and
exponential crossover are two main crossover operators. In
this paper, binomial crossover is adopted, and its expression
is as follows:

U
G+1
i,j �

V
G+1
i,j , rand<CRor j � jrand,

X
G
i,j, otherwise,

⎧⎪⎨

⎪⎩
(4)

where XG
i,j denotes the jth component of the ith individual in

the current population; CR(∈ [0, 1]) is called crossover
probability, which determines the contribution of mutation
vector VG+1

i,j to trial vector UG+1
i,j . jrand(∈ [1, D]) is a uni-

formly distributed random integer, ensuring that at least
one-dimensional components of the trial vector UG+1

i,j inherit
from the mutation vector VG+1

i,j .

2.4. Selection. In DE, the greedy selection strategy is utilized
to compare the trial vector UG+1

i,j with the target vector XG
i ,

and the one which has better fitness value will be selected as
the offspring individual XG+1

i :

X
G+1
i �

U
G+1
i , f U

G+1
i <f X

G
i ,

X
G
i , otherwise,

⎧⎪⎨

⎪⎩
(5)

where f(·) stands for the fitness value.

3. DSIDE Algorithm

In DSIDE, the crossover and selection operations are the
same as the basic DE, as shown in equations (4) and (5),
respectively. Next, the improved mutation strategy and
adaptive strategy will be introduced.

3.1. An Enhanced Mutation Strategy. From equation (3), it
can be seen that the reference individual XG

r1 plays an im-
portant role in regulating balance in the evolutionary pro-
cess. In the early stage of evolution, when most individuals
are far away from the optimal solution, a larger XG

r1 is
conducive to jumping out of the local optimal. However, in
the later stage of evolution, most individuals gradually ap-
proach the global optimal solution, and a larger XG

r1 may
cause individuals to deviate from the correct direction of
evolution, which is not in favor of global convergence. On
this basis, we propose an improved mutation strategy as
follows:

Mathematical Problems in Engineering 3



V
G+1
i � αG∗

i X
G
r1 + Fi · X

G
r2 − X

G
r3 , (6)

αG
i � 1 − r

1− G/Gmax)2.( (7)

In equation (6), αi(∈ [0, 1]), Fi, and CRi are the reference
factor, scaling factor, and crossover probability for each
target individual XG

i , respectively; G denotes the current
generation number. In equation (7), r means a random
number on the interval [0, 1]. Gmax represents the maximum
generation number. From equation (7)， it is not chal-
lenging to observe that the value of αG

i is relatively large at
the initial evolutionary stage, which ensures a wide range of
search. As the evolutionary generation increases, the αG

i

value decreases and the search scope shrink.

3.2. A Novel Adaptive Strategy for Control Parameters.
During the mutation operation of equation (3), the scaling
factor affects the reference individual through the dif-
ferential vector (XG

r2 − XG
r3), which is called “perturba-

tion.” A larger F can produce a larger “perturbation,”
which is helpful to maintain the population diversity, but
will reduce the search efficiency of the algorithm. A
smaller F helps to improve the convergence speed, but the
loss of population diversity is faster, and it is easy to fall
into local optimal and premature convergence. During the
crossover operation of equation (4), CR determines the
contribution of the mutation vector to trial vector. A
larger CR facilitates the expansion of the search space,
thus accelerating the convergence. However, the mutation
individuals tend to be identical in the later evolutionary
stage, which weights against the maintenance of diversity.
A smaller CR is not to the benefit of exploring the search
area. -erefore, F and CR should be adjusted adaptively to
explore the global space more thoroughly in the early stage
of evolution and exploit the local area near the optimal
solution at the later stage of evolution. Based on these
points, a novel adaptive strategy is proposed, which can
dynamically adjust control parameters according to the
fitness value, as shown in

F
G
i �

f
G
max − f

G
i 

f
G
mean

, (8)

CRG
i �

f
G
i − f

G
min 

f
G
mean

, (9)

wherefG
i is the fitness value of the target individualXG

i ,fG
max

and fG
min are the maximum and minimum fitness values at

the current generation G, and fG
mean is the average fitness

value of the current population.
-e reference factor αG

i , scaling factor FG
i , and

crossover probability CRG
i are updated before each evo-

lution. -e entire process of DSIDE algorithm is shown in
Algorithm 1.

