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Switched reluctance motor is acquiring major attention because of its simple design, economic development, and reduced
dependability. *ese attributes make switched reluctance motors superior to other variable speed machines. *e major challenge
associated with the development of a switched reluctance motor is its high torque ripple. Torque ripple produces noise and
vibration, resulting in degradation of its performance. Various techniques are developed to cope with torque ripples. Practically,
there exists not a single mature technique for the minimization of torque ripples in switched reluctance motors. In this research, a
switched reluctance motor is modelled and analysed. Its speed and current control are implemented through artificial neural
networks. Artificial neural network is found to be a promising technique as compared with other techniques because of its
accuracy, reduced complexity, stability, and generalization. *e Levenberg–Marquardt algorithm is utilized in artificial neural
networks due to its fast and stable convergence for training and testing. It is found from research that artificial neural network-
based improved control shows better performance of the switched reluctance motor. Realization of this technique is further
validated from its mean square error analysis. Operating parameters of the switched reluctance motor are improved significantly.
Simulation environment is created in Matlab/Simulink.

1. Introduction

Switched reluctance motor (SRM) is a type of stepper motor,
an electric motor that runs by reluctance torque. Unlike
common DC motors, power is delivered to the windings in
the stator rather than the rotor. No magnets or coils are
attached to the rotor. SRM consists of a position sensor that
senses the energized pole of a stator and then aligns the rotor
with the energized stator pole [1–3]. Because of their ex-
ceptional characteristics, SRM has great potential in motion
control applications, which allows good performance in
harsh dusty environments with high-temperature degrees
[4–6].

SRM is an attractive alternative to AC andDCmotors for
general-purpose industrial drives, as well as for high-per-
formance automotive drives and other applications because
of its simple structure due to the absence of magnets, rotor
conductors, and brushes. It is used instead of induction and

DC motors in many applications because of its low con-
struction cost, high reliability, high power density, fast
dynamic response, good controllability ruggedness, and fault
tolerance [6–8].

In comparison with conventional machines, the primary
disadvantage of SRM is higher torque ripple, which con-
tributes to acoustic noise and vibration. *e origin of torque
pulsations is due to the nonlinear and discrete nature of the
torque production mechanism. Minimization of torque
ripple is essential for high performance [9]. To optimize the
design of SRM, magnetic characteristics play an important
role. *e performance of SRM is dependent on its design.
Torque ripples of SRM can be reduced by machine design or
by their control circuits. Many researchers used finite ele-
ment programs to design motors and obtained its torque,
current, and rotor angle (τ − i − θ) characteristics. Obtained
data stored in 3D lookup table were being used to investigate
the corresponding suitable current that leads to minimum
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torque, but this method consumes much time [6, 10].
Analytical methods were implemented for torque ripple
reduction but these methods lack modelling and compu-
tational accuracy. To achieve minimized reluctance, ripples
are required to be reduced as torque and speed are inversely
proportional to each other [11]. Direct instantaneous torque
control (DITC) technique was utilized for the reduction of
torque ripple, but it was limited in operation range, and the
controller needs to be changed as speed increases [12]. *e
multiphase torque-sharing scheme was proposed to control
the torque ripple, but it adds complexity to the system [13].
TSF (torque sharing function) and current control methods
were employed for torque ripple minimization but these
methods neglect mutual torque that has a significant effect in
certain applications [14]. A unified controller for switched
reluctance motors was proposed for wide speed operations.
*e proposed controller achieves minimum output torque
ripple at low and medium speed and operates in the single
pulse mode at high speed [15]. In [16], by applying the
method of direct torque control (DTC), torque ripple and
flux are regulated within the hysteresis limit.

*e performance of SRM is improved by the advanced
artificial intelligence techniques such as fuzzy logic and
artificial neural network (ANN), or their combinations can
be implemented [17]. *e artificial neural network (ANN)
method is inspired by the human brain model and does not
need a large memory to store the magnetic characteristics.
*is technique has many benefits such as fault tolerance,
organic learning, linear data processing, and self-repair
ability. It can perform in noisy environments [14]. SRM
nonlinearity characteristics are trained by neural networks
and then the current graph for ripple reduction is obtained.
ANN is used as an intelligent controller [18, 19]. Torque
ripple reduction is done through PI and fuzzy logic con-
troller [20]. SRM torque ripples are reduced in four quad-
rants of operation through a control scheme, which is an
extension of the TSF technique. For the calculation of static
characteristics of the motor, a 2D finite element program is
used. Torque command is used for the estimation of a
current of motor, and ANN is used for calculation of the
angle of the rotor [21]. In [22], ANN is used for direct torque
control of four-phase SRM for minimization of torque
ripples and to overcome the drawback of voltage space
vector in classical DTC technique.

In this research, an ANN-based algorithm is developed
and is applied on SRM for torque ripple reduction. It is
found from simulations that ANN is an accurate and less
complex algorithm and offers performance improvement in
the dynamic environment particularly in the case of SRM.
*e proposed control technique computes the desired
output with accuracy and offers speedily conversions in less
computational time in comparison with the PI controller
and simplified model. *is research includes simulation of
different cases of the proposed model. Torque ripple value
and torque improvement percentage are evaluated in dif-
ferent cases of the proposed model. Torque is improved by
1.44 times as compared with the simplified model. Reduc-
tion in torque ripple and improvement in torque increase
the SRM speed. *e proposed technique has potential to

improve industrial acceptance of SRM. *is potential is
validated by RMSE analysis.

*e rest of the paper is organized as follows: In Section 2,
it explains the mathematical formulation of SRM, ANN, and
Levenberg–Marquardt algorithm. Section 3 illustrates the
control scheme of ANN-based SRM, and the basic process is
explained. Implementation of the proposed scheme is de-
scribed in Section 4. Simulation results and discussions will
be given in Section 5. Section 6 and Section 7 show the
effectiveness of the proposed technique and conclusion,
respectively.

2. Mathematical Formulation

2.1. Mathematical Modelling of SRM. SRM is a rotating
electric machine in which salient poles are possessed by the
rotor and stator. *erefore, a machine is referred to as a
doubly salient machine. It comprises of a stator with an
exciting winding and magnetic rotor. No permanent magnet
is required because the tendency of rotor poles to align with
excited poles, so as to minimize the stator flux linkages that
result from a given applied stator current, is the source of
torque production. Generally, the motor phase equations
describe the electrical behaviour of SRM. *e instantaneous
voltage across the terminals of a phase of SRM winding is
related to the flux linked in the winding which is obtained by
Faraday’s law. Due to double salient construction and
magnetic saturation effects, flux linked in the SRM phase
varies as a function of rotor position θ and phase current i:

Vj � RIj +
zφj(i, θ)

zi

di

dt
+

zφj(i, θ)

zθ
dθ
dt

, here j � 1, 2, 3,

ω �
zθ
zt

.

