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Pulp washing process has the features of multivariate, time delay, nonlinearity. Considering the difficulties of modeling and
optimal control in pulp washing process, a data-driven operational-pattern optimization method is proposed to model and
optimize the pulp washing process in this paper. 0e most important quality indexes of pulp washing performance are residual
soda in the washed pulp and Baume degree of extracted black liquor. Considering the difficulties of modeling, online measurement
of these indexes, two-step neural networks, and multivariate logistic regression are used to establish the prediction models of
residual soda and Baume degree. 0e mathematical model of the washing process can be identified, and the indexes can meet the
production requirements. In the target of better product quality, low cost, and low energy consumption, a multiobjective problems
is solved by ant colony optimization algorithm based on the optimized operational-pattern database. It shows that the theoretical
analyses are correct and the practical applications are feasible, optimization control system has been designed for the pulp washing
process, and the practical results show that pulp production increased by 20% and water consumption decreased by nearly 30%.
0is method is effective in the pulp washing process.

1. Introduction

Pulp washing is one of the important parts in the pulp-
making process. Its main purpose is to wash soluble inor-
ganic and organic substances in pulp and obtain high
concentration of black liquor [1]. 0e most important
quality indexes to evaluate pulp washing performance are
residual soda for the washed pulp and Baume degree for the
yielded thick black liquor. 0e conductivity of the residual
soda extracted from the washed pulp is a measurement of
dissolved solid content; It is expected that the residual soda
in the washed pulp should be as little as possible. 0e Baume
degree is used to denote the consistency of the thick liquor
obtained in the first stage of the pulp washer [2]; it is re-
quired to be as high as possible in production. It can be seen
that the two indexes are incompatible. From the perspective
of pulp washing, it is required much more water to wash the
pulp, but the black liquor will be diluted by the increase of
water. From the perspective of drug recovery, in order to

reduce the steam consumption of black liquor during
evaporation and condensing procedure [3], a higher con-
centration and temperature of black liquor is required, so the
washing water should be used as less as possible. For these
two contradictory requirements, the key point is that a
balance must be maintained between the amount of washing
water and desired pulp cleanliness.

To address these issues, several classical control schemes
are produced. Black liquor consistency control, residual soda
loss control, dilution factor optimization control, multi-
component control, and model-based optimization control
were produced. As the loss of residual soda is not taken into
account, the method of Baume degree online measurement
is only implemented in some small production mills [4].
Aiming at the disadvantage of single control, a residual soda
predictor is constructed based on the predictive control [5].
As it is limited to the measurement and control of a certain
parameter, more attention should be given to the modeling
and optimization control for the whole washing process.
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Model-based optimal control and multicomponent control
[6] play a great role in the optimization of operation and
control. Model-based optimization control can analyze the
relationship between variables according to the model. In
recent years, data-driven modeling has been widely used. In
this method, based on online learning and calculating the
control quantity, the current state is matched by a large
amount of process data. 0en various static qualities re-
quired by the system can be obtained. 0e characteristics of
sample data are the main criterion in data-driven modeling,
which means that data speak for themselves [7–9]. It can
convert high-dimensional data into low-dimensional data
without losing important information. Pulping enterprises
produce and store a large amount data about production
parameters, equipment, and process data every day; those
data imply the process change, equipment operation,
working condition fluctuation, and other information. In the
washing process, there is a wealth of online and offline
measurement data, such as temperature, washing drum
pressure difference and vacuum degree, pulp layer thickness,
pulp concentration, pulp species, pulp hardness, the amount
of fresh water added, and the times of washing.

In view of this, aiming at the characteristics of the
pulping process, a data-driven operational-pattern optimi-
zation method to model and optimize the pulp washing
process is proposed in this paper. Based on mechanism
analysis, the basic concepts about data-driven operational
pattern for the pulp washing process are described.0e data-
driven prediction models of residual soda and Baume degree
are established by PCA-BP (principal component analysis
backpropagation) neural network and multivariate logistic
regression. Based on the modeled indexes, an overall eval-
uation model of washing quality is proposed to analyze the
large number of industrial operation data. 0en, an opti-
mized operational-pattern database is constructed by the
criterion of fuzzy cluster and pattern matching algorithm.
Finally, with the target of better product quality, low cost,
and low energy consumption, the optimum operational
pattern is obtained by ant colony optimization algorithm
from the optimized operational-pattern database. Based on
the hardware of Siemens S7-400 PLC and software of
WinCC6.0 & Step7, an optimization control system has been
designed for the pulp washing process. A practical appli-
cation in a paper mill in Shandong province of China shows
that pulp production increased by 20% and water con-
sumption decreased by nearly 30%. It proves the effective-
ness of this method.

0e main contribution of this paper is to solve the soft
sensor modeling problem and optimize the pulp washing
process. 0e soft sensor model of the residual soda and the
Baume degree were obtained by two-step neural network.
0e multiobjective optimization of high yield, low cost,
and low consumption in the pulp washing process was
realized. A systematic and targeted optimization scheme
of the pulp washing process was provided. 0e rest of the
paper is organized as follows. Section 2 illustrates the
crafts of the pulp washing process. 0e two-step neural
network identification and mathematical model of re-
sidual soda and Baume degree based on least square

method are given in Section 3. Multiobjective optimiza-
tion for the washing process is given in Section 4. Op-
timization results and the application of this study in a
paper mill are described in Section 5. Section 6 concludes
the paper.