4. Experimental Results and Analysis

4.1. Benchmark Functions. Unlike deterministic algorithms,
it is difficult to verify that evolutionary algorithms are su-
perior to other algorithms due to their limited knowledge.
-erefore, benchmark functions are utilized to evaluate the
performance of evolutionary algorithms. In this section, the
performance of DSIDE is tested on 27 benchmark functions
[37–39] listed in Table 1, where D is the dimension of the
problem. f1 ∼ f11 are unimodal functions. f12 has one
minimum and is discontinuous. f13 is a noisy quadratic
function. f14 ∼ f27 are multimodal functions. f(∗) denotes
the global minimum value.

Experiment results in this paper are obtained onWindows
10 x64 Operating System of a PC with Intel (R) Core (TM) i7-
8550U CPU (1.80GHz) and 8GB RAM, and algorithms are
implemented in MATLAB 2015b Windows version.

4.2. Comparison with 7 Improved DE Algorithms. Here, we
mainly discuss the overall optimization performance among
jDE [6], JADE [19], SaDE [20], CoDE [21], EPSDE [23],
MPEDE [26], DEPSO [32], and the proposed DSIDE al-
gorithm. Experiments are carried out on f1 ∼ f30 bench-
mark functions at 30 D and 100 D, respectively. -e
parameters of other algorithms are the same as in their
original literatures. -e population size NP is set to 100 for
all algorithms. 30 independent runs with 1000 maximum
number of evolutionary generations are conducted. Tables 2
and 3 show the mean/std (mean value and standard devi-
ation) of fitness error over 30 runs at 30 D and 100 D,
respectively. Symbols “+,” “ ≈ ,” and “− ” behind
“mean± std” pair denote “Better Performance,” “Similar
Performance,” and “Worse Performance,” respectively, all of
which are measured under Wilcoxon’s signed-rank test with
a level of significant α � 0.05. Furthermore, Wilcoxon’s
rank-sum test and Kruskal–Wallis test [39, 40] in Tables 4–6
are employed to further test the optimization performance of
all algorithms.-e best results in tables are shown in bold. In
addition, the representative convergence curves of all al-
gorithms are also given in Figures 1 and 2.

(1) Initialize the original population pop and calculate
their fitness values, NP� 100, G � 1, Gmax�1000;

(2) while ((G≤Gmax) do
(3) for each individual Xi in pop do
(4) Calculate αi in equation (7);
(5) Calculate Fi in equation (8);
(6) Calculate CRi in equation (9);
(7) Implement mutation in equation (6);
(8) Implement crossover in equation (4);
(9) Implement selection in equation (5);
(10) end for
(11) G � G + 1
(12) end while

ALGORITHM 1: DSIDE.
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Table 4: -e results of Wilcoxon’s rank-sum test over independent 30 runs.

Comparison R+ D � 30
p value α � 0.1 R+ R− p value D � 100 α � 0.05 α � 0.1

R− α � 0.05
DSIDE vs. jDE 235 143 6.37e − 04 Yes Yes 372 93 6.01e − 06 Yes Yes
DSIDE vs. JADE 223 155 1.53e − 03 Yes Yes 371 94 6.94e − 06 Yes Yes
DSIDE vs. SaDE 282 124 2.84e − 04 Yes Yes 402 63 1.37e − 06 Yes Yes
DSIDE vs CoDE 322 143 3.15e − 05 Yes Yes 419 46 1.76e − 07 Yes Yes
DSIDE vs. EPSDE 240 138 3.80e − 04 Yes Yes 401 64 2.00e − 06 Yes Yes
DSIDE vs. MPEDE 244 162 7.53e − 04 Yes Yes 369 96 6.46e − 06 Yes Yes
DSIDE vs. DEPSO 294 57 7.51e − 04 Yes Yes 284 41 1.69e − 03 Yes Yes

Table 5: -e results of Friedman and Kruskal–Wallis tests on 30D test functions.

Algorithms jDE JADE SaDE CoDE EPSDE MPEDE DEPSO DSIDE
Friedman (rank) 5.25 3.12 5.42 6.73 4.92 3.53 4.28 2.75
Kruskal–Wallis (rank) 131.13 109.28 133.87 163.00 129.93 117.38 112.73 66.67

Table 6: -e results of Friedman and Kruskal–Wallis tests on 100 D test functions.