(1)

Flux in each phase is given after excluding saturation and
mutual inductance effects:

φj θ, ij  � L(θ)ij, (2)

which is written as follows:

Vj � RIj + L(θ)
zi

zt
+ i

zL(θ)

zθ
ω. (3)

Energy associated with three phases (n� 3) is given as
follows:

Wtotal �
1
2



3

j�1
L θ +(n − j − 1)θs( I

2
j . (4)

Phase inductance displaced by angle θs and torque of
motor is as follows:

Te �
zWtotal

zθ
�
1
2



3

j�1

zL θ +(n − j − 1)θs( 

zθ
I
2
j . (5)

*e mechanical equation which describes the mechan-
ical motion of the motor is written as follows:
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J
zω
zt

� Te − Tl − fω, (6)

where V is the terminal voltage, I is a phase current, R is the
phase winding resistance,∅ is the flux linked by winding, J is
a moment of inertia, f is the friction coefficient, (θ) is the
instantaneous inductance, Tl is the torque load, and Te is the
total torque.

2.2. Mathematical Steps of ANN. Artificial neural networks
can learn and model nonlinear and complex relationships.
ANN can simplify after learning from the initial inputs and it
can infer unseen relationships on unseen data as well, thus
making the model generalize and predict on unseen data.
*e general equation of ANN is as follows:

Y � (weight∗ input) + bias. (7)

A node is a basic unit of a neural network, which gives a
certain number of inputs and bias values. When the signal
(value) arrives, it is multiplied by the weight value. Every
input has its weight value which can be tuned during the
training stage. Bias is an extra input to neuron, and it is
always one and it has its connection weight [23, 24]:

z � x1 ∗w1 + x2 ∗w2+, . . . , +xn ∗wn + b∗ 1. (8)

Outputs and inputs in neural networks are in linear form
i.e., 0 and 1. Activation function introduces nonlinearity.
Sigmoid or logistic activation function is mostly used for
binary classification problems (output values that ranges 0-
1). *e calculation of the derivative of the sigmoid function
is easy. *en, to change the linear values into nonlinear,
sigmoid function is used [23]:

Y � aout � sigmoid (z), (9)

where Y is the output and sigmoid is the activation function
applied to bias and a weighted sum of inputs [24].

2.3. Mathematical Operations of the Levenberg–Marquardt
Algorithm. LMA provides a numerical solution to the
minimization problem of a nonlinear function. It is fast and
has a stable convergence. *is algorithm is appropriate for
training small- and medium-sized problems in the artificial
neural networks field. LMA is the combination of the
steepest descent method and the Gauss–Newton algorithm.
It inherits the stability of the steepest descent method and
speed advantage of the Gauss–Newton algorithm [25]. *e
Hessian matrix can be approximated as follows:

H � J
T
J. (10)

A gradient can be computed as follows:

g � J
T
e. (11)

LMA uses an approximation to the Hessian matrix in the
following Newton-like update [24]:

XK+1 � Xk − J
T
J + μI 

−1
J

T
e, (12)

where J is the Jacobinmatrix that contains first derivatives of
network errors with respect to weights and biases, e is a
vector of network errors, I is the identity matrix, and μ is
positive, called combination coefficient. *e LMA switches
between the two algorithms during the training process.
When the combination coefficient μ is very small (nearly
zero), the Gauss–Newton algorithm is used [25].

*e update rule of the Gauss–Newton algorithm is
written as follows:

XK+1 � Xk − J
T
J 

−1
J

T
e. (13)

When a combination coefficient μ is very large, the
steepest descent method is used. *e update rule of the
steepest descent algorithm is written as follows:

XK+1 � Xk − αgk. (14)

where α is the learning constant. If μ is very big, it can be
represented as the learning coefficient in the steepest descent
method:

α �
1
μ

. (15)

3. Proposed Methodology

Torque ripple affects the speed performance of switched
reluctance motor (SRM), and to overcome this problem,
artificial neural network (ANN)-based modelling of SRM is
done. *e ANN-based control scheme of the switched re-
luctance motor is presented in Figure 1. SRM cannot start
directly from DC supply; it needs a converter for its oper-
ation. *e SRM model is based on a 3-phase asymmetric
power converter which consists of three legs. Each leg
consists of two IGBTs and two freewheeling diodes. SRM
winding is connected to positive voltage source through
IGBTs in the active mode. During the conduction period,
positive voltages flow in phase windings and vice versa in the
nonconduction period. Stored energy returns to DC source
through diodes [26]. Mainly, the converter controls the
speed of the motor through proper excitation of corre-
sponding windings in the stator. Gate pulses through the
hysteresis band are given as an input to the power converter.
IGBT switching frequency is determined by the hysteresis
band. Reference current is taken for hysteresis control of 3-
phase current. *e position sensor determines turning off
and on phases of motor windings. Noise is added with actual
motor speed by using the sum block and given as an input to
the ANN-based speed block, and its output is connected
with speed of the position sensor. Similarly, noise is added
individually with actual 3-phase current of the motor and
then 3-phase current given as input to ANN-based 3-phase
current blocks and its output to the sum block before the
hysteresis band in Figure 1. *ree hysteresis controllers
generate IGBTdrive signals by comparison with ANN-based
3-phase current with references and are used for separately
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controlling phase currents.*e desired output is obtained by
application of ANN-based SRM.

Complex relationships between input and output are
found through ANN, which is considered a nonlinear sta-
tistical data-modelling tool according to the steps discussed
in Figure 2. *e first step involved is the normalization of
data. *e transformation of data into a specific range is
known as data normalization. In ANN, input data are
normalized, otherwise the network will be ill-conditioned. It
is not possible to achieve the same range of values for each of
the input to the ANNmode. It assures stable convergence of
weights and bias. *e second step is the data partition.
Random data division (dividerand) is used in ANN training
to use maximum data for training (in general splitting up of
data) for the ANN model development into training data,
validation data, and test data. During the training process,
the back-propagation algorithm is used to define the weights
on connections and then used for calculating the outputs.
Generally, for some applications, these weights can be used
to initialize the neural network and then updated by using an
online training algorithm. Network weights and biases are
updated during training. Validation is used to measure
network generalization, and when generalization stops
improving, it stops training. Independent measure of net-
work performance during and after training is achieved by
testing data and has no effect on training. LMA is used as an
online training algorithm. LMA provides a numerical so-
lution to the minimization problem of a nonlinear function.
In the artificial neural networks field, for training small- and
medium-sized problems, LMA is the best option.

LMA is the combination of the steepest descent method
and the Gauss–Newton algorithm. It acquires the speed
advantage of the Gauss–Newton algorithm and stability of
the steepest descent method. In many cases, it can converge
well even if the error surface is much more complex than the
quadratic situation, and that is why it is instantaneous than
the Gauss–Newton algorithm. In convergent situations, the
LMA tends to be a little slower than the Gauss–Newton

algorithm but it converges much faster than the steepest
descent method.*e basic idea of the LMA is that it executes
a combined training process: around the area with complex
curvature, the LMA switches to the steepest descent algo-
rithm until the local curvature is right to make a quadratic
approximation and then it nearly becomes the
Gauss–Newton algorithm, which can speed up the con-
vergence significantly. Weights and biases are updated
during training, and data are presented according to which
network is adjusted according to its error.

