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This paper studies the adaptive group synchronization of second-order nonlinear complex dynamical networks with sampled-data
and time-varying delays by designing a new adaptive strategy to feedback gains and coupling strengths. According to Lyapunov
stability properties, it is shown that the agents of subgroups can converge the given synchronous states, respectively, under some
conditions on the sampled period. Moreover, some simulation results are given.

1. Introduction

Complex dynamical networks are used to describe the large size
and complexity of the research object to solve the practical
application problem by constructing the mathematical models
in essence. In nature, synchronization is a ubiquitous phe-
nomenon, such as the synchronization of beating rhythm of
cardiac myocytes and consistency of fireflies twinkling. Re-
cently, the synchronization problem of complex systems with
nonlinear dynamical has attracted increasing attention and
wide application including physics, mathematics, chemistry,
biology, information science, electronics, and medicine [1-16].
Because of the extensive application value of synchronization in
engineering technology, complex network synchronization has
become a hot issue in the field of nonlinearity science, for
example, the evolutionary origin of asymptotically stable
consensus in [7] and the application of synchronization in
engineering was introduced in [8].

In order to achieve network synchronization, some
advisable methods are introduced in outstanding works

(e.g., [17-28]), such as pinning control [17-19] and adaptive
strategies [20-28]. In [25], the authors introduced the
adaptive coupling strengths and studied the adaptive syn-
chronization of two heterogeneous second-order nonlinear
coupled dynamical systems. The synchronization of frac-
tional-order complex networks were well considered in
[26-28] and applying decentralized adaptive strategies,
pinning control and adaptive control strategy, respectively.
The authors [29-31] investigated the synchronization of
complex dynamical systems with time-varying delays.
Works [32, 33] discussed adaptive consensus of networks
with single-integrator nonlinear dynamics and adaptive
synchronization of networks with double-integrator non-
linear dynamics, respectively. In [34], the author investi-
gated the adaptive synchronization for first-order complex
systems with local Lipschitz nonlinearity. Su et al. [35] also
researched the adaptive flocking of multiagent networks
with local Lipschitz nonlinearity. In engineering practice, the
whole network (group) can be partitioned into several
subnetworks (subgroups) to study the synchronization
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problems, called as group synchronization. Li et al. [36]
investigated the group synchronization for complex systems
with nonlinear dynamics. Some conditions were established
in [37] for solving consensus problem of multiagent complex
systems with double-integrator and sampled control. The
consensus of complex networks with sampled data and time-
delay topology was studied in [38].

Inspired by these works, the adaptive group synchro-
nization of second-order nonlinear complex dynamical
undirected networks with sampled-data and time-varying
delays will be discussed in this paper. And its main con-
tributions are threefold: (1) the new second-order model
with sampled-data and time-varying delays is established;
(2) the communication delays of all the neighboring agents’

| Xi(t) = Vi(t),

jed;
2 JEM »;

v, (8) = ]

JEM y;

JEM

where x; (t) € R" is the position vector of agent i; v; (t) € R"
is its velocity vector, for i=1,...,N as t € [0,+00);
f: R" — R" is a continuous differentiable function; T, =
t,—1(t,) and 7>0; ; is the neighbor set of node i,
M€ MO My with M = {xj €y a;;20,i,j € €1} and
My = {x< €, 0,200, € 82}, where ' =2, UZ,, €=

j i =
U, with Xy =1{x,....,x;}, Xy ={xp0.. x5} € =

=€ (ts)hi (xi (Ts) - X (Ts)) - di (ts)li (Vi (Ts) -V (Ts))’
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positions and velocities are time varying; (3) adaptive laws
for solving the group synchronization of second-order
nonlinear complex dynamical systems are introduced.

The rest of this paper is arranged as follows. The
mathematical model with time delays and sampled data
and some necessary preliminaries are given in Section 2.
Section 3 presents the main results. Some numerical
simulations are given in Section 4. Finally, Section 5 shows
the conclusion.

