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In this research, we generalize the simplest Chua’s chaotic circuit which is even more simpler than the four-element Chua’s circuit
in terms of number of elements and the novel simplest chaotic circuit in the fractional domain by using the fractional circuit
elements. Unlike the previous works, the time dimensional consistency aware generalization has been performed for the first time
in this work. /e dynamics of the generalized fractional nonlinear circuits have been analyzed by means of the fractional calculus
based on the modified Riemann–Liouville fractional derivative where the Lyapunov exponents and dimensions have also been
numerically calculated. We have found that including the dimensional consistency significantly alters the dynamic of the obtained
fractional domain Chua’s circuit from that of the previous dimensional consistency ignored counterpart as different Lyapunov
exponents and dimensions can be obtained./e conditions for both fractional domain circuits which cease to be chaotic have also
been determined where such condition of Chua’s circuit presented in this study is different from that of the previous work. /is is
because the time dimensionalconsistency has been included. /e dynamical analyses of these circuits have also been performed
where their conditions for being nonchaotic have been verified. Moreover, their emulators have also been realized.

1. Introduction

/e fractional calculus and its related differential equation,
i.e., FDE, which are the extensions of the conventional in-
teger calculus and the ordinary differential equation (ODE),
have been extensively utilized in various research areas, e.g.,
signal processing, biomedical engineering, electronics, ro-
botics, and control theory [1–11]. /e FDE has been used in
the fractional domain analysis of electrical circuits in which
their orders are fractional instead of being strictly integer, as
proposed in the previous research studies [12–16]. Such
fractional domain analysis has been found to be necessary
because the electrical circuit components in practice have
irreversible dissipative effects, e.g., Ohmic friction, thermal
memory, and electromagnetic field-induced nonlinearities,
which cannot be precisely analyzed by using the conven-
tional integer domain methods. Mostly, the linear electrical
circuits have been considered despite the fact that there
exists nonlinear ones which employ various interesting

properties, e.g., chaotic behaviors. Among various nonlinear
circuits, Chua’s chaotic circuits [17–20], which employ in-
teresting applications, e.g., secure communication system
[21] and brain dynamic simulator [22], have been found to
be often cited as they employ chaotic behaviors even though
realizable by using very simple devices [19]. /erefore, their
fractional domain generalizations have been proposed in
many literatures [23–25]. Unfortunately, the dimensional
consistency [26], which is often cited in many recent studies
on the fractional domain linear circuit generalizations
[27–29], has been neglected.

By this motivation, we perform the fractional domain
generalization of Chua’s chaotic circuit in this work by also
considering such formerly ignored dimensional consistency.
Similar to [23], the original simplest Chua’s chaotic circuit
[20], which is composed of only three electrical components,
i.e., capacitor, inductor, and memristor, has been consid-
ered. In addition, the novel simplest chaotic circuit proposed
by Jin et.al. [30], which can be thought of as the parallel
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structured counterpart of Chua’s simplest chaotic circuit,
has also been considered. /e analyses of the generalized
circuits have been performed based on Jumarie’s modified
Riemann–Liouville fractional derivative [31] and nonlinear
transformation [32] where the Lyapunov exponents and
dimensions have also been calculated. Such derivative has
been chosen despite the fact that there exist recent fractional
derivatives, e.g., Caputo and Fabrizio [33] and Atangana and
Baleanu fractional derivatives [34], because these new de-
rivatives have been found to be controversial. As an example,
it has been stated in [35] that these nonsingular kernel
fractional derivatives are actually not derivatives. Moreover,
they are also less accurate than the conventional fractional
derivative in practice [36].

We have found that the dimensional consistency
awareness significantly alters the dynamic; thus, the chaotic
behavior of the fractional domain Chua’s circuit from that of
the previous dimensional consistency ignored the coun-
terpart [23]. /is is because different Lyapunov exponents
and dimension can be obtained. /e conditions for both
fractional domain circuits which cease to be chaotic have
also been determined where such condition of Chua’s study
is different from that of the previous work. /is is because
the time dimensionalconsistency has been included. /e

dynamical analyses of these circuits including Hopf bifur-
cation analyses have also been performed where their
conditions for being nonchaotic have been verified, and it
has been found that both circuits have undergone Hopf
bifurcation through their equilibrium points. In addition,
their emulators have also been realized.