Independent measure of network performance during
and after training is achieved by testing data and has no
effect on training. *e third step is the architecture of the
network in which a two-layer feed-forward network is ap-
plied in standard function fitting, which comprises of the
sigmoid transfer function in the hidden layer and a linear
transfer function in the output layer. *e fourth step is the
learning algorithm used for training of network to fit the
inputs and targets. It helps in achieving accurate results and
analysis.

*e fifth step is the evaluation of network which means
that we can test our network onmore data and retrain it if we
are not satisfied with our obtained results.*e sixth step is to
determine the deployable solution; in this way, a trained
neural network is generated in the form of the Simulink
diagram or the form of code. In this research, this algorithm
is implemented because of the easy model building and less
formal statistical knowledge required. Unlike other pre-
diction techniques, ANN does not impose any restrictions
(like how it should be distributed) and it gives data with
nonconstant difference and with high volatility. With the
evolving technology of ANN, motor fault detection prob-
lems can easily be solved using an advanced approach based
on handy measurement without the need for expensive
equipment and precise mathematical models that are ob-
tained from conventional fault detection techniques.
*erefore, it is a better feasible option than any other
conventional technique.
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Figure 1: Control scheme of SRM-based ANN by regulating its speed and current.
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4. Implementation

*e SRM closed-loop control consists of an outer speed loop
and an inner current loop as shown in Figure 3.*e position
sensor is used to sense the position of the exciting pole.
Rotor position θ is sensed by the position sensor. Its de-
rivative value gives rotor speed ω that is compared with the
reference value of speed ωref , and it gives error, which is
processed through PI control or fuzzy logic control to yield
the reference current Iref . SRM has a sensor that senses the
actual current Iact of the motor. *e reference current Iref is
compared with actual current Iact, and the error signal goes
to the current controller, and these errors are used to de-
termine the switching of a phase of SRM. *en, based on
position data obtained from the position sensor, voltages are
applied to respective windings. In this way, speed and
current are controlled.

SRM magnetic behaviour is highly nonlinear, and there
is a fast change in its parameters. PI control does not apply to
the systems because it demands a change in PI constants in
time. *e fuzzy logic controller can handle the nonlinearity
and more robust rather than the PI controller. *e fuzzy
Logic controller has a significant steady-state error and takes
much more computing time than for the PI controller [20].
Combination of the PI controller and fuzzy logic controller
does not have steady-state error [20]. *ree main steps are
involved in the implementation of artificial neural network
control. Training data of speed and 3-phase current are in
rad/s and Ampere (A), respectively. Step one includes the
data collection and preprocessing of data. After data col-
lection from a simulation of SRM, the preprocessing of data
was done to train ANN more efficiently. It includes nor-
malization of data i.e., 500,001 values of speed and 3-phase

current with respect to time. As the data collected from the
simulation were too large that is why mean values were
computed after every 10,000 values of speed and 3-phase
current. In this way, 51 values of speed and 3-phase current
were achieved. It formed the target layer (without ripples
data). To design the input layer, applied similar steps for
speed and 3-phase current (with ripples data). Step two was
to build the ANN model. Random data division was applied
to use maximum data for training. *is was the usual data
split for ANN model development. Different combinations
of data divisions were tried, but the data divided into
training, validation, and testing in a ratio of 70 :15 :15 gave
better results. *e number of neurons in the hidden layer
was given value 10. *e Levenberg–Marquardt Algorithm
(LMA), which has fast and stable convergence and generally
allows importing, creating, using, and exporting neural
network data, was used to train the network. Mean square
error (MSE) and regression (R) for training, validation, and
testing were calculated. After that, retraining was conducted
several times by changing the number of hidden layers until
the following conditions were fulfilled higher regression
value and lower MSE value in training, validation, and
testing. *e network is evaluated, and the Simulink diagram
is generated for a trained neural network. Step three was the
simulation of the model. Simulation is an important step to
check that a trained neural network-fitting block can gen-
eralize well and produce desired outputs. In this control
scheme, torque ripple reduction is done by regulating the
speed and current through ANN, and for this purpose,
trained neural network-fitting blocks of speed and three-
phase currents were used in a simulation model of 6/4 (6
rotor poles and 4 stator poles) switched reluctance motor
(SRM).
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Figure 2: Flow chart of artificial neural network (ANN).
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5. Simulation Results and Discussions

5.1. SimplifiedModel. Different configurations of SRM such
as 12/8, 8/6, 6/4, and 4/2 are available but our focus is on 6/4
configuration. *e three-phase asymmetrical power con-
verter was employed to feed SRM. *e converter has three
legs, each of which consists of two freewheeling diodes and
two insulated gate bipolar transistors (IGBTs). IGBTs are
used in this converter because of their good current ratings.
To drive positive currents into phase windings, active IGBTs
apply positive source voltages to stator windings during the
conduction cycle. During the freewheeling cycle, a negative
voltage is applied to the windings, and the stored energy is
returned to power DC source through diodes. *e position
sensor reduces the fall time of currents in motor windings
and controls the turn-on and turn-off angles of motor
phases. *ree hysteresis controllers generate IGBT drive
signals by comparison of measured current with references
and are used for separately controlling phase currents. *e
hysteresis band helps in determining IGBT switching
frequency.

For 6/4 SRM, the simulation environment is built in
Matlab/Simulink. *e DC supply voltage of 240 V is used.
Converter turn-on angle � 45° and turn-off angle � 75° are
kept constant, respectively, over the speed ranges. Prac-
tical range of turn-on and turn-off angles depends on
inductance profile and therefore on configuration and
pole geometry of particular SRM. Torque waveforms are
under control of turning off and on angle of phase
windings. *ese two switching angles play an important
role in deciding whether SRM develops positive or neg-
ative and high or low electromagnetic torque [27, 28]. In
[29], optimal turn on and off (switching angles) were
detected as a function of phase current and rotor speed to
maximize the electromagnetic torque or minimize the
torque ripples [30]. *e optimal turn-on and turn-off
angles can be determined online to achieve balance be-
tween efficiency and torque ripple criteria. *e reference
current is 200 A, and the hysteresis band is chosen at
±10 A. By applying step reference to regular input, the
motor is started. *e motor will speed up according to
load characteristics. Only currents are controlled, and the
motor speed increases according to the mechanical dy-
namics of the system. *erefore, mechanical and dy-
namics mainly decide the speeding up of the motor.
Basically, the motor has two operating modes, and these
modes are dependent upon speed value. From stand still

up to 3000 rpm, the motor operates in a current control
mode. Current is regulated by the reference value of
current. Afterwards, for speed above 3000 rpm, the motor
operates in the voltage fed mode. In this mode, current
cannot be regulated by the reference value of current, and
there is no switching because of high emf of the motor.
During the active or conduction period, switches remain
closed and DC supply directly feeds the motor in the
voltage fed mode. In this mode, the average value of
developed torque has inverse relationship with motor
speed. By simulating the model for 0.5 seconds according
to the parameters discussed in Table 1, SRM drive
waveforms of magnetic flux, speed, winding current
(phase a, phase b, and phase c), and motor torque are
displayed on the scope.