Algorithms jDE JADE SaDE CoDE EPSDE MPEDE DEPSO DSIDE
Friedman (rank) 4.80 3.10 6.23 6.77 5.50 4.23 3.32 2.05
Kruskal–Wallis (rank) 132.77 120.80 146.30 165.20 137.87 128.70 81.03 51.33

50

0

–50

–100

–150
0 500 1000

jDE
JADE
SaDE
CoDE

EPSDE
MPEDE
DEPSO
DSIDE

(a)

50

0

–50

–100

–150
0 500 1000

jDE
JADE
SaDE
CoDE

EPSDE
MPEDE
DEPSO
DSIDE

(b)

50

0

–50

–100

–150
0 500 1000

jDE
JADE
SaDE
CoDE

EPSDE
MPEDE
DEPSO
DSIDE

(c)

200

100

0

–100

–200
0 500 1000

jDE
JADE
SaDE
CoDE

EPSDE
MPEDE
DEPSO
DSIDE

(d)

2

1

0

–1

–2

–3

–4
0 500 1000

jDE
JADE
SaDE
CoDE

EPSDE
MPEDE
DEPSO
DSIDE

(e)

4

2

0

–2

–4
0 500 1000

jDE
JADE
SaDE
CoDE

EPSDE
MPEDE
DEPSO
DSIDE

(f )

–2

0

2

4

6

8

10

0 500 1000

jDE
JADE
SaDE
CoDE

EPSDE
MPEDE
DEPSO
DSIDE

(g)

0

2

4

6

8

10

0 500 1000

jDE
JADE
SaDE
CoDE

EPSDE
MPEDE
DEPSO
DSIDE

(h)

Figure 1: Continued.

8 Mathematical Problems in Engineering



5

0

–5

–10

–15

–20
0 500 1000

jDE
JADE
SaDE
CoDE

EPSDE
MPEDE
DEPSO
DSIDE

(i)

5

0

–5

0 500 1000

–10

–15

jDE
JADE
SaDE
CoDE

EPSDE
MPEDE
DEPSO
DSIDE

(j)

5

0

–5

–10

–15
0 500 1000

jDE
JADE
SaDE
CoDE

EPSDE
MPEDE
DEPSO
DSIDE

(k)

4

2

0

–2

–4

–6

–8
0 500 1000

jDE
JADE
SaDE
CoDE

EPSDE
MPEDE
DEPSO
DSIDE

(l)

Figure 1: Convergence curves off1, f7, f13, f14, f15, andf16 at D � 30,100.-e horizontal axis and the vertical axis are generations and the
mean function error values over 30 independent runs. (a) f1 30 D, (b) f1 100 D, (c) f7 30 D, (d) f7 100 D, (e) f13 30 D, (f ) f13 100 D,
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Figure 2: Continued.
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From Table 2 on 30 D, the proposed DSIDE algorithm
displays that 23 out of 30 benchmark functions have better
or similar performance than jDE, JADE, CoDE, EPSDE, and
MPEDE, 24 out of 30 benchmark functions have better or
comparable performance than SaDE, and 27 out of 30
benchmark functions have better or equivalent performance
than DEPSO. Furthermore, the proposed DSIDE algorithm
performs the best on benchmark functions f1 ∼ f11, f13,
f15 ∼ f22, f25 ∼ f26, and f28 in comparison with the other
contrasted algorithms, performs slightly inferior on
benchmark functions f14, f23, f24, and f27, and only
performs poorly on f12, f29, and f30. -erefore, we can
conclude that the proposed DSIDE algorithm is more
competitive with the other seven improved DE algorithms
on these functions at 30 D.

From Table 3 on 100 D, the proposed DSIDE algorithm
displays that 25 out of 30 benchmark functions have better
or equal performance than jDE, JADE, and MPEDE, 26 out
of 27 benchmark functions have better or similar perfor-
mance than SaDE, CoDE, and EPSDE, and 28 out of 30
benchmark functions have better or similar performance
than DEPSO. Furthermore, the proposed DSIDE algorithm
performs the best on benchmark functions f1 ∼ f11,
f13 ∼ f22, f24 ∼ f26, and f28 in comparison with all other
contrasted algorithms, performs slightly inferior on
benchmark functions f14, f23, f27, and only performs
poorly on other three benchmark functions. -at is to say,
DSIDE has an overall better performance on benchmark
functions f1 ∼ f30 at 100 D.