2. Problem Formulation and Preliminaries

A second-order complex network with nonlinear dynamics
consists of N nodes and each node obeys

[ f (vi(t), i (T)) + Z Cij (ts)aij(xj (T) = x; (Ts)) + Z di; (t)b;x; (T,) + Z & (ts)Pij(Vj (Ts) - v (Ts))

jedly; je ;

+ Z Bij (ts)qz'j"j (Ts) +u, Viel, Ve[t t,]

F (), vi(Ty)) + Z Cij (ts)“ij(xj (T) = x; (Ts)) + Z di; (t)b;x; (T) + Z & (ts)Pij(Vj (Ty) v (Ts))

jed ; jely;

+ Z Bij (ts)qijvj (Ty) +u, Vi€, Vte [tot,],

(1)

I,...,L, ¢&=L+1,...,N, and L<N; cij(ts),dij(ts),
a;; (t), and B;; (t,) are the position’s and velocity’s coupling
strengths between agent i and agent j; and nonnegative
numbc?rs a;j> bij p; I and g;; are the edge-weights connecting
agent i and agent j.

Design the control input as

icd,

(2)

—¢i (E)h (x;(T) = %, (T)) = d; (t ) (vi (T) = 9,(T)), i€éy,

where h; and[; are on-off controls, if node i is steered, then
h; = 1and[; = 1, otherwise h; = 0 and [; = 0, ¢; (t,) and d, (t,)
represent the position’s and velocity’s feedback gains,

respectively, X, (t) € R" and X, (t) € R" are the given syn-
chronous positions, and v, (t) € R*and v, (t) € R" are their
velocities, respectively.
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According to (1) and (2), we design the adaptive laws for
coupling strengths respectively as

[ a0 [ (3, (1) = 5, () (s S)—xj(TS))+(9&i(t)—xj(t))T(xi(t)—xj(t))], ijee,
“lh)= 1 a,jk; :(xl- (Tg) = x;(T2)) (3, (Ty) = x;(T)) + (%, (0 - %, () (% () - %, (t))], ij ey N
[ pue| (n (1) v (1)) (1) = v, (1) + (5,0 =3, 0) (7,0 - 3,0) |, ijee,
%) Pty (v,(Ts)—vj(Ts))T(vi(Ts)—vj(Ts))+(1}i(t)—vj(t))T(vi(t)—vj(t))], ijee,
d,](t5)={b”k” x,(T,) - %, T))Z( (T)-%(T.), ict,jeb,
byjkii(x;(T) =%, (T,)) (x;(T) - %, (T,)), i€, jet, @

vi(T.) =7, (1)) (v;(T.) = ¥,(T.)

V(1) =7, (1)) (v;(T.) - %, ()

Ry
<

)

)
- i€ ), i€y, jel,
Bij(t,) = T )

4qijéij i€d,, jed,.

where k;; > 0and ¢;; > 0 are the weights of ¢;; (f,) and o (£,),

Similarly, we design the adaptive laws for the feedback

respectlvely gains, respectively, as
k| (6, (T) =% (T)) (3,(T) = %, (1) + (3 (0 - % 0) (50 - %, )|, i e,
o) i k| (5 () = % (T)) (3(T) = %, (T) (50 - %,0) (%0 - %, ) | ice, -
| ' e (4(T) = (L)) ((T) = (1)) + (5,0 =7, 0) (3,0 -3, )] i ey,
)= lisi[(vi (T,) =7, (T.)" (v;(T,) - 7,(T.)) +(¥; (1) —iz(t))T(vi(t) —iz(t))], i€ty

N

in which k; > 0 and ¢; > 0 are the weights of ¢; (t,) and d, (t,), A(L1)(L41) ~ Z A e AN
respectively. j=L+1
The position’s and velocity’s weighted coupling config- A, : ,
uration matrices of system (1) can represented as N
Lx(N-L) aN(L+1) aANN Z aNj
LxL x(N-L) i
A11X By, - j=LH
A= R 3 .
BIN-DXL 4 (N-DX(N-L)
21 2 - (6) 11 _ZPU PiL
LxL L(N-I) j=1
Py Q> P
P = s 11 . >
(N-L)xL p(N-DX(N-L)
2 2 B Pu L~ Z Prj
where - J=
_ L i _ N i
an - Zalj aiL Py ~ Z Pwj - PN
=1 j=L+1
All = > P22
L N
ar arp - Z ar; PN+ © PNN T Z Pnj
| j=1 j L j=L+1 J

(7)



In order to solve the synchronization problem, we briefly give
some assumptions, lemmas, and definitions used in this paper.