*e simplified model torque waveform is shown in
Figure 4. SRM has high torque ripple due to transitions of
current from one phase to the following one. Torque ripple is
a specific characteristic of SRM, and the converter’s turn-on
and turn-off angles are primarily responsible for it. *e
simplified model has further two cases in which a band-
limited white noise block is employed as discussed below.

5.1.1. Simplified Model Case 1. In Figure 5, noise is added
with the waveform of the simplified model of SRM and
considering the current simple as in the simplified model by
setting the value of noise power� 0.0005W·s and simulating
the model for 0.5 seconds according to the parameters
discussed in Table 1.

Figure 6 indicates values of speed at t� 0.1 s, 0.25 s, and
0.4 s are 4189 rad/s, 5192 rad/s, and 5735 rad/s.

Speed 
controller

Current 
controller

Logic 
switch

Power 
converter

Current sensor

d/dt Position sensor SRM

ω_

(ωref)+

θ

+

–
(Iref)

(Iact)

Figure 3: Closed loop of SRM.

Table 1: SRM Parameters used in Simulink.

Motor parameters Values
Rated power 60 kW
Number of phases 3
Number of stator poles 6
Number of rotor poles 4
Aligned phase inductance 23.6mH
Unaligned phase inductance 0.67mH
Inertia 0.05 kg·m2

Friction coefficient 0.02Nms
Stator resistance 0.05Ω
DC supply voltage 240V
Maximum current 450A
Maximum flux linkage 0.486Vs
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Figure 7 exhibits ripples in waveform of speed and
values of speed at time points 0.1 s� 4229 rad/s, at
0.25 s� 5175 rad/s, and at 0.4 s� 5760 rad/s. *e significant
value of MSE is noticed in the graphical results of Figure 6,
and speed with noise waveform is 2.275e+ 07%.

5.1.2. Simplified Model Case 2. Figure 8 shows the response
of noise with a 3-phase current of SRM. Noise is added with
phase a, phase b, and phase c of the simplified model for the
same time period and simulation time as in the previous
case.
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Figure 9 shows the current of phase a in the case of the
simplified model.

Figure 10 shows distortion in the phase a waveform after
adding noise and depicts negative values. Values of phase a
noticeable at different time instants: at t � 0.1 s, 85.8A; at
t� 0.25 s, −16A; and at t� 0.4 s, 25A in comparison with the
simplified model phase a waveform displayed in Figure 9
which has value of 45.54A at t� 0.1 s, −0.116A at t� 0.25 s,
and 3.22A at t� 0.4 s.

Figure 11 shows ripples after adding noise with phase b
simplified model waveform. *e magnitude of phase b in-
creases in the initial time interval then its magnitude de-
creases. In Figure 12, distinct values of currents at t� 0.1 s,
0.25 s, and 0.4 s are −0.121A, 11.66A, and 16.04A whereas
noise added waveform of phase b values at same time are
39.9A, −4A, and 37.8 A, respectively.

Figure 13 displays distortions due to addition of noise.
Values of phase c current at t� 0.1 s, 0.25 s, and 0.4 s are 50A,
30.5A, and 21.7A which means that noise added waveform
of phase c does not display any negative values like noise
added phase a and noise added phase b waveform. On the
other side, values noticed in Figure 14 show the values of
9.99A, 45.9 A, and −0.120A.

Values of MSE are noticeable in the graphical results of
simplified model waveforms of phase a, phase b, and phase c,
and graphical results of noise added waveforms of phase a,
phase b, and phase c, respectively, have same MSE values of
250.33% as shown in Table 2.

5.2. Results through NN Fitting Tool. Once the training is
completed, the information provided by nntraintool is used
to analyse the results.

Retraining several times for speed, phase a, phase b,
and phase c data is conducted until the conditions of low
MSE and higher regression (R) value of training, vali-
dation, and testing is achieved as depicted in Figures 15
and 16, respectively. Mean square error is the network
performance function. It measures the performance of the
network according to the mean of squared errors. MSE is
the distance between the model’s estimates of the test
value. When MSE is small (closed to zero), it means that
desired outputs for the training set have become very close
to each other.

*e performance plot of speed data is described in
Figure 17.
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Figure 7: Simplified model speed with noise waveform.
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Figure 12: Phase b waveform of the simplified model.

Mathematical Problems in Engineering 9



Performance plot shows the graph of error versus epochs
(one forward and backward pass) for training, validation,
and test performances of training records. Mostly, after
more epochs of training, the error reduces but might start to
increase on the validation data set as the network starts over-
fitting the training data. In the default setup, after six
consecutive increases in validation error, the training stops,
and the best performance is taken from the epoch with the
lowest validation error. It can be seen in Figure 17 that ANN
fits the best value 0.47041 after 1 epoch (1 epoch� one
forward and backward pass), the iteration at which vali-
dation reached a minimum. In Figure 18, phase a best
validation performance is 0.50367 at epoch 21. Figure 19
exhibits the case of phase b. *e best validation performance
is 0.45799 at epoch 37.

Figure 20 shows the best-fitting value of 3.4557 at epoch 1
for phase c obtained by ANN. *ere are four lines: train,
validation, test, and best. In fact, the best (dotted) line rep-
resents that other lines should lie on or near this (dotted)
lines, and then it can be confirmed that training has been done
successfully. If any of the three (training, validation, and
testing) lines meet or pass near the best (dotted) line, it means
convergence has been done, and if this is not the case, retrain
the network. As seen in the performance plot of speed, phase
a, phase b, and phase c data, MSE of ANN has decreased with
the number of epochs. *e ANN was well trained, so it
presents low MSE at the end of the training phase.

*en, in order to check how well the input (speed and
phase data with ripples) and output data (speed and phase
data without ripples) are fitted in the network, the regression
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Figure 13: Phase c noise waveform of a simplified model.
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Figure 14: Phase c waveform of the simplified model.

Table 2: Values of the simplified model in different cases at t� 0.1, 0.25, and 0.4 seconds.

Sr. no. Cases MSE Torque (Nm) Speed (rad/s) Phase a (A) Phase b (A) Phase c (A)

1 Speed + noise and current simple 2.275e+ 07

Time (s) — — — — —
T� 0.1 117 4229 45.54 −0.121 9.996
T� 0.25 52 5175 −0.116 11.66 45.9
T� 0.4 17 5760 3.22 16.04 −0.120

2 Current noise and speed simple 250.338
T� 0.1 117 4189 85.5 39.9 50
T� 0.25 52 5192 −16 −4 30.5
T� 0.4 17 5735 25 37.8 21.7
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plot is used. During training, 70% of data is used for training,
15% data is used for validation, and 15% data is used for
testing the network. All these split up happen by default. *e
regression graph has four graphs for training, validation,
testing, and combining all. *e learning curve of neural
network can be compared with the best training algorithm.
Figure 21 shows the regression analysis of speed data between
the response of the network and the desired objectives. *e
value of R shows the correlation coefficient between the
outputs and the objectives. *e correlation between the
outputs and targets is very high due to all the R (regression)
parameters are in proximity of 1. As seen clearly in the re-
gression plot, speed data falls along a 45-degree line. It fulfils
the condition of perfect fitted data. In a perfect fitted plot, the
network outputs are equal to targets values. *is plot has a
perfect correlation in both cases, in the proximity of 1. All this
is a measure of how well the output is adapted to the target.