2. Crafts and Mode Description of the Pulp
Washing Process

2.1. Crafts of the Pulp Washing Process. Currently, multi-
stage countercurrent washing has been widely used in
multiple series washing machines (vacuum washing ma-
chines) or one separation into multiple washing machines
(horizontal belt washing machines). In this device, the
pulp is discharged from the last section, and washing water
is opposite to the last section. 0e reverse washing process
can be briefly described as shown in Figure 1.

In this sequence of washers, the pulp medium and the
washer are generally arranged to flow counter current to
each other. Fresh water is typically used to wash the pulp
sheet on the last stage washer. 0e filtrate was pulled
through pulp on the proceeding washer. 0is aids in
minimizing dilution of the liquor which is separated from
the pulp and facilitates the formation of recyclable cooking
chemicals.. Hence, it is desirable that the washing losses be
kept as low as possible while using a minimum of washing
water.

2.2. OperationMode Description of the PulpWashing Process.
In the pulp washing control system, six different washing
stages are required to obtain the necessary pulp cleanliness.
Subsystems of consistency, level, flow, temperature, drum
rotation speed, and multiobjective optimization are in-
volved. 0e former five subsystems are used as a basic
control hierarchy to guarantee the steady running of the
counter current washing process, meanwhile, which ensures
the washed pulp with a residual soda as low as possible and
thick black liquor in the first stage filtrate tank with a Baume
degree as high as possible.

0e data of complex industrial processes mainly include
input conditions, state parameters, operation parameters,
and technical index [10, 11]. For the pulp washing process,
the process data can be defined according to the operation
mode description as follows:

(i) 0e input condition of the pulp washing process at
time t is r(t) � [r1(t), r2(t), r3(t), r4(t), r5(t)],
where r1(t), r2(t), r3(t), r4(t), and r5(t) indicate
pulp species, pulp thickness, pulp hardness, cooking
method, and washing times, respectively.

(ii) 0e state parameters of the pulp washing process at
time t are s(t) � [s1(t), s2(t)], where s1(t) and s2(t)

indicate the Baume degree of black liquor and re-
sidual soda, respectively.

(iii) 0e operation parameters of the pulp washing
process at time t are q(t) � [q1(t), q2(t), q3(t)],
where q1(t), q2(t), and q3(t) indicate pulp con-
centration, pulp flow, and water flow, respectively.
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(iv) 0e technical index of the pulp washing process at
time t is o(t) � [o1(t), o2(t), o3(t)], which indicates
the target required to be achieved in the production
process, where o1(t), o2(t), and o3(t) indicate pulp
washing cleanliness, pulp output, and consumption
cost, respectively.

Finally, the operation mode of the pulp washing process
is established, and it can be described as p � [rT, sT, qT]T �

[r1, . . . , r5, s1, s2, q1, . . . , q3]
T. It is construed by input con-

dition, state parameters, and operation parameters.

3. Two-Step Neural Network Modeling

0e core idea of the operation optimization of the pulp
washing process is to optimize the pulp washing quality. As
the two contradictory pulp washing quality indexes (residual
soda and the Baume degree of black liquor) are difficult to
measure directly, a prediction model should be established.
Neural network has a very prominent effect on modeling,
classification, and prediction of nonlinear systems [12]. 0e
neural network modeling method was used to establish the
network structure between the main components and
quality variables, and the soft measurement model of the
pulp washing process was obtained.

Generally speaking, the result of washing is a function of
many variables, such as the amount of wash water, feed
consistency, air entrancement, sheet formation, wash water
distribution, and discharge consistency. Most of these
variables are interrelated, and an improvement in one
variable may well have a favorable or unfavorable impact on
the others. 0e primary objectives for achieving the best
washing result are the lowest feed consistency, optimummat
formation with a uniform basis weight, a uniform shower
liquor distribution, the highest discharge consistency, and
minimal air content in the feed to the washer [13]. Pulp
washing is a function of many variables, such as the amount
of wash water, feed consistency, air entrancement, sheet
formation, wash water distribution, and discharge consis-
tency. And most of these variables are interrelated. 0e PCA

method was used to preprocess the process variables in-
volved in noise reduction, dimension reduction, and neg-
ative correlation elimination [14]. It helps to reduce the
complexity of neural network.

3.1. Input Variable Selection Based on PCA. A large number
of experiments have shown that the factors influencing the
washing quality of pulp include sizing concentration sizing
flow rate, water addition, thickness of pulp layer, vacuum
degree, pulp species, washing water temperature, pulp
hardness, and pulping method. 0e dynamic PCA method
was used to screen out these variables for establishing the
mathematical model of the pulp washing process. 0e cal-
culation steps are as follows:

Step 1. Initialize the sample database.
In order to fully reflect the dynamics of the process,
some appropriate process data are added and a new
sample database is set up. Standardize the new sample
database and calculate the correction variance every
time, until the mean variance no longer changes; the
correction value of each variable can be obtained, and
then the initialized sample database is established.
Step 2. PCA for the sample database.
0e loadmatrix and eigenvalue vector were obtained by
PCA of pulp concentration, flow, dilution water, pulp
thickness, water temperature, and pulp hardness. Find
and eliminate the variable corresponding to the largest
absolute value of coefficient in the first load vector.
Repeat the process until just three variables are left (the
number of principal variables was determined by sig-
nificant correlation [15]; given the significance level
α � 1%, the critical value of correlation coefficient
significance is 0.487; find the largest absolute value of
each column from the component matrix and compare
with 0.487; when the largest absolute value in the k + 1
column is less than 0.487, k principal components can
be extracted; in this paper, k � 3).