From Table 4, we can see the results of Wilcoxon’s
rank-sum test for 30 D and 100 D problems. R+ is the sum
of positive ranks in which the first algorithm performs
better than the second, and R− is the sum of negative ranks
in which the first algorithm performs worse than the
second. As shown in the table, we can observe that, for all
comparison of DEs, all R+ values obtained by DSIDE are
higher than R− . It proves that DSIDE outperforms other
compared DE algorithms significantly. Tables 5 and 6,

respectively, utilize Friedman and Kruskal–Wallis statis-
tical test to compare the performance of each algorithm on
30 D and 100 D problems. It can be seen that the test
results obtained by DSIDE are the minimum regardless of
the high dimension or low dimension, indicating that
DSIDE has the best performance among the comparison
algorithms.

So far, all the nonparametric tests, including Wilcoxon’s
rank-sum, Friedman, and Kruskal–Wallis test, support the
conclusion that DSIDE is superior to other competing
algorithms.

Furthermore, we compare the convergence curves of
each algorithm on benchmark functions at 30 D and 100 D.
All convergence curves are studied and analyzed from the
aspects of convergence precision and whether they converge
to the global optimum or not. Some representative con-
vergence curves are depicted in Figures 1 and 2.

As shown in Figures 1(a) and 1(b), in convergence
curves of function f1 at 30 D and 100 D, only DSIDE
converges to the global optimum, and the average con-
vergence accuracy is much higher than other algorithms
under the same generations. Convergence curves of f7, as
shown in Figures 1(c)and 1(d). Although convergence
precision is not always optimal in the evolution process,
only DSIDE gets the global optimum. Figures 1(e) and 1(f )
show convergence curves of f13 at 30 D and 100 D, re-
spectively. All algorithms have not found the optimal so-
lution, but the average convergence accuracy of DSIDE is
much higher than other algorithms under the same gen-
erations and obtains the best value. Figures 1(g) and 1(h)
show convergence curves of f14 at 30 D and 100 D, re-
spectively. All algorithms have not obtained the global
minimum. JADE performs the best on the low-dimensional
problem, while DSIDE is the best on high-dimensional. In
Figures 1(i) and 1(j), DSIDE converges the fastest on f15.
DSIDE, EPSDE, and jDE converge to the global optimum at
30 D, while DSIDE and DEPSO reach the optimal at 100 D.
In Figures 1(k) and 1(l), only DSIDE gets the global optimal
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Figure 2: Convergence curves of f18, f23, f25, f26, f28, andf29 at D � 30,100. -e horizontal axis and the vertical axis are generations and
the mean function error values over 30 independent runs. (a) f18 30 D, (b) f18 100 D, (c) f23 30 D, (d) f23 100 D, (e) f25 30 D, (f )
f25 100 D, (g) f26 30 D, (h) f26 100 D, (i) f28 30 D, (j) f28 100 D, (k) f29 30 D, and (l) f29 100 D.
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on f16 and consumes fewer generations and converges
quickly.

In Figure 2(a), DSIDE, JADE, DEPSO, and EPSDE
obtain the optimal on f18 at 30 D. In Figure 2(b), DSIDE
and DEPSO get the global optimal on f18 at 100D. DSIDE
has the fastest convergence speed in both low-dimensional
and high-dimensional problems. Convergence curves of
function f23 in Figures 2(c) and 2(d), none of the algorithms
finds the global minimum, and there is a phenomenon of
“evolutionary stagnation.” In Figures 2(e) and 2(f ) on
function f25, only CoDE cannot find the global minimum at
30D; DSIDE and DEPSO get the global optimal at 100D, but
the former costs much less generations. In Figures 2(g) and
2(h), DSIDE converges to the global optimal on f26, while
other algorithms suffer from “evolutionary stagnation.” In
Figure 2(i), the global minimum value is found by all al-
gorithms except CoDE and EPSDE on f28 at 30 D. In
Figure 2(j), DSIDE and DEPSO get the global optimal on
function f28 at 100 D. In Figures 2(k) and 2(l), DSIDE
performs relatively low but consistently outperforms
DEPSO on function f29.

In general, through the comparative analysis of the above
experiments, DSIDE not only obtains the global optimal
value most times on these benchmark functions but also is
superior to other algorithms in terms of convergence speed
and convergence accuracy.