Assumption 1 (see [39]). The coupling strengths and feed-
back gains are all bounded, that is,

”Cl] SC,-]-, “dl]( Sdl], ||Cl (tS)H SC,», ||0( (8)
S Qj "ﬁz‘j )| <Bij> i (t.)] < i
where [|-|| is the Euclidean norm and ¢;;, d;, ¢;, a;; B, and d;

are positive constants. In fact, the couphng strengths and
feedback gains are usually bounded.

Assumption 2 (see [39]). 0<7(¢t)<7, when t>0 and 7>0
are constants.

Unlike some existing works, such as [40], 0<7(¢) <1 is
required; however, this paper does not need to know any
information about the derivative of 7(t).

Assumption 3 Jp, >0, p, >0 such that
If (. ) = f(y, Dl <pilla =yl +p,IB~8l,  Va,B,y,6 € R",
(9)
which can guarantee the boundedness of the nonlinear term
for system (1).

Lemma 1 (see [39]). Suppose that x,y € RN are arbitrary
vectors and matrix Q € RN*N is positive definite; then, the
inequality satisfies

it + @) = Vi () =

Let h=0,1,...,

(1 _¥> x [f(v,. (te)vi(T,) +

+Zﬁu

Jjedly;

(1-5) [fm(ts),v,- ES)

jesy;
+ 2 Byl

Jjedl ;

T, — 1; thus, we have

je \;

ql] ] )+ui:|’ Vieel’VtE [ts’ts+1]’
v (t) = 4

)aiv; ( )+u,-:|, Vie by, Vt € [tote]

Z Cij (tS)aij(xj (T) - x; (Ts)) +

cij (ts)aij(xj (T,) - x; (TS)) + Z d;; (t,)b; X (T,) + z
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ZxTnyTQx + yTQfly. (10)

Lemma 2 (see [39]). If A= (al]) € RNN s symmetric ir-
reduczble, each eigenvalue of A — B is negative, where a;; =
Z] 1,j+i @ij and B = diag (b, 0, ..., 0) with b>0.

Lemma 3 (see [39]). For an undirected graph G, its corre-
sponding coupling matrix A is irreducible iff G is connected.

Lemma 4 (see [39]). If Vx (t) € R" is real differentiable and
W =WT >0 is a constant matrix, we can have

t T t
“ x(k)dk] w“ x(k)dk]
t—7(t) t—7(t)

(11)
t
<t J (oW (kdk,  £20,
t—7(t)
where 0<T(t) <7
3. Main Results
For a >0 and the sample periodic T, we assume that
to—t;=aT, Yi=0,1,2..., (12)

where t,<t; < --- are the discrete time periods and integer
T, > 0 is a sampled time with T; < T. Inspired by [36], we design
a linear synchronization protocol under the sampling period as

20t =(1-3 )0,

v (t, + 2a) :vi(t5+a)+(1},~(t5+oc)—vl t

(13)

T.-1
it =) = 0,0 Taam ) = (1- T o)

z d;j ( )bz]x;( )+ Z ‘xij(tS)pij(vj(Ts)_Vi(TS))

jedls; jed;

o (ts)Pij(Vj (Ty) - v; (Ts))

jedy; JeM 5

(14)
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5
Theorem 1. Consider connected network (1) with control forie ¢, and
input (2) steered by (3)-(5) under Assumptions 1-3 and (L) 2% (t) - % (t.)
Lemmas 1-4; then, each node’s position and velocity can RO _2 7 (16)
asymptotically synchronize. v (t5) = v ((t,) - v2 (t)
Proof. Let for i € ¢,; then, we obtain