Figure 22 illustrates the regression plot for phase a data and
values of regression in case of training, validation, and testing.

Tables 3 and 4 show values of R and MSE of speed data
and phase a, and R and MSE values are shown in Tables 5
and 6 in the case of different parameters of training, vali-
dation, and testing data. Overall, higher regression (R) value
and lowMSE value of phase a and speed data are achieved in
the case of parameter combination of 70% training, 15%
validation, and 15% testing.

Figure 23 shows the regression plot for phase b, and
Figure 24 describes the regression graph for phase c.

Phase b values of R andMSE after randomly dividing the
data at different combinations are explained in Tables 7 and
8, respectively, but better results are achieved at train-
ing� 70%, validation� 15%, and testing� 15%.

Tables 9 and 10 present phase c values achieved at
different combination of data division.

5.3. Improved Model. Further artificial neural network is
developed for the reduction of torque ripples and to ac-
celerate the performance of the switched reluctance motor.
ANN blocks of speed and phase a, phase b, and phase c that
are the generated Simulink results of the trained neural
network at the end of training are used for the reduction of
ripples in the waveform of torque, speed, and current by
regulating its speed and current. *e model is simulated for
the same time period t� 0.5 seconds and the same Simulink
parameters described in Table 1. Four cases of the improved
model are discussed here.

5.3.1. Improved Model Case 1. Figure 25 shows the ANN-
based speed block in which speed of the motor is given as an
input to ANN-based speed block and its output is connected
to the reference speed of the position sensor and current is

(a) (b)

Figure 15: NNtraintool for (a) speed data and (b) phase a data.
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simply untouched in the same manner as in the simplified
model.

Figure 26 shows the waveform of simple speed data given
as an input to the Simulink generated block of neural
network trained data of speed.

Figure 27 shows the output waveform of speed achieved
after employing the ANN speed block with untouched

current. Speed value is always absolute. Positive or negative
value of speed does not matter. It just shows direction.
Positive value shows increase in speed value, and negative
value shows decrease in speed value. It shows fluctuation
from higher to lower values [30, 31].*emean value of speed
(Figures 26 and 27) is positive. Comparison of graphical
results of both input and output speed waveform at the time

(a) (b)

Figure 16: NNtrain tool for (a) phase b data and (b) phase c data.
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Figure 17: ANN performance plot for speed data.
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Figure 18: ANN performance plot for phase a data.
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t� 0.1 s, 0.25 s, and 0.4 s shows that the values of speed before
ANN are 108 rad/s, 179 rad/s, and 78.8 rad/s, respectively,
while these values of speed are increased to 1036 rad/s,
171 rad/s, and 752.9 rad/s in the case of output speed
waveform after application of ANN.MSE between input and
output speed waveform is 2.9618e+ 04%. Speed values at
different steps are summarized in Table 11.

5.3.2. Improved Model Case 2. In Figure 28, ANN blocks are
added with each phase of the current in the simplified model

and checking its effect in the case of input and output
waveforms of 3-phase current. 3-phase graphical results
show the maximum fluctuation in current values during the
starting time interval 0 s to 0.1 s, and that is why in
Figures 29–34, for better understanding, current values
during this time duration are exhibited.

R-value for phase a is 0.99092, andMSE noticeable in the
graphical results of Figure 29 and improved waveform of
phase a data given as input to the ANN block as displayed in
Figure 30 is 1.8346e− 10%. Graphical results of phase a
improved waveform show that at t� 0.1 s, 0.25 s, and 0.4 s
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Figure 21: Regression plot for speed data: (a) training: R� 1, (b) validation: R� 0.99998, (c) test: R� 0.99995, and (d) all: R� 0.99999.
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Figure 22: Regression plot for phase a data: (a) training: R� 0.98634, (b) validation: R� 0.99192, (c) test: R� 0.99104, and (d) all:
R� 0.98674.

Table 3: Regression values of speed data in different parameters.

Layers Parameters Training Validation Testing All
10 60, 20, 20 0.9989 0.9989 0.9989 0.9997
10 70, 15, 15 0.9999 0.9997 0.9998 0.9998
10 80, 10, 10 0.9978 0.9980 0.9986 0.9978
10 90, 5, 5 0.9954 1.00 0.9865 0.9996
10 50, 5, 5 0.9987 0.9998 0.9945 0.9995
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Table 5: Regression values of phase a data in different parameters.

Layers Parameters Training Validation Testing All
10 60, 20, 20 0.9855 0.9538 0.9873 0.9816
10 70, 15, 15 0.9863 0.9919 0.9910 0.9867
10 80, 10, 10 0.9910 0.9943 0.9677 0.9771
10 90, 5, 5 0.9776 0.9608 0.9909 0.9771
10 50, 5, 5 0.9787 0.9601 0.9924 0.9566

Table 6: MSE values of phase a data in different parameters.

Layers Parameters Training Validation Testing
10 60, 20, 20 0.9260 0.3111 4.4711
10 70, 15, 15 0.9056 0.7581 0.9957
10 80, 10, 10 0.5154 3.8314 6.9964
10 90, 5, 5 1.3398 0.7961 7.4414
10 50, 5, 5 1.2983 0.2398 10.903

Table 4: MSE values of speed data in different parameters.

Layers Parameters Training Validation Testing
10 60, 20, 20 0.0231 0.0821 0.0923
10 70, 15, 15 0.0756 0.0337 0.0760
10 80, 10, 10 0.0980 0.0342 0.1428
10 90, 5, 5 0.8130 0.0542 0.0212
10 50, 5, 5 0.0560 0.2993 0.0392
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Figure 23: Continued.
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Figure 23: Regression plot for phase b data: (a) training: R� 0.99773, (b) validation: R� 0.9878, (c) test: R� 0.99142, and (d) all: R� 0.99518.
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Figure 24: Continued.
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Figure 24: Regression plot for phase c data: (a) training: R� 0.984, (b) validation: R� 0.9817, (c) test: R� 0.99092, and (d) all: R� 0.98208.

Table 7: Regression values of phase b data in different parameters.

Layers Parameters Training Validation Testing All
10 60, 20, 20 0.9967 0.9920 0.9813 0.994
10 70, 15, 15 0.9977 0.9898 0.9914 0.9951
10 80, 10, 10 0.9881 0.9561 0.999 0.9887
10 90, 5, 5 0.9974 0.9312 0.9759 0.9962
10 50, 5, 5 0.9900 0.9885 0.9935 0.9725

Table 8: MSE values of phase b data in different parameters.

Layers Parameters Training Validation Testing
10 60, 20, 20 0.7846 2.60 0.759
10 70, 15, 15 0.5685 0.998 0.967
10 80, 10, 10 2.283 1.729 0.8762
10 90, 5, 5 0.5076 2.143 1.575
10 50, 5, 5 30.48 52.61 41.49

Table 9: Regression values of phase c data in different parameters.