In the following section, overview of the modified
Riemann–Liouville fractional derivative will be briefly given
followed by the introduction of the simplest Chua’s chaotic
circuit and the novel simplest one in Sections 3 and 4. /e
proposed fractional domain generalizations of the circuit
will be shown in Section 5 where the corresponding dy-
namical analysis will also be presented. Finally, the con-
clusion will be drawn in Section 6.

2. Overview of the Modified Riemann–Liouville
Fractional Derivative

In 2006, Jumarie proposed a modified version of Rie-
mann–Liouville fractional derivative [31]. /e proposed
derivative can be mathematically defined as follows [31, 32].

Definition 1. Let f(t) be arbitrary function of t where t ∈ R
and 0≤ α≤1 where α ∈ R, Dα

t f(t) can be given by

D
α
t f(t) �

1
Γ(− α)


t

0
(t − η)

− α− 1
[f(η) − f(0)]dη, α< 0;

1
Γ(1 − α)

d
dt


t

0
(t − η)

− α
[f(η) − f(0)]dη, 0< α< 1;

fn(t)( 
(α− n)

, n≤ α≤ n + 1, n≥ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where Dα
t stands for the fractional derivative operator of

order α with respected to t. Obviously, the modified Rie-
mann–Liouville fractional derivative obeys fundamental
rules of conventional calculus, e.g., chain rule and product
rule [32]. /e Laplace transformation of this modified
fractional derivative depends on α. As an example,
L[Dα

t f(t)] when 1< α≤ 2 can be given by
L[Dα

t f(t)] � sαL[f(t)] − sα− 1f(0) − sα− 2f′(0)[31].

3. The Simplest Chua’s Chaotic Circuit

In 2010, Muthuswamy and Chua proposed a chaotic circuit
which was composed of merely three circuit elements, i.e., a
capacitor, an inductor, and a memristor [20], connected in a
series fashion. /e proposed circuit has been found to be the
simplest one among Chua’s family of chaotic circuits. It is
even simpler than its predecessor as proposed by Barboza and
Chua in 2008 [19] which composes of four elements, i.e., two
capacitors, an inductor, and a nonlinear resistor. /erefore, it
has been found to be of interest. /e schematic diagram of
simplest Chua’s chaotic circuit is depicted in Figure 1.

Moreover, it has been assumed that the memristor
employs the following state equation and memristance:

d
dt

x(t) � − Ax(t) − iM(t)x(t) + iM(t),

M x(t) � B(x(t))
2

− 1 ,

(2)

where x(t), M(x(t)), A, and B denote the state variable, the
memristance, and the memristor’s parameters, respectively.
Moreover, iM(t) stands for the memristor’s current.

As a result, the following model of the simplest Chua’s
chaotic circuit can be obtained after performing a rigorous
circuit analysis:

d
dt

x(t) � − Ax(t) + iL(t)x(t) − iL(t),

d
dt

iL(t) � −
1
L

B (x(t))
2

− 1 iL(t) + vC(t) ,

d
dt

vC(t) �
iL(t)

C
,

(3)
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where C, L, iL(t), and vC(t) denote the capacitance value,
inductance value, current flowing through the inductor, and
voltage drop across the capacitor, respectively. Note also that
iL(t)� iC(t)� − iM(t). Before proceeding further, it should be
mentioned here that the simplest Chua’s chaotic circuit
model exhibits the chaotic behaviors if and only if certain
conditions on parameter values, e.g., A� 0.2A, B� 1.7Ω,
L� 3.3H, and C� 1F, have been met. Otherwise, other be-
haviors such as periodic and quasiperiodic will be en-
countered instead.

4. The Novel Simplest Chaotic Circuit

Later, Jin et.al. proposed a novel simplest chaotic circuit in
2018 [30]. Unlike that of Chua, this circuit is composed of a
capacitor, an inductor, and a memristor connected in a
parallel fashion as depicted in Figure 2; thus, it can be
thought of as the parallel structured counterpart of the
simplest Chua’s circuit.