;Ci (ts) 2 Xi (ts) - X (ts)’
Vi (ts) 2 Vi (ts) -V (ts)’

(15)

(1—%)x[f@i(ts),vi(n»—f(vl (T Y ey(t)ay(® (1) -%(T)) + Y dy(t)og, (1)

JeM i JEM A
+ Z & (ts)pij(vj (Ty) -7 (Ts)) + Z Bij (t)a:v; (Ts) + ”i‘l’ Vi€, Vt e [toty,],
: jedl jedtls;
v, (t) = 4
h _ _ . _
(1-3)~ [f@,- (DT~ FE )TN + T e (t)ay(% (T - % T+ Y diy(t )by, (1)
JeM A JeM i
+ Z & (ts)pij(vj (Ty) -7 (Ts)) + Z Bij (t)a:v; (T,) + ”i‘l’ Vi€ by, Vt € [t tg,]
JEM y; jed;
(17)
Construct a Lyapunov function as where
V(ts) =V, (ts) +V, (ts) +V; (ts)’ (18)
2 2
1 _ _ cij(t) —2¢c;—-p di;(t,) —2d;; - 1 ¢ (t,) - (3/2)c; - p)’
Vl(ts)zizx?(ts)xi(ts)-"z Z(] 4k] )+Z Z(; 4k] )+Z(()2k p)
i€y i€My; je,; ij i€My; jEMy; ij iedly; i
1 T (Pij (t) =2p;; - P)2 (%j (t;) —2q;; - 1)2 (d;(t,) - (3/2)d; - p)’
DA GEDND) ; DAD) ; 2 2 :
i, iedl,; jed,; €ij iedl,; jedly, €ij i, &i
s (e () ~2¢;~ p)’ (diy(6) =25 = 1)° < (6,(6) - (3126, - p)’
Vy(ts) = 5 Z X; (to)%;(t,) + Z Z Ik, + Z Z 4k + Z 2k
i€l i€l y; jeM o tj i€y jeM ; 1] i€l »; t

+l z ’17T(t )'17»(t)+ Z z (aij(ts)_zaij_p)2+ Z z (ﬁii(tS)_zﬁii_l)z_l_ z (di(ts)_(3/2)di_P)2
2 i \Fs)Vills >

i€l y; i€l y; jeMy; 4sij i€dly; jedl,; 481']' i€l y; 2¢;
V3(ts):T Z |:2P1+p2+1+< Z Cij(ts)aij>+< Z p:;) < z dl] > < Z /31] ql]>
iedl y; i€l ; ied ; i€l »; iell,;
t
+(c; (t)h;) + (d: (t)1)] j (k—t,+1)% (K% (k)dk + 1 > J —t,+ )% (k)% (k)dk
i€ y; T
+TZ|:ZP3+P4+1+< >+<Z pz]) (Zd > (Zﬁl](t ql])
i€l o; ze/%zl i€l y; iedl; i€ \;
t< . .
() +( d )] | (-t 0% Rx (dk+7 Y J —t,+ )% (k)% (k)dk,
TS i€M o, T

(19)
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and p>0 is sufficiently large. Next, there are two cases to Differentiating V, (t,), under Assumptions 1-3 and
discuss. O Lemmas 1-4, we can have

Case 1. A}, Ay, Py, and P,, are symmetric.