Layers Parameters Training Validation Testing All
10 60, 20, 20 0.9804 0.9958 0.9866 0.9457
10 70, 15, 15 0.984 0.9817 0.9909 0.9820
10 80, 10, 10 0.9953 0.9752 0.9599 0.998
10 90, 5, 5 0.9652 0.9812 0.943 0.9462
10 50, 5, 5 0.9412 0.972 0.9935 0.9688

Table 10: MSE values of phase c data in different parameters.

Layers Parameters Training Validation Testing
10 60, 20, 20 0.613 47.18 0.310
10 70, 15, 15 0.8493 0.893 0.0420
10 80, 10, 10 0.5192 0.130 2.47
10 90, 5, 5 0.580 5.60 0.607
10 50, 5, 5 0.474 0.028 23.94
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Figure 25: Improved model of ANN-based speed and current simple.
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Figure 26: Waveform of speed data as input to the ANN-based speed block.
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Figure 27: Desired output waveform of ANN-based speed and current simple.

Table 11: Improved model case 1 speed values at different steps.

Time (s) — Input speed before ANN (rad/s) Output speed before ANN (rad/s)
0.1 — 108 1036
0.25 — 179 1715
0.4 — 78 752.9
— Mean 5.752 54.92
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values are 1.388A, 7.78A, and 11A as compared with the
values noticeable in the graphical result of phase a which has
a current value of 6.95 A, 7.85A, and 12.8A at the same time
points.

In Figure 31, R-value for phase b data is 0.99518, and
MSE noticeable in the graphical results of phase b of the
improved model and waveform of phase a data given as
input to the ANN block as depicted in Figure 32 is
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Figure 28: Improved model of ANN-based current and speed simple.
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1.3625e− 11%. At time instants 0.1 s, 0.25 s, and 0.4 s, values
in the case of input phase b waveform are 1.489A, 0.925A,
and 0.455A whereas values at the same points in the case of
an improved waveform of phase b are 1.32A, 0.923A, and
0.439A.

R-value for phase c is 0.9820, and value of MSE no-
ticeable in the graphical results of phase c of the improved
model as exhibited in Figure 33 and waveform of phase c
data given as input to the ANN block as shown in Figure 34

is 5.4102e− 04%. *e improved waveform of phase c has
values of 0.0121A, 0.025A, and 3.23A whereas values in the
case of input waveform of phase c are −0.024A, −0.0239A,
and 3.28A at time 0.1 s, 0.25 s, and 0.4 s. Overall, the results
of 3-phase current at different steps with change in the
reference current are illustrated in Tables 12–14.

A band-limited white noise Simulink block is used in
improvedmodel case 3 and case 4, and the noise power value
is 0.0005W·s.
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Figure 31: Improved model phase b waveform.
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Figure 32: Phase b input waveform.

200

150

100

50

0

Ph
as

e c
 (A

)

Time (seconds)
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Figure 33: Improved model phase c waveform.
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5.3.3. Improved Model Case 3. Figure 35 shows a scenario in
which speed with noise data is given at the input and ANN-
based speed block output is connected to the reference speed
of the position sensor.

Figure 36 shows an improved output waveform of speed
with the reduction of ripples and an increase in the speed in
the same manner as compared with Figure 37 the input of
speed with noise given as an input to the ANN speed block.
*e regression value of speed data is 0.99985 after 70%
training, 15% validation, and 15% testing of speed data. In
Table 15, comparison shows that values of speed are in-
creased, and MSE noticeable in graphical results of speed
graphs is 7.1480e+ 05%.

5.3.4. Improved Model Case 4. In Figure 38, ANN blocks are
added individually with 3-phase current. In this case of
improved model, time duration for graphical results of 3-

phase current displayed in Figures 39–44 is from 0 s to 0.1 s
but the simulation time of this model is 0.5 s.

Figure 40 shows phase a graphical result that has values
of 11.5A, 9.4 A, and 2.63A at time intervals 0.1 s, 0.25 s, and
0.4 s. *ese values are reduced to 8.04A, 5.91A, and 0.039A
in the graphical result of phase a as displayed in Figure 39
after simulation of the model.

A comparison of graphical results of Figures 41 and 42
notifies that values are reduced in an improved graph of
phase b rather in the case of phase b with noise given as an
input. At t� 0.1 s, values are improved from 0.235A to
0.0026A; at t� 0.25 s, values are improved from 0.23A to
0.205A; and at t� 0.4 s, values are improved from 0.325A to
0.145A, respectively.

Figure 44 shows the input waveform of phase c with
noise. Values observed in the graphical results at the same
time t� 0.1 s, 0.25 s, and 0.4 s are 2A, 1.4 A, and 2.71A.
Figure 43 shows reduced values of 0.1030A, 0.3427A, and

Table 12: Improved model case 2 phase a values at different steps.

Time (s) Input phase a — Improved model phase a
0.1 6.95 — 1.388
0.25 7.85 — 7.78
0.4 12.8 – 11
— — RMS 0.7

Table 13: Improved model case 2 phase b values at different steps.

Time (s) Input phase b — Improved model phase b
0.1 1.489 — 1.326
0.25 0.925 — 0.923
0.4 0.455 — 0.439
— — RMS 0.5

Table 14: Improved model case 2 phase c values at different steps.

Time (s) Input phase c — Improved model phase c
0.1 −0.024 — 0.0121
0.25 −0.0239 — 0.025
0.4 3.28 — 3.23
— — RMS 0.7
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Figure 34: Phase c input waveform.
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Figure 37: Speed with noise as an input to the ANN block.

Table 15: Improved model case 3 speed values at different steps.

Time (s) — Speed with noise as input (rad/s) Output speed before ANN (rad/s)
0.1 — 158 1122
0.25 — 72 821.3
0.4 — 106.5 811.2
— Mean 98.24 848.5
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1.921A at the same time points. Calculated RMS value of
phase a, phase b, and phase c are 0.4 A, 0.1A, and 0.1A,
respectively. Results of this case at different steps with
change in the reference current are shown in Tables 16–18.

In case 4 of the improvedmodel, theMSE value noticeable in
the comparison with graphical results of 3-phase current
(phase a, phase b, and phase c) after ANN and phase a
(noise), phase b (noise), and phase c (noise) applied as an
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input to ANN blocks of phase a, phase b, and phase c,
respectively, is 249.81%, and overall R-value is 0.98631 for
phase a, 0.99518 for phase b, and 0.99092 for phase c after
training data of phase a, phase b, and phase c according to
parameters of 70% training, 15% validation, and 15% testing.

Table 19 shows values of the improved model in different
cases.

5.4. ANN-Based SRM Improved Model. In Figure 45, the
ANN-based current block is added individually with each
phase of three phases of current (noise) and the ANN-based
speed block is added with speed (noise).

5.4.1. Analysis of the ANN-Based SRM Model. SRM draws
high current in the starting interval proportional to torque.
Motor starting and running characteristics during the time
interval of 0.5 seconds are shown in Figures 46–50.