According to [30], the memristor employs the following
state equation:

d
dt

x(t) � a1x(t) + a3x
3
(t) + b1vm(t) + c11vm(t)x(t),

(4)

W(x(t)) � k x
2
(t) − x(t) − 1 , (5)

where a1, a3, b1, c11, and vm(t) are the memristor parameters
and voltage. In addition, W(x(t)) stands for the mem-
ductance of the memristor [30].

Based on (3) and (4), the following model of the novel
simplest chaotic circuit can be obtained:

d
dt

vC(t) � −
1
C

k x
2
(t) − x(t) − 1 vC(t) + iL(t) ,

d
dt

iL(t) �
1
L

vC(t),

d
dt

x(t) � a1x(t) + a3x
3
(t) + b1vC(t) + c11vC(t)x(t).

(6)

Note that vL(t) � vC(t) �E. Similar to Chua’s circuit,
this novel circuit also exhibits chaotic behaviors if and only

if certain conditions on parameter values have been met.
Moreover, certain condition on the initial values must have
been satisfied as well for obtaining the chaotic behavior
[30].

5. The Fractional Domain Generalization

5.1. �e Simplest Chua’s Circuit. For generalizing the sim-
plest Chua’s chaotic circuit in the fractional domain, its
conventional electrical circuit components, i.e., capacitor,
inductor, and memristor, must be replaced by the fractional
ones, i.e., fractional capacitor, fractional inductor, and
fractional memristor, which can be emulated by simply
replacing the conventional capacitor of the memristor
emulator [20] by the fractional one. Mathematically, this is
to replace all conventional derivatives in (3) by the fractional
domain counterparts. In [23], such replacement has been
directly performed without any awareness of the dimen-
sional consistency as the time dimension of Dα

t is sec
− α while

that of (d/dt) is sec− 1. Moreover, sec− α is not physically
measurable unlike sec− 1. As a result, the following model of
the fractional domain generalized simplest Chua’s chaotic
circuit can be obtained [23]:

D
α
t x(t) � − Ax(t) + iL(t)x(t) − iL(t),

D
α
t iL(t) � −

1
L

B (x(t))
2

− 1 iL(t) + vC(t) ,

D
α
t vC(t) �

iL(t)

C
,

(7)

where 0≤ α≤1 and iL(t)� iC(t)� − iM(t). Obviously, (7) is
simply (3) with fractional derivatives.

However, this is not the case for this research as the
dimensional consistency has been concerned unlike those
previous works. For achieving the dimensional consistency,
the time dimensions of (d/dt) and the generalized fractional
derivative must be consistent which means that both of them
must be given by the physically measurable sec− 1. /erefore,
the following operation must be used:

d
dt
⟶

1
σ1− αD

α
t , (8)

where σ denotes the fractional time component or the
cosmic time [26]. Note that σ > 0 always for preventing
singularity. In addition, the introduction of σ scales only the
Laplace transformed derivative term where the frequency
scaling scales all complex frequency variables.

CML

iL(t) iM(t) iC(t)

+
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–

+
vM(t)

–
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–

Figure 2: /e novel simplest chaotic circuit [30].
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Figure 1: /e simplest Chua’s chaotic circuit [20].
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Since the dimension of σ is sec, that of (1/σ1− α)Dα
t is also

sec as the dimension of Dα
t is sec− α as stated above.

/erefore, the dimensions of (d/dt) and generalized frac-
tional derivative, i.e., (1/σ1− α)Dα

t , are now consistent. As a
result, the dimensional consistency of the generalized
fractional domainmodel can be now achieved. Note also that
(8) which has been adopted in those previous works on the
fractional domain generalization of linear circuit models has
been found to be suitable for our work since the assumed
modified Riemann–Liouville fractional derivative employs a
power law kernel as can be seen from (1). By using (8), we
have

1
σ1− αD

α
t x(t) � − Ax(t) + iL(t)x(t) − iL(t),

1
σ1− αD

α
t iL(t) � −

1
L

B (x(t))
2

− 1 iL(t) + vC(t) ,

1
σ1− αD

α
t vC(t) �

iL(t)

C
,

(9)

where 0< α≤ 1 and iL(t)� iC(t)� − iM(t).
After some rearrangement, we obtain

D
α
t x(t) � − Aα[x(t) + u(t)x(t) − u(t)],

D
α
t u(t) � −

1
Lα

B (x(t))
2

− 1 u(t) + v(t) ,

D
α
t v(t) �

u(t)

Cα
,

(10)

where Aα � (A/σα− 1), Cα � Cσα− 1, Lα � Lσα− 1,
u(t) � (iL(t)/A), and v(t) � (vC(t)/A). Note also that Cα
and Lα are generally known as the pseudocapacitance [37] of
the fractional capacitor and the inductivity [38] of the
fractional inductor, respectively. Obviously, (10), which is
resulted by the dimensional consistency aware generaliza-
tion, is significantly different from (7) as it is not merely (3)
with fractional derivatives.