Vit)ss Y H 0RO+ Y T T 5 Y G O

iedl ; i€l ; ze/%l

BN a|(mm) -7 1) (31 -%,(1)) + (R0 -5, 0) (R (0 -%;0)

i€ ; jeM ;

_g >y pij[(vl.(Ts)—vj(TS))T(vi(Ts)—vj(Ts))+("&,.(t)—ij(t))T(ii(t)—ij(t))] (20)

i€l ; jeM ;

S MM T ACASHCA RS YD WP ACATCN

i€l \; jEM; i€l ; jEMy;

__zh[ T)x(T)+x(t)x(t)]—_Zl[ T)v(T)+v(t)v(t)]

i€ y; i€ y;

where §; = 1+2p, +py +Y e Cij (t)ay+ 2 e Myoy;(t;)  then

Pijt Xjea,dij )171J+Z]€/%2 Bij (¢ )q,J+c (t, )h +d; (t )l : T
Using Leibniz—-Newton formula, (x(t)" = (x(T))" +(J. . 3&(k)dk> , (22)
t T
t,)—x(T,) = ¢ (k)dk, 21
x(t:) ~x(T.) JTSX( ) (21 and then

x(t) (% (L) = [(x(T)) +(J x(k)dk)T][(?c(Ts))+(J:S?c(k)dk>]
<2(x(T,))" (%(T,)) + 2(J; ?c(k)dk)T(ﬁs ?c(k)dk) (23)
<2(%(T) (R(T.) + 27 J; i (% (k)dk.

Similarly, Substituting (23) and (24) into (20), we obtain

() (0(6) <26 (1) 20 [ 5] o o

(24)
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Vl (ts)S Z %1T (Ts)%i(Ts)"-T Z J; %1T (k)%z(k)dk_% Z Z bz]%']]ﬂ(’]—‘s)%zw (Ts)

i€l ; ied ; s i€ \; jeM

NGRS ACNACARS) fl,j LR Rdk-5 Y Y a7 ()7, (T)

i€ \; i€ ; T, i€ \; jeMy;

+ 3 pu R (T + + 2 P m(Tol + ZPA"
i€ ; i€dly; i€l y; e,
(25)
where &, =1+2p,+p, + Y c s, c,J(t )ai; + X jea, % (t) Similarly, differentiating V,(t,) and V;(t,), we can

Pijt Yjea, dlj(t )b;j + Zleﬂzﬁl] (t)qij + ¢ (t)h; + d (t )L obtain
and A, and/\3 are the minimum elgenvalues of A -
H,and P, — L,, respectively.

V)< Y & (T)R(T)+7 ¥ J; " 0%, (k dk—f Y Y bR (T%,(T)

i€l y; i€l y; ze/%z jeM;

DN R ALACAICARED) @j R0k Y Y a7 (T)7,(T)

[/ i€t T, i€y jeM ;

I ETCN I WEN LY N EICA e WaN |

i€l y; i€M y; i€ ; i€M

(26)

where §2i =1 +2p5 +py+ Y jen, Cij(E)a;; + Yiew,ij(t)  and A,and A, are the minimum eigenvalues of Ay, — H,
it Yjea, dU (t)bij + Y jea, ﬁl] (t, )q,] +¢ (t h; + d (t )l and P,, — L,, respectively:

Vit) =7 ) % (t)%(t) -1 D JT - ()%, (k)dk +7° ) £ (L) (t,) - Ty El,j ! (k) (k)dk

i€l ; i€ ; i€ y; i€ \;

(27)
AN AAEEDY J 0%, (dk+ 2 Y 67 (L) -1 Y fz,j T (k% (K)dk.
i€l y; i€, T, i€, i€l y; T,
Combining V, (t,), V, (t,), and V; (t,), we obtain
< Y +p)IETIN+ Y (Fp)REN + Y (G p)R T+ Y (7 + ph)lE I
i€ y; i€ ; i€ i€l y;
+ ) <51,+ P2 Z bj; Z qji + Phs >||V (T + X (P +pds) ()] (28)
i€ y; ]6//[2 ]e./llz i€l ;

i€M ]e%l JE-/”1 i€M y;

+ ) <£z’+ A Z bj; Z 9ji + Pha >”" T)|| > (7252i+P/‘4)||5i(ts)||2’



where A;,4,,1;, and A, are the minimum eigenvalues of
A,-H,A,,-H,,P;; - L, and P,, — L,, respectively;
with H, = diag{h;} and L, = diag{l;} for Vi € ¢, and H, =
diag{h;} and L, = diag{l;} for Vi€ ¢,. Furthermore, since
A, Ay, Py, and P,, are both symmetric and diagonal
matrices H,, H,, L;, and L, have at least one element being
1,A;<0,i = 1,2,3,4based on Lemma 2. Therefore, V (t,) <0,
if p>0 is sufficiently large.