In SRM, speed and torque have an inverse relationship,
graphical results prove that as there is a reduction in torque
ripples, and speed increases, and this leads to the better
performance of SRM. Stator 3-phase current (phase a,
phase b, and phase c) characteristics are exhibited by the
graphical results of the figures. In SRM, the current is
directly proportional to torque while in conventional
machines torque is directly proportional to the square of
the current.

Table 16: Improved model case 4 phase a values at different steps.

Time (s) Phase a with noise as input — Improved model phase a
0.1 11.5 — 8.04
0.25 9.4 — 5.91
0.4 2.63 — 0.039
— — RMS 0.1

Table 17: Improved model case 4 phase b values at different steps.

Time (s) Phase b with noise as input — Improved model phase b
0.1 0.235 — 0.0026
0.25 0.238 — 0.205
0.4 0.325 —— 0.145
— – RMS 0.1

Table 18: Improved model case 4 phase c values at different steps.

Time (s) Phase c with noise as input — Improved model phase c
0.1 2 — 0.1030
0.25 1.4 — 0.342
0.4 2.71 — 1.921
— — RMS 0.1

Table 19: Values of the improved model in different cases at t� 0.1, 0.25, and 0.4 seconds.

Sr.
no. Cases MSE Torque (Nm) Speed

(rad/s)
Phase a
(A)

Phase b
(A)

Phase c
(A)

1 Speed +ANN and current 2.9618e+ 04

T (s) — — — — —
T� 0.1 −380 1036 −0.1197 147.16 2.0127
T� 0.25 −0.63 1715 194 −0.119 −0.120
T� 0.4 −412 752.9 210 −0.1198 −0.120

2 Current +ANN and speed

Phase a,
5.4102e− 04 T� 0.1 55.7 7386 1.388 2.99 0.0121

Phase b,
1.3625e− 11 T� 0.25 51.3 8803 7.78 0.923 0.025

Phase c,
1.8346e− 10 T� 0.4 48.4 9548 11 0.455 3.236

3 Speed + noise +ANN and current
simple 7.1480e+ 03

T� 0.1 1.44 1122.2 −0.120 200.1 −0.119
T� 0.25 −0.67 821.3 −0.12 18.57 15.26
T� 0.4 2.53 811.2 17 −0.119 16.39

4 Current + noise +ANN and speed
simple

Phase a, 220.81 T� 0.1 53.2 8784 8.04 0.0026 0.103
Phase b, 220.81 T� 0.25 52 10532 5.91 0.205 0.342
Phase c, 220.81 T� 0.4 52.8 11588 0.039 0.145 1.921
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Figure 49: Phase b of an improved model of SRM.
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*e waveform of instantaneous torque with and without
the proposed method at different reference speed is dis-
played in Figures 51 and 52.

Table 20 shows torque ripple value and percentage value
of torque improvement in comparison with the simplified
model.

6. Effectiveness of the Proposed Technique

*e effectiveness of this proposed technique based on ANN
for SRM is further elaborated by comparing it with other
existing techniques. A comparison is drawn in Table 21.

7. Conclusion

Simulation results validate that waveforms of torque, speed,
and three-phase currents are worse in the case of a simplified
model of SRM and show poor performance. It is also proved
from graphical results that mean square error (MSE), cal-
culated for speed and current control, is significantly re-
duced with ANN. In other words, an improved model of
ANN-based SRM shows a noticeable reduction in torque
ripples, resulting in performance improvement. Torque,
speed, and current are the performance parameters and are
improved through ANN.*erefore, simulation results verify
the effectiveness and validity of an improved model of SRM
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Figure 52: Graph between torque and speed of SRM with the proposed technique.

Table 20: Torque ripple improvement.

Sr. no. Case Torque ripple Torque improvement (%)
1 Simplified model 12.61 —
2 ANN-based speed and current simple 9.73 22
3 ANN-based current and speed simple 8.53 31.9
4 ANN-based speed with noise and current simple 9.66 23.4
5 ANN-based current with noise and speed simple 8.469 32
6 Improved model 7.49 40.6

Table 21: Comparison of the proposed technique with existing techniques.

Parameters Proposed technique PI controller Simplified model of SRM

MSE MSE is very much reduced in ANN MSE is higher as compared with ANN
MSE is of large value as
compared with ANN and

PI
Accuracy Improved accuracy Less accurate in comparison with ANN Lack of accuracy

Conversions Speedily conversions with reduction in
torque ripple Slow conversions as compared with ANN Slow conversions as

compared with ANN

Generalization Good generalization when retrained
improved performance with time

No generalization property has to be returned
and no improvements with time

No generalization
property

Simulation
speed

Time taken for computation is less and
fast in operation Long computing time Slow

Performance Better performance for nonlinear
characteristics of SRM Performance is not up to the expected level Poor performance

Regression
Regression is in the proximity of 1 which
validate performance and fast change of

parameters in ANN

No regression property, SRM demands a fast
change of parameters, and the PI controller has a

slow change of parameters
Nil

Complexity Less complex because no mathematical
model included Complex because mathematical model included Complex than ANN and

PI controller
Stability Good stability Less stable than ANN Less stable
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and capability of reduction of torque ripples through the
ANN algorithm. *is leads to the deployment of SRM in
various useful applications of everyday life because of an
increase in efficiency, ruggedness, and employability in a
dynamic environment. High-speed applications can be
controlled (stopped and loaded) in a fine way. High-speed
motors have benefits of high power density which is an
important parameter of traction motors in electric vehicles.
*erefore, high-speed SRM is the best alternative for this
application because of its stability, reduced dependability,
and the simplest structure. Moreover, ANN shows better
results for SRM because it has fast convergence, robust,
stable, and best suited for nonlinear problems.

Data Availability

No data were used to support the findings of this study.

Conflicts of Interest

*e authors declare that they have no conflicts of interest
regarding the publication of this paper.

Authors’ Contributions

Raheel Muzzammel conceptualized the study. Iqra Tariq and
Raheel Muzzammel were responsible for methodology. Iqra
Tariq provided software. Raheel Muzzammel validated the
study. Iqra Tariq was responsible for formal analysis. Iqra
Tariq investigated the study. Iqra Tariq, Raheel Muzzammel,
Umar Alqasmi, and Ali Raza were responsible for resources,
data curation, and writing—review and editing: . Iqra Tariq
contributed to writing—original draft preparation. Raheel
Muzzammel supervised the study. Raheel Muzzammel was
responsible for project administration. Raheel Muzzammel,
Umar Alqasmi, and Ali Raza acquired funding.

References

[1] S. Song and W. Liu, “A comparative study on modeling
methods for switched reluctance machines,” Computer and
Information Science, vol. 3, no. 2, 2010.

[2] E. M. Barhoumi, A. G. Abo-Khalil, Y. Berrouche, and
F. Wurtz, “Analysis and comparison of end effects in linear
switched reluctance and hybrid motors,” Journal of Electrical
Engineering, vol. 68, pp. 138–142, 2017.

[3] J. F. Pan, Y. Zou, G. Cao, N. C. Cheung, and B. Zhang, “High-
precision dual-loop position control of an asymmetric bi-
lateral linear hybrid switched reluctance motor,” IEEE
Transactions on Magnetics, vol. 51, no. 11, pp. 1–5, 2015.