By some mathematical manipulation, (11) can be re-
written in a matrix-vector format as

D
α
t x(t) � A(x(t), t)x(t), (11)

where

x(t) �

x(t)

u(t)

v(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A(x(t), t) �

− Aα − Aα(x(t) − 1) 0

0 −
B

Lα
(x(t))

2
− 1  −

1
Lα

0
1

Cα
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(12)

In this work, the fractional derivative has been inter-
preted in the modified Riemann–Liouville sense as given by
(1); thus, we have

x(t) �
1
Γ(1 − α)


t

0
(t − τ)

− α− 1
[A(x(τ), τ)x(τ) − A(x(0), 0)x(0)]dτ.

(13)

For analyzing the generalized fractional dimensional
consistency aware simplest Chua’s chaotic circuit via sim-
ulations, its model given by (11) must be solved in a nu-
merical manner. In order to do so, we apply the nonlinear
transformation [32] to (13). As a result, we have

d
dξ

X(ξ) � A(X(ξ), ξ)X(ξ), (14)

i.e.,

X(ξ) � X(0) + 
ξ

0
A(X(z), z)X(z)dz, (15)

where

X(ξ) �

X(ξ)

U(ξ)

V(ξ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A(X(ξ), ξ) �

− Aα − Aα(X(ξ) − 1) 0

0 −
B

Lα
X(ξ)

2
− 1  −

1
Lα

0
1

Cα
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(16)

Note also that x(t) � X(ξ) where ξ � (tα/Γ(1 + α)) [32].
At this point, it can be seen that (11) has been transformed to
(14). /erefore, the solution of (11) can be conveniently
obtained by solving (14) and keeping the above relationships
between x(t) and X(ξ) in mind. Here, we let A� 0.2A,
B� 1.7Ω, L� 3.3H, and C� 1F similar to [20]. We also
assume that α� 0.9, σ � 1 sec,X(0)� 0.1,U(0)� 0, andV(0)�

0.1Ω and numerically solve (14) with MATHEMATICA
with the above relationship between ξ and t in mind. As a
result, the phase portraits of x(t), iL(t), and vC(t) can be
simulated by also keeping in mind that iL(t) � Au(t) and
vC(t) � Av(t) as depicted in Figures 3–5, where the strange
attractors, which refers to the chaotic behaviors, can be
observed.

For the quantitative analysis, we evaluate the corre-
sponding Lyapunov exponents and Lyapunov dimension
(DL) by employing the following definition.

Definition 2. For any modified Riemann–Liouville frac-
tional derivative-based fractional order dynamical system
defined by
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D
α
t x(t) � g(x(t)), (17)

where

x(t) � x1(t) x2(t) . . . xN(t) 
T
,

g(x(t)) �

g1 x1(t), x2(t), . . . , xN(t)( 

g2 x1(t), x2(t), . . . , xN(t)( 

⋮

gN x1(t), x2(t), . . . , xN(t)( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(18)

its jth Lyapunov exponent (λj) can be found as

λj � lim
ξ⟶∞

1
ξ
ln

uj(ξ)
�����

�����

uj(0)
�����

�����

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (19)

where {j} = {1, 2, . . ., N} and uj(ξ) stands for the jth tangent
vector of the system’s trajectory in a ξ domainN dimensional
space defined by (X1(ξ), X2(ξ), . . ., XN(ξ)). Note also that
Xj(ξ) � xj(t), ‖‖ denotes the Euclidian norm operator, and
uj(ξ) can be obtained by simultaneously solving the non-
linear transformed of (17) and its variational equation.