I stage washer II stage washer III stage washer IV stage washer

Mixing boxBlow tank

Thick black liquor
to cooking

Washed pulp#I black tank #II black tank #III black tank #IV black tank

Hot water or
black liquor

Figure 1: Washing process craft of straw brown stock.
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Step 3. According to multiple analyses, the contribution
of the three components reaches 98% and inlet pulp
consistency, inlet pulp flow, and hot clean water input
flow are considered to be the most important variables
in pulp washing.

0e amount of residual soda in the final washed pulp and
Baume degree in the first stage filtrate tank have typically
been used as output indicators in pulp washing.

0erefore, the input and output of the pulp washing
process can be described as X � [x1, x2, x3] and
Y � [y1, y2].

3.2. Two-Step Neural Network. 0e pulp washing process is
not a steady-state model which can be accurately identified.
In this paper, a two-step identification method is employed.
0e basic idea of this method can be illustrated as follows.

Firstly, by means of the dynamic information of a
process (for example, the step response), a dynamic model is
obtained by a multilayer forward neural network. Secondly,
with the obtained dynamic model, a steady-state data col-
lection is produced as the training sample for the final steady
model. Finally, another multilayer forward NN is trained to
approximate the steady characteristic of the process and thus
acquire the final steady NN model of the process. 0e
schematic diagrams of this method are shown in Figures 2
and 3. 0e abbreviation of TDL (tapped delay line) [16]
means a delay unit according to sampling period.

3.2.1. Neural Network Dynamic Model Identification. 0e
dynamic NN mathematical model describing the pulp
washing process is

y1 � h1 x1(k), x1(k − 1), . . . , x1(k − d), x2(k), x2(k − 1), . . . , x2(k − d), x3(k), x3(k − 1), . . . , x3(k − d), y1(k),(

y1(k − 1), . . . , y1 k − r1( ,

y2 � h2 x1(k), x1(k − 1), . . . , x1(k − d), x2(k), x2(k − 1), . . . , x2(k − d), x3(k), x3(k − 1), . . . , x3(k − d),(

y2(k), y2(k − 1), . . . , y2 k − r2( ,

(1)

where d is the length of input samples (d � 3) and r1 and r2
are delay factors of residual soda and Baume degree, re-
spectively. According to a one-year field survey conducted in
the pilot paper mill, the two delay factors are determined as
r1 � 8 and r2 � 6.

Substitute (d � 3, r1 � 8, r2 � 6) into equation (1). 0en,
the number of independent variables for y1

—
is 21 and the

number of independent variables for y2
—

is 19. According to
the actual pulp washing process, residual soda has more
dynamic influence factors than Baume degree. By training
the neural networks, the number of dynamic independent
variables for residual soda and Baume degree is 24 and 16;
they would be the input layers for the both neural networks.
0e structure parameters of the dynamic NN model for
residual soda and Baume degree are given in Table 1.

0e identifying procedures are depicted as follows:

Step 1. Initializing the weights in the dynamic NNs
where usually the random numbers distributed evenly
in the interval of [−1, 1] are employed for weight
initialization.
Step 2. Constructing the input vector X(k) according to
r and d and figuring out y(k) and e(k) � y(k) − y(k).
Step 3. Modifying the weights using a suitable learning
algorithm.
Step 4. Shifting the elements of x1(k), x2(k), x3(k) and
y(k) and terminating the training process if |e(k)|< ε
or turning to step (2) if |e(k)|< ε, where ε is the ex-
pected permitted error.

To obtain a relatively accurate mathematical model, the
standard BP (backpropagation) algorithm, the momentum
and adaptive learning rate-based BP algorithm, and L-M

x(k) y(k)

e(k)

y–(k)

+
–

NNA

Process

TDL TDL

Figure 2: NN dynamic model identification.

y–

yx

es
+
–

NNB

NNA

Figure 3: NN stationary model identification.

Table 1: Neural network dynamic model parameters of residual
soda (RS) and Baume degree (BD).

Input layer Hidden
layer Output layer

Node number of
RS 24 27 1

Node number of
BD 16 19 1

Activating
function 1/(1 + e−s) 1/(1 + e−s) (1 − e−s)/(1 + e−s)
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(Levenberg and Marquardt) optimization-based BP algo-
rithm are used to train the NNs mentioned above. It is found
that the dynamic model trained by L-M optimization-based
BP algorithm is the optimal strategy. 0e training param-
eters of NN dynamic models for residual soda and Baume
degree are listed in Table 2.

0e error curve in the training process of residual soda
and Baume degree is shown in Figures 4 and 5. 0e sim-
ulation results show that the model has high convergence
velocity; it is not suitable for local optimization. Based on the
training of yielded data, the learning curves are shown in
Figures 6 and 7. 0e true curve reflects the dynamic char-
acteristics of the pulp washing process. 0e identification
curve obtained by neural network reflects a good self-
learning ability of neural network. 0e generalizing per-
formance on validation data is shown in Figures 8 and 9,
which describes the performance of the dynamic neural
network models.