4.3. Efficiency Analysis of Proposed Algorithmic Components.
So far, the above experiment exhibits the combined effect of
the proposed DSIDE. In this section, the efficiency analysis
of proposed algorithmic components is completed, in-
cluding the enhanced mutation strategy of the reference
factor and the adaptive strategy of the scaling factor and
crossover probability. Some variants of DSIDE are listed as
follows:

(i )To verify the effectiveness of the enhanced muta-
tion strategy of reference factor α, DSIDE variants
adopt dynamic F,CR, and constant reference factor
of α � 0.3 and α � 0.6 and random real number in
[0, 1], which are, respectively, called as DSIDE-1,
DSIDE-2, and DSIDE-3 one by one.

(ii) To investigate the validity of the scaling factor
adaptive strategy, DSIDE variants employ dynamic
CR, α and fixed scaling factor of F � 0.3, F � 0.6,
and random real number in [0, 1], which are named
DSIDE -4, DSIDE -5, and DSIDE -6 for short.

(iii) To study the contribution of the crossover proba-
bility adaptive strategy, DSIDE variants with shifty
F, α and settled crossover probability of CR � 0.3
and CR � 0.6, and random real number in [0, 1] are,
respectively, abbreviated as DSIDE-7, DSIDE-8, and
DSIDE-9.
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Figure 3: Nonparametric test results of proposed DSIDE and 9 DSIDE variants over 30 independent runs. (a) Friedman test results.
(b) Kruskal–Wallis test results.
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For the purpose of evaluating and comparing the
performance of DSIDE variants, Friedman test, Krus-
kal–Wallis test, and Wilcoxon’s rank-sum test are
adopted, and the test results are shown in Figure 3(a),
Figure 3(b), and Table 7, respectively. -e following
summaries can be obtained. (1) From Figure 3, we can
observe that DSIDE and DSIDE-6 are the best and the
second, while the performance of other DSIDE variants is
relatively low. -e combined effect of the proposed al-
gorithmic components is the best. (2) From Table 7, the
integrated DSIDE performs significantly better than
DSIDE variants (DSIDE-2 and DSIDE-5) with a larger
reference factor and a lager scaling factor, as well as
DSIDE variants (DSIDE-7, DSIDE-8, and DSIDE-9) with
different crossover probability. -e performance between
the integrated DSIDE and DSIDE-1 with a smaller ref-
erence factor, DSIDE-3 with a random reference factor,
and DSIDE-4 with a smaller scaling factor show no sig-
nificant difference when the significance level of Wil-
coxon’s rank-sum test is 0.1, but the difference is opposite
when the significant level is 0.05. At the same time, there is
no performance difference between DSIDE and DSIDE-6
with a random scaling factor, regardless of the significance
level. -e validity of the proposed mutation strategy and
adaptive strategy for control parameters is demonstrated
utilizing above experimental comparisons. It is noted that
the contribution of the adaptive strategy of crossover
probability is larger than enhanced mutation strategy and
adaptive strategy of scaling factor. -at is to say, although
the enhanced mutation strategy of reference factor and
adaptive strategy of scaling factor are effective, DSIDE is
less susceptible to both a smaller or variational reference
factor and scaling factor.

5. Conclusions

DSIDE’s innovation lies in two strategies, the enhanced
mutation strategy and the novel adaptive strategy for control
parameters. On the one hand, the enhanced mutation
strategy considers the influence of the reference individual
on the overall evolution. It introduces the reference factor,
which is beneficial to global exploration in the early stage of
evolution and global convergence in the later stage. On the
other hand, the novel adaptive strategy for control pa-
rameters can dynamically adjust the scaling factor and

crossover probability according to the fitness value, which
has a positive impact on maintaining the population di-
versity. DSIDE is compared with other seven DE algorithms,
the results are evaluated by three nonparametric statistical
tests, and the convergence curves are analyzed. Experimental
results show that the proposed DSIDE can effectively im-
prove the optimization performance. Besides, the efficiency
analysis of proposed algorithmic components has been
carried out, which further proves the comprehensive effect
and validity of DSIDE.

So far, DE variants have been applied to various fields,
such as target allocation [41], text classification [42], image
segmentation [43], and neural network [44–47]. For the
future work, the proposed DSIDE algorithm will be applied
to the parameter optimization of neural network and may
further apply it to the air traffic control system for flight
trajectory prediction [48, 49].
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