Obviously, Definition 2 states that all λj’s and DL of the
modified Riemann–Liouville fractional derivative based sys-
tem can be determined in a similar manner to that of the
conventional integer order system after a nonlinear trans-
formation. As a result, it has been found by using (14), the
algorithm proposed by Sandri [39] and MATHEMATICA,
that λ1 = 0.0473804, λ2 = − 0.0255304, and λ3 = − 0.550074.
Since λ1> 0 and λ1 + λ2 + λ3 = − 0.528224 which is less than 0,
both expansion in one direction and contracting volumes in
the phase space of the attractor that indicate the chaotic
behavior. We have also found that the contraction outweighs
the expansion as λ1 + λ2 + λ3< 0; therefore, our system is
dissipative. Moreover, it has been found that DL= 2.03972
which is a fractional number. /erefore, the manifold in the
phase space is a strange attractor which indicates the chaotic
behavior.

In order to demonstrate the significance of time di-
mensional consistency awareness, we compare our
quantitative analysis results to their dimensional con-
sistency ignored counterparts analyzed by using (7). For
ceteris paribus and the applicability of Definition 2 thus
Sandri’s algorithm, all fractional derivative terms of (7)
have also been defined in the modified Riemann–Liou-
ville sense, unlike [23] in which the Caputo fractional
derivative has been adopted. Moreover, the similar pa-
rameters except σ have been used. As a result, we have
found that λ1 = 0.0202319, λ2 = − 0.000902803,
λ3 = − 0.437888, i.e., λ1 + λ2 + λ3 = − 0.418559, and
DL = 2.04414. /ese Lyapunov exponents and DL are
significantly different from those of the dimensional
consistency aware scenario. /erefore, it can be seen that
the fractional domain circuit employs different dynamic
thus different chaotic behavior when the time dimen-
sional consistency has been concerned. /is is because
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Figure 3: iL(t) vs x(t) (Chua’s circuit).
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Figure 4: vC(t) vs x(t) (Chua’s circuit).
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Figure 5: vC(t) vs iLt (Chua’s circuit).
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different amounts of expansion and contraction along
with the fractal dimension phase space manifolds of the
circuit can be obtained. It can also be seen that the di-
mensional consistency included the fractional circuit
which became more dissipative than its dimensional
consistency neglected predecessor as the latter employs
lower λ1 + λ2 + λ3. Also, unlike the previous dimensional
consistency ignored circuit which is ceased to be chaotic
if α< 0.715 [23], a different condition on α can be ob-
tained when the dimensional consistency is concerned.
For illustration, we derive such condition that our di-
mensional consistency aware circuit ceases to be chaotic
based on the same parameters as those of [23]. Firstly, the
Jacobian matrix at equilibrium of the circuit’s dynamical
equation must be formulated by using the following
definition.

Definition 3. For any fractional order dynamical system, its
Jacobian matrix at arbitrary equilibrium point given by E �

(x1E, x2E, . . . , xNE) (JE) can be defined as

JE �

zg1
zx1

zg1
zx2

. . .
zg1
zxN

zg2
zx1

zg2
zx2

. . .
zg2
zxN

zg3
zx1

zg3
zx2

. . .
zg3
zxN

zg4
zx1

zg4
zx2

. . .
zg4
zxN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


E

. (20)

Since this circuit has only one equilibrium point which
can be given in terms of 3-tuples, i.e., (x(t), u(t), v(t)), by
E� (0, 0, 0), the resulting JE can be obtained as follows:

JE �

− Aα Aα 0

0
B

Lα

− 1
Lα

0
1

Cα
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

After obtaining JE, the characteristic equation can be
determined by using the following corollary.

Corollary 1. For arbitrary dynamical system, its charac-
teristic equation can be given by

det lI − JE  � 0, (22)

where l and I denote the eigenvalue symbol and the identity
matrix.

As a result, the characteristic equation can be obtained
based on (22) as

det

l + Aα − Aα 0

0
l − B

Lα

1
Lα

0
− 1
Cα

l

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 0, (23)

which yields

l1 � − Aα,

l2 �
B

2Lα
+ j

�������������

4LαCα − BCα( 
2



LαCα
,

l3 �
B

2Lα
− j

�������������

4LαCα − BCα( 
2



LαCα
.