3.2.2. Neural Network Stationary Model Identification.
After fully learning the pulp washing process by the dynamic
neural network, the simulation data can be generated as the
sample of the steady-state model, and only the dominant
inputs are trained in the steady-state neural network model.

0e steady NN mathematical model of the pulp washing
process can be descried as follows:

y1 � f1 x1, x2, x3( ,

y2 � f2 x1, x2, x3( ,
 (2)

where x1 is inlet pulp consistency (kg/m3), x2 is inlet pulp
flow (m3/h), x3 is hot clean water input flow (m3/h), y1 is
residual soda in the final washed pulp (g/L), and y2 is the
Baume degree in the first stage filtrate tank (Be).
f1(x1, x2, x3) andf2(x1, x2, x3) are steady models of re-
sidual soda and Baume degree trained by BP neural network.

A three-layer BP NN is also employed for steady model
identification. 0e structure of the neural network model is
shown in Figure 10.

0e corresponding model parameters of steady NN for
residual soda and Baume degree are listed in Table 3. Two
steady data collections are yielded based on the NN dynamic
models of residual soda and Baume degree by continually
changing the values of input variables. 0en, two data
collections with 150 sets of sample set for neural network are
obtained, respectively; 150 samples are composed of 30 sets
of actual production simulation data and 120 sets of field
data are collected by DCS (distributed control system).

0ose sets of data are used as samples for identifying NN
steady models. 0e 150 samples are divided into two parts:
100 sets of data are used to train the steady NN (30 sets of
simulation samples are included) and another 50 sets of data
are used to test the generalizing ability of the trained NN. For
the training of NN steady models, the same three methods as
above are employed. It is found that the L-M optimization-
based BP algorithm is the best. 0e training parameters of
NN steady models for residual soda and Baume degree are
listed in Table 4. BP neural networks were learned through
their classified samples, which led to improved learning

efficiency. 0e yielded data learning curves after neural
network training are described in Figures 11 and 12. It
reflects that the employed BP neural network has wonderful
function and robust property. 0e generalizing curves of
neural network are shown in Figures 13 and 14. 0e results
show that the L-M training function works effectively and
accurately in data correction and has good generalization
performance.

3.2.3. Data Preprocessing Based on Pattern Clustering. As is
well known, the learning and training of the neural
network depend on sample data. In the actual pulping
process, due to the influence of measurement device,
measurement environment, measurement method, and
human factors, the original measurement data inevitably
have errors in the pulping process [17].

0erefore, the traditional mathematical statistics method
is difficult to preprocess.

In view of this, in this paper, the pattern clustering
method is used to preprocess the initial sample training
sets. 0is method can detect the error of fault and carry
out weighted average of the measurement data in the
same mode according to the measurement time, which
reflects the time variability of the washing process and
reduces the random error to a certain extent. 0e prin-
ciple of the process data preprocess method based on
pattern clustering is shown in Figure 15, which is divided
into three parts: pattern clustering, error elimination
data, and weighted average filtering. For the original
measurement data, it is divided into input space and
output space. In the data sample, Xs is in the input space,
Ys is in output space, and the original data imply the
mapping information from the input space to the output
space.

Based on this method, the sample data are in the left
Table 5, and the clustering results are displayed in the right of
Table 5. It can be seen that 40 sample data are aggregated into
34 sample data (see Table 6 for data distribution after
pretreatment).

0e dataset tests the clustering effect of the improved
algorithm. Cluster analysis data are applied to neural
network, and 150 sets of data are obtained as the samples
of neural network steady-state model identification. 0e
150 sets of data were randomly divided into two groups.
0e first group used 100 sets of data to train the stable
neural network, and the second group used 50 sets of data
to test the generalization ability of the training neural
network.0e learning curve and generalization curve after
training are shown in Figures 16 and 17. Algorithm
analysis and experimental results show that the improved
algorithm has better detection performance, higher de-
tection rate of learning performance, and stronger gen-
eralization ability.

0e steady-state data generated by the steady-state
neural network model provide a reliable data source for the
specific mathematical model of Baume degree of residual
alkali black liquor. By the least square fitting of 200 sets of
data in the steady-state model, the mathematical models for
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the residual soda and Baume degree are established as shown
in the following equation:

y1 � 0.27x1 − 0.0013x2 − 0.0078x3 + 1.923,

y2 � 0.77x1 − 0.0118x3 + 7.59.
 (3)

Regression analysis is carried out for the parameters
estimation, and the result is shown in Tables 7 and 8.

Regression analysis shows that 87% and 85% of residual soda
and Baume degree are explained by the linear models, and
the fitting deviation approximately follows the normal
distribution. 0e predicted value can accurately reflect the

Table 2: Neural network dynamic model training parameters of residual soda and Baume degree.

Dynamic model Learning rate Initial value of μ Increment of μ Decrement of μ Learning epochs Error
RS 0.3 0.001 10 0.1 56 0.0019
BD 0.11 0.001 10 0.1 67 0.002
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Figure 4: Residual soda error curve in training process.
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Figure 5: Baume degree error curve in training process.

0 50 100 150
1

1.5

2

2.5

3

3.5

4

Length of sample

Re
sid

ua
l s

od
a (

g/
L)

Identification curve
True curve

Figure 6: Neural network dynamic model learning curve of re-
sidual soda.