Vit)s Y & (T)R(T) +r Y J; :

iedl y; iedl ; s

3 (e Jo (TJR(T) +

iedl,;

+ 3 5l

i€ ;

where & =1+2p5+p,+ Zje.//lz,-cij (toa;; + Zje/ﬂz,-‘xij (t,)
Pij + Ljea, dij A + Xiew Bij (8)qi; + ¢ (t)h; + di (£,

V()< Y & (T)R(T)+7 ¥ J; %

iel,; i€y =~ s

+ Y (Bt ypa ) (TT(T) +

i€l ;

+ Y Pl T+ Y e (1)
iedl,; i€y

where &, =1+2p,+p+Yicn, it + Xicw, %
(t)Pij + 2 jear,ij EDbs; + Yieur,Bij (8 qij+c;(t)h; +d;

+ Y o[ (e)
i€l ;

Mathematical Problems in Engineering

Case 2. A}, Ay, P, and P,, are asymmetric.

It is known that (A, +A7T)/2, (A, +AL)2,
(P, + P1)/2, and (Py, + PL,)/2 are symmetric, even if
Ay, Ay, Py, and P,, are asymmetric. Therefore, all eigen-
values of (A, +AT/2)-H,, (A, + AL/2) - Hy, (P +
PL/2)—L,, and (P,, + P1,/2)— L, are negative from
Lemma 2. Similarly, we can have

. 1
FF A -2 Y Y bR (T)F(T,)

i€\ jeM y;

tS . .
DN EACACT I W W ACATACN

iedl,; s iedl,; jedly,

2
>

(29)

2 - -
+ Z P/\3||Vi (Ts)||2+ Z PA3“V1‘ (t.)
el \; i€ y;

and A,and}, are the minimum eigenvalue of (A,,+
AL /2) - H,and (P,, + PL/2) - L,, respectively.

L% k-2 Y Y b ()% (T)

€My jeM

DN EACACT I W W ACATACH

i€ y; s i€ y; jeM ;

2
>

(30)

2 - -
+ Z P/\4||Vi (Ts)||2+ Z PM“VI‘ (t,)
i€ y; i€ty

(t)l, and A andA; are the minimum eigenvalue of
(A +A}}/2) —H|, (P, + P{/2) - L,, respectively:
Combining V, (t,), V, (t,), and V5 (t,), we obtain

V)< Y @+ p )R T+ Y (o0 |5+ Y )|z (T + Y (7 + phy)|% ()]

i€ \; i€l ,;
1 1 1
+ Z 51i+5/32_z Z bji_g Z qji + PAs
i€l jedly; JEM y;
1 1 1
+ Z fzi+EP4—z Z bji_z Z qji + Phy
€Ml y; je \; jetl

iel ; i€y

(31)

>”"7i (Ts)||2 + Z (12511. + Pf\s)”ii (ts)"2

i€l ;

>”7i (Ts)||2 + Z (72'521' + P’\4)”‘;’i (ts)"Z’

i€M y;
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where A;,1,,1;, andA, are the minimum eigenvalue of
(A + AT 2) - H,, (Ay + AL2) - H,, (P + PL/2)- Ly,
and (P,, + PL/2) — L,, respectively. Even though matrix
Ay, Ay, Py, and P, are asymmetric, matrix (A, + AT})/ 2,
(Ay, + AD)/2, (Pyy + PT))/2, and (Py, + P1))/2  are sym-
metric; thus, from Lemma 2, we can obtain all eigenvalues of
(A, +AL2)-H,, (A, + AL2) - H,, (P, + PL,12) - L,
and (P,, + PL,/2) - L, are negative. So, A;<0,Vi € 1,2,3,4
and V (t,) <0, if p>0 is sufficiently large.