[4] R. Krishnan, Switched Reluctance Motor Drives: Modelling,
Simulation, Analysis, Design and Applications, J. Irwin, Ed.,
CRC Press, Boca Raton, Fl, USA, 2001.

[5] T. J. E. Miller, Electronic Control of Switched Reluctance
Machines, Elsevier, Amsterdam, Netherlands, 2001.

[6] I. Husain, “Minimization of torque ripple in SRM drives,”
IEEE Transactions on Industrial Electronics, vol. 49, no. 1,
pp. 28–39, Feb 2002.

[7] Z. Xu, D. Lee, and J. Ahn, “Analysis and control of a novel
bearingless switched reluctance motor with hybrid stator
poles,” in Proceedings of the 2013 IEEE International

Conference on Industrial Technology (ICIT), Cape Town,
South Africa, 2013.

[8] T. J. E. Miller, “Optimal design of switched reluctance mo-
tors,” IEEE Transactions on Industrial Electronics, vol. 49,
no. 1, pp. 15–27, 2002.

[9] E. F. I. Raj and V. Kamaraj, “Neural network based control for
switched reluctance motor drive,” in Proceedings of the 2013
IEEE International Conference ON Emerging Trends in
Computing, Communication and Nanotechnology (ICECCN),
Tirunelveli, India, 2013.

[10] X. Gao, X. Wang, Z. Li, and Y. Zhou, “A review of torque
ripple control strategies of switched reluctance motor,” In-
ternational Journal of Control and Automation, vol. 8, no. 4,
pp. 103–116, 2015.

[11] S. A. Nasar, “DC-switched reluctance motor,” Proceedings of
the Institution of Electrical Engineers, vol. 116, no. 6,
pp. 1048-1049, 1969.

[12] R. B. I. Doncker and R. W. De, “DITC-direct instantaneous
torque control of switched reluctance drives,” in Proceedings
of the Conference Record of the 2002 IEEE Industry Appli-
cations Conference, 37th IAS Annual Meeting, Pittsburgh, PA,
USA, 2002.

[13] H. J. Brauer, M. D. Hennen, and R. W. De Doncker, “Mul-
tiphase torque-sharing concepts of predictive PWM-DITC for
SRM,” in Proceedings of the 2007 7th International Conference
on Power Electronics and Drive Systems, Bangkok, *ailand,
2007.

[14] G. Shahgholian, A. R. Sahafi, and J. Faiz, “Torque ripple re-
duction in switched reluctance motors–a review,” Electro-
motion, vol. 22, pp. 35-36, 2015.

[15] T. Husain, A. Elrayyah, Y. Sozer, and I. Husain, “Unified
control for switched reluctance motors for wide speed op-
eration,” IEEE Transactions on Industrial Electronics, vol. 66,
no. 5, pp. 3401–3411, May 2019.

[16] S. Kumari and S. Ashok, “Design of controller for speed
regulation and reduction of torque ripple in 6/4 switched
reluctance motor,” in Proceedings of the 2017 IEEE Interna-
tional Conference on Intelligent Techniques in Control, Opti-
mization and Signal Processing (INCOS), Srivilliputhur, India,
2017.

[17] G. Singh and B. Singh, “Performance improvement of
switched reluctance motor drive for light electric vehicle using
fuzzy logic controller,” in Proceedings of the 2018 IEEE In-
ternational Conference on Power Electronics, Drives and En-
ergy Systems (PEDES), Chennai, India, 2018.

[18] Z. Lin, D. S. Reay, B. W. Williams, and X. He, “Torque ripple
reduction in switched reluctance motor drives using B-spline
neural networks,” IEEE Transactions on Industry Applications,
vol. 42, no. 6, pp. 1445–1453, 2006.

[19] B. S. Ali, H. M. Hasanien, and Y. Galal, “Speed control of
switched reluctance motor using artificial neural network
controller,” Computational Intelligence and Information
Technology. Communications in Computer and Information
Science, vol. 250, pp. 6–14, 2011.

[20] C. Sunita and M. V. Srikanth, “Modeling and analysis of 6/4
switched reluctance motor with torque ripple reduction,”
IOSR Journal of Electrical and Electronics Engineering (IOSR-
JEEE), vol. 7, pp. 37–42.

[21] E. Gouda, M. Hamouda, and A. R. A. Amin, “Artificial in-
telligence based torque ripple minimization of switched re-
luctance motor drives,” pp. 943–948, 2016.

[22] V. Pushparajesh, M. Balamurugan, and N. Ramaiah, “Arti-
ficial neural network based direct torque control of four phase
switched reluctance motor,” SSRN Electronic Journal, 2019.

30 Mathematical Problems in Engineering



[23] A. Kailash, Everything You need to Know about Neural Net-
works, Mate Labs, 2017, https://hackernoon.com/everything-
you-need-to-know-about-neural-networks-8988c3ee4491.

[24] D. Lu and N. C. Kar, “Neural network based torque control of
switched reluctance motor for hybrid electric vehicle pro-
pulsion at low speeds,” in Proceedings of the 2009 IEEE In-
ternational Conference on Electro/Information Technology,
Windsor, Canada, 2009.

[25] H. Yu, “Levenberg–Marquardt training,” Journal of Intelligent
Systems, vol. 16.

[26] R. Muzzammel, O. A. Sajid, M. Manzoor, A. Qayyum, and
A. Shahzad, “Simulation analysis of PI based switched re-
luctance motor,” Journal of Engineering Research and Reports,
vol. 3, no. 2, pp. 1–12, 2019.

[27] H. E. Akhter, V. K. Sharma, A. Chandra, and K. Al-Haddad,
“Determination of optimum switching angles for speed
control of switched reluctance motor drive system,” Indian
Journal of Engineering and Materials Sciences, vol. 11,
pp. 151–168, 2004.

[28] M. Nashed, S. Mahmoud, M. El-Sherif, and E. Sami, “Opti-
mum change of switching angles on switched reluctance
motor performance,” International Journal of Current Engi-
neering and Technology, vol. 4, no. 2, 2014.

[29] J. Deskur, T. Pajchrowski, and K. Zawirski, “Optimal control
of current commutation of high speed SRM drive,” in Pro-
ceedings of the 13th International Power Electronics and
Motion Control Conference, pp. 1204–1208, Poznan, Poland,
September, 2008.

[30] C. Mademlis and I. Kioskeridis, “Performance optimization in
switched reluctance motor drives with online commutation
angle control,” IEEE Transactions on Energy Conversion,
vol. 18, no. 3, pp. 448–457, 2003.

[31] A. Sharma, “What is negative speed?,” 2020, https://www.
quora.com/what-is-negative-speed.

Mathematical Problems in Engineering 31

https://hackernoon.com/everything-you-need-to-know-about-neural-networks-8988c3ee4491
https://hackernoon.com/everything-you-need-to-know-about-neural-networks-8988c3ee4491
https://www.quora.com/what-is-negative-speed
https://www.quora.com/what-is-negative-speed