0 50 100 150
Length of sample

Identification curve
True curve

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

Ba
um

e d
eg

re
e (

Be
)

Figure 7: Neural network dynamic model learning curve of Baume
degree.

6 Mathematical Problems in Engineering



changes of these two indexes, and the accuracy is conducive
to the actual production.

4. Operation Mode Optimization of Pulp
Washing Process

4.1. Condition Judgment. 0e idea of the comprehensive
optimal control of the washing process is to take the stability
of the comprehensive working condition of the washing
process as the control objective and find out the best op-
erating parameters, i.e., the pulp concentration, the pulp
flow rate, and the amount of water, by adopting the optimal
control method. 0erefore, a new rigorous optimization
model must be established.

0e residual soda and black liquor Baume degree reflect
the working state of the pulp washing process. In order to
control the dynamic process of pulp washing, the prediction
models of residual soda and black liquor Baume degree are
applied to judge the working state of pulp washing quality.
0e working condition index S is shown in the following
equation:

S � k1
y1 − 1.923

1.923
 

2
+ k2

y2 − 7.59
7.59

 
2
, (4)

where 1.923 and 7.59 are the target values of residual soda
and Baume degree of black liquor and k1 and k2 are the
weights; the values of k1 and k2 are generally 0.4 and 0.6.
According to the calculated S value, the comprehensive
operating condition index can be divided into four intervals:
excellent, good, medium, and poor. If it is optimal, the
current parameter is maintained; if it is not optimal, adjust
the operation parameters to optimize the model.

4.2. Comprehensive Optimization Control of Pulp Washing
Process. 0e comprehensive optimization control frame-
work of the pulp washing process is shown in Figure 18,
which can be summarized as follows:

(a) Collect a large number of experimental data under
different conditions and then establish the model of
the washing process quality index based on neural
network and online correction.

(b) According to judgment of condition S, establish the
optimization mode library based on the condition
parameters and operation modes in the interval.
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Figure 8: Model validation of residual soda.
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Figure 9: Model validation of Baume degree.
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Figure 10: Structure of the stationary neural network mode.

Table 3: NN steady model parameters of residual soda (RS) and
Baume degree (BD).

Input layer Hidden
layer Output layer

Node number of
RS 3 7 1

Node number of
BD 3 7 1

Activating
function 1/(1 + e−s) 1/(1 + e−s) (1 − e−s)/(1 + e−s)

Mathematical Problems in Engineering 7



Optimize the mode library when adding the con-
dition samples and then recombine the samples [18].
Fuzzy matching of samples and clustering centers
under current working conditions by similarity
coefficient.

(c) Search the similar samples and predict y1 and y2 by
the neural network. If the operating condition index
Sis judged to be optimal, the operating parameters
x1, x2 and x3 will be added to the optimization mode
database, and the current operation parameters will
be maintained. If nonoptimal, reduce the number of
samples for operation optimization, adjust the

Table 4: NN steady model training parameters of residual soda (RS) and Baume degree (BD).

Steady model Learning rate Initial value of μ Increment of μ Decrement of μ Learning epochs Error
RS 0.01 0.001 10 0.1 14 0.005
BD 0.01 0.001 10 0.1 11 0.0019
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Figure 11: Learning curve of residual soda.
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working conditions according to the mechanism
process, and establish a large-scale optimization
mode library.

(d) In the established optimization model database, the
dilution factor and operating parameters are opti-
mized with the objective of maximum washed pulp
and the minimum water consumption in the pulp
washing process.

0rough steps a, b, and c, the optimization model library is
established. 0e quality of pulp washing is ensured by the

judgment of the working condition index S. On this basis, the
production efficiency is improved, and the comprehensive
optimization control of the pulp washing process is formed.

4.3.OptimizationModel of PulpWashingProcess. In order to
optimize the pulp washing process, a multiobjective opti-
mization model of high quality, high yield, and low con-
sumption is established. 0is objective model can be
specified in more detail in the following equation:

minZ � min F, Y′, C 
T

� min

f1(DF) �
29
3

DF
(1 +(DF/6))(1 +(DF/5))4 − 1

+
27
25

DF +
22
2

,

f2 x1, x2(  � x1max · x2max − x1 · x2,

f3 x3(  � x3,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

s.t.

X1min ≤ x1 ≤X1max

X2min ≤ x2 ≤X2max

X3min ≤ x2 ≤X3max

0≤DF≤M,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

Merge (Xi,r , Yi,r) and (Xj,r , Yj,r)
into one category and redefine C, ak

Start

Determining input classification δX
and judging negligence data δY

According to δX, mode
clustered (Xs, Ys) (s = 1, 2, . . ., W) to

Xk,r,Yk,r, k = 1, 2, . . ., C is class number,
r = 1, 2, . . ., ak is the sample number.

According to δY,
obtain Xk,u , Yk,u , k = 1, 2, . . ., C by elimination of

fault data in each category

Obtain the Xk,u , Yk,u by weighting average and
filtering the Xk , Yk

| Xi – Xj | < δX
i, j = 1, 2, . . ., C, i ≠ j

End

Yes

No

Figure 15: Flow of data preprocessing based on pattern clustering.
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Table 5: Clustering of sample data.