Therefore, all the agents of sampled-data based network
(1) with time-varying delays can achieve the given syn-
chronous states asymptotically.

Remark 1. When the topology structure is connected re-
gardless of the coupled weighted matrices, the sampled-data-
based network (1) with time-varying delays can be as-
ymptotically group synchronized by controller (2).

4. Simulations

A complex dynamical system with N = 6and L = 3. Let the
initial values be X (0) = [29 12 20 17 25 — 7 22 9] and
¢;;(0) =d;;(0) = a;;(0) = B;;(0) = ¢; (0) = d; (0) = 0.01.

Let A}, A,y, Py, and P,, be symmetric as

-2 1 07
Ay=|1 =3 1 [xo01,
L0 1 -1}

(-3 2 17
Ap=|2 -4 1 |%0.05
1 1 -3]

[0 2 07 (32)
Py=[201[%001,
101 0
[0 2 17
P,,=|2 0 2 |%0.005,
|12 0]
and A}, Ay, Py;, and P,, be asymmetric as
(-3 0 37
Ay=|2 -3 1 |=01,
L0 1 -1}

(-2 2 07
Ap=|3 -6 3 |%0.05
1 2 -3

0301 (33)
P, =20 1001,

01 0]

[0 2 07
P,,=[3 0 3|0.005,

[0 2 0]

respectively.

Take

0.1,

LO 0 0.5

(34)
B, =00 0[x0.1,

L0 00
H, = diag{0.1 0 0},
H, = diag{0 0.1 0}.

Figure 1 presents that the effects of adaptive strategies
for the synchronization of complex networks with non-
linear dynamical. Figure 1(a) shows the position and
velocity of all nodes without adaptive strategies, and
Figure 1(b) shows the position and velocity of all nodes
with adaptive laws, respectively, in which the subgroups’
coupling matrices are symmetric. It is obvious to see the
fact that all the nodes with adaptive laws can achieve their
given synchronous states asymptotically, while all the
nodes without adaptive laws cannot converge. Figures 2
and 3 show the simulations of network (1) with 7 = 0.1, in
which the subnetworks’ coupling matrices are symmetric
or asymmetric descried as Figures 2 and 3, respectively.
Figures 2(a) and 2(b) present that the position and ve-
locity of all nodes of network (1) with 7 =0.1, where
subgroups’ coupling matrices are symmetric, and the
coupling strengths c;;,d;;a;;, andB;; and the feedback
gains ¢;andd; are presented in Figures 2(c)-2(h), re-
spectively. Similarly, Figures 3(a) and 3(b) present that the
position and velocity of all nodes of network (1) with
7=0.1, where the subgroups’ coupling matrices are
asymmetric, the coupling strengths c;;,d;;a;;, and ;; and
the feedback gains c; and d; presented as Figures 3(c)-3(h),
respectively. From Figures 2 and 3, we can find that all
nodes of network (1) can achieve synchronization and the
coupling strengths and the feedback gains also converge to
be consistent. However, compared with Figure 3, the
system in Figure 2 can achieve synchronization faster than
that in Figure 3. Figure 4 is the simulation of network (1)
with adaptive laws, in which the subgroups’ coupling
matrices are symmetric, where Figures 4(a) and 4(b) are
the positions and velocities of all nodes of network (1)
with 7=0.1 and 7 = 1, respectively. We can know that,
with the time delay 7 increasing, the system cannot
achieve synchronization.
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5. Conclusion

The adaptive group synchronization of second-order non-
linear complex dynamical networks with time-varying de-
lays and sampled data has been researched in this paper. A
new adaptive law has been designed, and we have proved
that the second-order system with sampled data can achieve
group synchronization no matter whether the coupling
matrix is symmetric or not. Moreover, we have discussed the
influences of time-varying delays and adaptive laws for
group synchronization of complex networks with nonlinear
dynamics in the different simulations. Finally, some simu-
lations have been represented.
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