Original data Clustered data
No. x1 x2 x3 y1 y2 Class no. No. x1 x2 x3 y1 y2

1 2.33 109.45 33.08 2.21 9.16 34 1 2.33 109.45 33.08 2.21 9.16
2 2.09 116.23 29.60 2.09 9.21 33 3 2.34 112.36 34.11 2.20 8.98
3 2.34 112.36 34.11 2.20 8.98 32 4 2.23 110.23 31.88 2.16 9.00
4 2.23 110.23 31.88 2.16 9.00 31 5 2.31 113.73 28.92 2.21 8.82
5 2.31 113.73 28.92 2.21 8.82 30 6 2.02 123.83 34.67 2.00 8.76
6 2.02 123.83 34.67 2.00 8.76 29 8 2.06 118.29 33.88 2.04 8.90
7 2.30 119.77 31.52 2.16 8.88 28 9 2.29 104.98 34.88 2.19 8.78
8 2.06 118.29 33.88 2.04 8.90 27 10 2.22 120.41 34.76 2.09 8.885
9 2.29 104.98 34.88 2.19 8.78 26 12 2.12 110.22 31.83 2.12 9.02
10 2.22 120.41 34.76 2.09 8.89 25 14 2.01 110.69 27.31 2.09 8.79
11 2.11 110.56 32.25 2.10 8.69 24 15 2.14 121.13 28.92 2.09 9.00
12 2.12 110.22 31.83 2.12 9.02 23 16 2.08 108.58 28.95 2.12 8.92
13 2.33 108.39 32.58 2.22 8.82 22 17 2.28 126.47 29.99 2.12 8.73
14 2.01 110.69 27.31 2.09 8.79 21 18 2.31 107.55 30.03 2.22 9.14
15 2.14 121.13 28.92 2.09 9.00 20 20 2.35 134.76 29.51 2.11 9.155
16 2.08 108.58 28.95 2.12 8.92 19 19 2.08 117.37 32.29 2.06 8.67
17 2.28 126.47 29.99 2.12 8.73 19 21 2.19 111.98 29.73 2.15 8.93
18 2.31 107.55 30.03 2.22 9.14 18 22 2.19 131.19 25.99 2.08 9.12
19 2.08 117.37 32.29 2.06 8.67 17 24 2.17 130.58 34.32 2.02 8.79
20 2.35 134.76 29.51 2.11 9.16 16 25 2.30 108.94 26.34 2.23 9.17
21 2.19 111.98 29.73 2.15 8.93 15 11 2.11 110.56 32.25 2.10 8.69
22 2.19 131.19 25.99 2.08 9.12 15 26 2.25 127.77 26.50 2.21 8.93
23 2.04 102.26 31.40 2.11 8.76 14 23 2.04 102.26 31.40 2.11 8.76
24 2.17 130.58 34.32 2.02 8.79 14 27 2.22 105.80 26.64 2.06 9.20
25 2.30 108.94 26.34 2.23 9.17 13 28 2.30 108.94 26.34 2.23 9.17
26 2.25 127.77 26.50 2.21 8.93 12 29 2.38 121.66 34.84 2.17 9.23
27 2.22 105.80 26.64 2.06 9.20 11 13 2.33 108.39 32.58 2.22 8.82
28 2.30 108.94 26.34 2.23 9.17 11 7 2.30 119.77 31.52 2.16 8.88
29 2.38 121.66 34.84 2.17 9.23 11 2 2.09 116.23 29.60 2.09 9.21
30 2.19 112.28 26.73 2.17 8.78 11 30 2.19 112.28 26.73 2.17 8.78
31 2.21 I11.16 29.09 2.17 8.73 10 31 2.21 I11.16 29.09 2.17 8.73
32 2.23 124.01 27.12 2.13 9.02 9 32 2.23 124.01 27.12 2.13 9.02
33 2.29 111.37 35.20 2.17 8.82 8 33 2.29 111.37 35.20 2.17 8.82
34 2.14 126.18 34.84 2.03 8.86 7 34 2.14 126.18 34.84 2.03 8.86
35 2.09 133.95 33.77 1.98 8.76 6 35 2.09 133.95 33.77 1.98 8.76
36 2.33 101.93 29.99 2.25 9.05 5 36 2.33 101.93 29.99 2.25 9.05
37 2.03 131.33 35.30 1.96 8.93 4 37 2.03 131.33 35.30 1.96 8.93
38 2.1734 127.40 34.72 2.04 8.93 3 38 2.17 127.40 34.72 2.04 8.93
39 2.25 108.68 27.32 2.20 8.94 2 39 2.25 108.68 27.32 2.20 8.94
40 2.28 102.58 30.98 2.21 8.70 1 40 2.28 102.58 30.98 2.21 8.70

Table 6: Data distribution after preprocessing.

Class no. x1 x2 x3 y1 y2 Class no. x1 x2 x3 y1 y2

1 2.28 102.58 30.98 2.21 8.70 18 2.19 131.19 25.99 2.08 9.12
2 2.25 108.68 27.32 2.20 8.94 19 2.14 114.68 31.01 2.12 8.8
3 2.17 127.40 34.72 2.04 8.93 20 2.35 134.76 29.51 2.11 9.155
4 2.03 131.33 35.30 1.96 8.93 21 2.31 107.55 30.03 2.22 9.14
5 2.33 101.93 29.99 2.25 9.05 22 2.28 126.47 29.99 2.12 8.73
6 2.09 133.95 33.77 1.98 8.76 23 2.08 108.58 28.95 2.12 8.92
7 2.14 126.18 34.84 2.03 8.86 24 2.14 121.13 28.92 2.09 9
8 2.29 111.37 35.20 2.17 8.82 25 2.01 110.69 27.31 2.09 8.79
9 2.23 124.01 27.12 2.13 9.02 26 2.12 110.22 31.83 2.12 9.02
10 2.21 I11.16 29.09 2.17 8.73 27 2.22 120.41 34.76 2.09 8.885
11 2.23 114.17 30.11 2.16 8.92 28 2.29 104.98 34.88 2.19 8.78
12 2.38 121.66 34.84 2.17 9.23 29 2.06 118.29 33.88 2.04 8.9
13 2.30 108.94 26.34 2.23 9.17 30 2.02 123.83 34.67 2.00 8.76
14 2.13 104.03 29.02 2.09 8.98 31 2.31 113.73 28.92 2.21 8.82
15 2.18 119.17 29.38 2.16 8.81 32 2.23 110.23 31.88 2.16 9.00
16 2.3 108.94 26.34 2.23 9.17 33 2.34 112.36 34.11 2.2 8.98
17 2.17 130.58 34.32 2.02 8.79 34 2.33 109.45 33.08 2.21 9.16
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where f1(DF) is the consumption cost, which is elated to
dilution factor DF, x1max and x2max are the maximum inlet
pulp consistency and inlet pulp flow, f2(x1, x2) is the de-
viation of the pulp output, and f3(x3) is the water
consumption.

4.4. Solution of the Optimization Model. Structuring an
evaluation function, transform the multiobjective optimi-
zation problem [18] into a single objective as follows:

min Z � ω1 f2
1 + ω2f

2
2 + ω3f

2
3,

s.t.

X1min ≤ x1 ≤X1max

X2min ≤ x2 ≤X2max

X3min ≤x3 ≤X3max

0≤DF≤M,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

where ω1 ∈ [0, 1], ω2 ∈ [0, 1], ω3 ∈ [0, 1], and ω1 + ω2 +

ω3 � 1. It reflects the importance of these objectives.
During operation in a paper mill, the parameters are

designed as follows:

X1min � 2.0 kg/m3,

X1max � 2.4 kg/m3,

X2min � 100m3/h,

X2max � 135m3/h,

X3min � 25m3/h,

X3max � 35m3/h.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

0e optimization model is a nonlinear multiobjective
optimization problem with linear constraints; ant colony
algorithm can be regarded as a distributedmultiagent system
[19]. In this paper, ant colony optimization algorithm is
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Figure 16: (a) Learning curve of residual soda. (b) Generalizing curve of residual soda.
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adopted for optimization, and the optimal operation mode is
obtained by iteration of 10 steps.

0e model of unconstrained optimization based on
penalty function is established.0e corresponding nonlinear
unconstrained optimization model of the pulp washing
process is as follows:

minF xi, σ(  � min ω1 x3 − E
∗

(  + ϖ2 Y
∗

− x1x2(  +
1
2
σ 

9

j�1
min[0, gj xi(  

2
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, i � 1, 2, 3, (8)
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Figure 17: (a) Learning curve of Baume degree. (b) Generalizing curve of Baume degree.

Table 7: Regression statistics of residual soda.

Multiple R 0.864969
R square 0.848171
Adjusted R square 0.842029
Standard error 0.023671
Observation data 200

Table 8: Regression statistics of Baume degree.

Multiple R 0.754913
R square 0.769893
Adjusted R square 0.759403
Standard error 0.03092
Observation data 200
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Figure 18: Framework of comprehensive optimization control.

Table 9: Optimization results of the pulp washing process.

Independent
variables

Inlet pulp consistency
(kg/m3)

Inlet pulp flow
(m3/h)

Inlet water flow
(m3/h) DF Weight

Before optimization 2.1 117.5 34.7 0.5 ω 1 � 0.4, ω2 � 0.3, ω3 � 0.3,
β� 0.5After optimization 2.4 129.7 25 3.2

Dependent variables Baume degree (Be) Residual soda (g/L) Outlet slurry (T/h) Cost (yuan/ton) Weight
Before optimization 7.2546 2.398 246.75 13.2 ω 1 � 0.4, ω2 � 0.3, ω3 � 0.3,

β� 0.5After optimization 9.3003 2.1848 311.28 10.9

Industrial ethernet

Optimization
station

CPU414-2DP

Operation
station

ET200M

Profibus-DP

MPI/DP

Engineer station

Pulp washing process

Figure 19: DCS structure of straw pulp washing.
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and when xi is an infeasible point, min[0, gj(xi)] � 0. When
xi is a feasible point, min[0, gj(xi)] � gj(xi).

Equation (8) is an unconstrained minimization problem.
It expresses the constraints of model (6) in the objective
function in the form of penalty function [20].

Accordingly, the network state equation of the nonlinear
programming is constructed as follows:

C ·
dui

dt
� −

zf(X)

zxi

− λ
9

j�1
σmin 0, gj(X) 

zgj(X)

zxi

 ,

X(t + 1) � min[0, u(t + 1)].

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

0e iteration formula of the optimization variable is
xi(k + 1) � xi(k) + λ∇F(xi, σ).

For the dynamic equation of the neural network,
dui

dt
� −

zf(X)

zxi

− λ
9

j�1
σmin 0, gj(X) 

zgj(X)

zxi

 . (10)

It can be further simplified as follows:

dui

dt
� −

zf(X)

zxi

− λ
9

j�1
σSjgj(X)

zgj(X)

zxi

, (11)

where Sj �
1 gi(x)≤ 0
0 gi(x)> 0 and Sjgj(x) � min(0, gj(x)).

0e calculation process of the dynamic equation is as
follows:

du1

dt
�

zF xj, σ 

zx1
� −ϖ2x2 + 2 · σ f1 x1, x2, x3(  − 2.5(  ·

zf1 x1, x2, x3( 

zx1
  − 2 · σ 7 − f2 x1, x2, x3( (  ·

zf2 x1, x2, x3( 

zx1
 

+ 2 · σ f2 x1, x2, x3(  − 9(  ·
zf2 x1, x2, x3( 

zx1
+ 2 · σ x1 − 2.4(  − 2.0 − x1(  ,

du2

dt
�

zF xj, σ 

zx2
� −ϖ2x1 + 2 · σ f1 x1, x2, x3(  − 2.5(  ·

zf1 x1, x2, x3( 

zx2
  − 2 · σ 7 − f2 x1, x2, x3( (  ·

zf2 x1, x2, x3( 

zx2
 

+ 2 · σ f2 x1, x2, x3(  − 9(  ·
zf2 x1, x2, x3( 

zx2
+ 2 · σ x2 − 135(  − 100 − x2(  ,

du3

dt
�

zF xj, σ 

zx2
� 1 + 2 · σ f1 x1, x2, x3(  − 2.5(  ·

zf1 x1, x2, x3( 

zx3
  − 2 · σ 7 − f2 x1, x2, x3( (  ·

zf2 x1, x2, x3( 

zx3
 

+ 2 · σ f2 x1, x2, x3(  − 9(  ·
zf2 x1, x2, x3( 

zx3
+ 2 · σ x3 − 35(  − 25 − x3(  .

(12)

Figure 20: Main interface of pulp washing section.
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0e iteration step of λ in the upper median can be
obtained either by fixing a constant or by optimizing each
part. 0e penalty factor σ will increase with the number
of infeasible solutions. 0e specific algorithm is as
follows:

(i) Given the initial point X(0), the initial penalty factor
σ1 > 0 (taken σ1 � 1000 for the actual calculation),
the magnification factor C> 1 (e.g. C � 2), and the
allowable error ξ > 0, k � 1.

(ii) Take X(k− 1) as the initial point; the unconstrained
minimum of X(k) is obtained by solving the penalty
function minG(X, σk).

(iii) If the penalty is smaller than ξ, the calculation is
stopped and the approximate minimum of X(k) for
the original problem is obtained. Otherwise, σk+1 �

Cσk and k � k + 1, and return to step (ii).

5. Optimization Results and Application

5.1.OptimizationResults. A comparison between before and
after optimization on residual soda and Baume degree has
been done in a paper mill in Shandong province, China. 0e
results are shown in Table 9. After optimization, the residual
soda and Baume degree can meet the process requirements
(the residual soda is not higher than 2.2 g/L; the Baume
degree is between 7.0 and 9.4Be) [21, 22].

0e average of residual soda decreased, and the Baume
degree is increased to 9.3Be. 0e concentration and flow of
the inlet pulp tend to the upper limit of the production
index, the pulp yield is increased by 20%, and the water
consumption is decreased by nearly 30%. Meanwhile, by the
optimum of DF, the total cost is reduced from 13.2 to 10.9,
and it has a certain economic benefit for pulping enterprises.

5.2. Application. Based on the hardware of Siemens S7-400
PLC and software of WinCC 6.0 & Step 7, an optimization
control system has been designed for the pulp washing
process. 0e DCS structure is shown in Figure 19. 0is
system is a three-level control system.0e soft measurement
model and correction model of residual soda and Baume
degree are embedded into the DCS in the optimization
station. 0e main interface of the pulp washing process in
the engineer station is shown in Figure 20.

0rough the trial operation in the pilot paper mill, the
curve of one week operation result is given and compared
with the curve before optimization. As shown in Figures 21
and 22. It can be seen that before optimization, the residual
soda and Baume degree cannot reach the process require-
ments at the same time and fluctuate greatly. After opti-
mization, both of them are kept in a relatively stable value,
and the higher the Baume degree, the lower the residual
soda. It solves the incompatibility of the two indexes. In the
actual production process, the long-term detection of the
dynamic deviation shows that the model has high prediction
accuracy.

6. Conclusions

In order to realize the multiobjective optimization of high
yield, low cost, and low consumption in the pulp washing
process, the operation mode optimization method in the
pulp washing process is proposed. 0e optimal control has
been successfully operated in some paper mills of China, and
remarkable economic benefits have been achieved. In other
words, the multiobjective optimization subsystem can ef-
fectively balance the contradiction between the residual soda
and Baume degree. On the other hand, by optimizing the
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subsystem, a set of recommended optimal operation pa-
rameters (including pulp concentration, pulp flow, and hot
water flow) can be provided to the engineer, which increases
the flexibility of pulp washing scheduling. It is important
that the outlet pulp increases substantially and the hot water
consumption is decreased to the lower limit.0e total cost of
the pulp washing process is reduced, which has a certain
economic benefit for pulping enterprises.
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