(24)

For obtaining the chaotic behavior, E must be a saddle
point of index 2 which generates the chaos in any three-
dimensional system [40]. /us, it can be seen from (24)
that the following equation [41]

α≤
2
π
tan− 1

�������������

4LαCα − BCα( 
2



BCα

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦, (25)

must be satisfied for our circuit ceases to be chaotic. /is is
because the stable region of the complex plane has been
enlarged so that it covers l1, l2, and l3; thus, E becomes locally
asymptotically stable. Based on the assumed parameters, we
have α≤ 0.690015 for our dimensional consistency aware
scenario which is different from the above condition of the
dimensional consistency ignored circuit.

Apart from satisfying (25), the circuit also ceases to be
chaotic if B≤ 0 because both formerly unstable complex
conjugate eigenvalues, i.e., l2 and l3l2 and l3, will be resided in
the stable region as Re[l2,3]≤ 0 regardless of α. Moreover, the
conditions on Lα and Cα with which the circuit ceases to be
chaotic can be obtained by using (24) as follows:

Lα ≥
B2Cα

4
1 + tan2

απ
2

  , (26)

Cα ≤
4Lα

B2 1 + tan2[απ/2]( )
, (27)

where α can be arbitrary. By satisfying either of these
conditions, E becomes locally asymptotically stable as both l2
and l3 will be moved to the stable region. /erefore, all
eigenvalues now reside in the stable region (as long as A> 0,
which yields Aα> 0, is satisfied, l1 will always be located on
the positive real axis of the complex plane) and the circuit
ceases to be chaotic. If we let A� 0.2A, B� 1.7Ω, α� 0.9, and
σ � 1 sec, (26) and (27) will become Lα ≥ 29.5238Hsecα− 1 for
C� 1F and Cα ≤ 0.111774 Fsecα− 1 for L� 3.3H, respectively.

In order to verify the above conditions and study the
dynamic of E which governs that of the circuit with respect
to the changes in circuit parameters, we formulate
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mi �
απ
2

− arg li 


, (28)

where {i} = {1, 2, 3}. It should be mentioned here that α, Lα,
and Cα have been chosen as the bifurcation parameters and
the effect of mi to the location of li which governs the system
dynamic is similar to that of the real part of li if li is an
eigenvalue of the integer system [42]. Since the plots of real
parts of eigenvalues with respect to bifurcation parameters
have been adopted for studying the dynamic of conventional
integer system in previous works [43, 44], the plots of mi can
be similarly used for studying the dynamic of the circuit
despite that it is of fractional order. By using (24) and (28),
we have

m1 �
α
2

− 1 π, (29)

m2,3 �
απ
2

− tan− 1

�������������

4LαCα − BCα( 
2



BCα

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦. (30)

As a result, the dynamics of m1 andm2,3 can be simulated
as follows.

It can be seen from Figures 6–8 that m1 < 0 always unlike
m2 and m3 depicted in Figures 9–11. /us, the circuit’s
stability is solely governed by l2 and l3 as l1 will always be in
the stable region of the complex plane. /e circuit becomes
asymptotically stable if and only if α< 0.690015,
Lα > 29.5238Hsecα− 1, and Cα < 0.111774 Fsecα− 1 have been
assured because m2,3 < 0 which implies that l2 and l3 are in
the stable region and can be observed. Otherwise, m2,3 > 0
which implies that l2 and l3 are in the unstable region; thus,
the circuit becomes unstable and can be seen instead. /e
circuit becomes marginally stable when either α � 0.690015,
Lα � 29.5238Hsecα− 1 or Cα � 0.111774 Fsecα− 1 has been
satisfied since m2,3 � 0 can be found. /is verifies (25)–(27)
as the circuit becomes nonchaotic in these scenarios. In
addition, we have found that the transversality condition is
established at α � 0.690015, Lα � 29.5238Hsecα− 1, and
Cα � 0.111774 Fsecα− 1 because

z

zα
m2,3

α�0.690015
�
π
2
≠ 0,

z

zLα
m2,3

Lα�29.5238
� − 0.00268232≠ 0,

z

zCα
m2,3

Cα�0.111774
� 0.708053≠ 0,

(31)

where m2,3 � 0 as stated above. Moreover, we have also
found that the real eigenvalue can be given by l1 = − 0.2 A/
secα− 1≠ 0 in these circumstances. As a result, the Hopf bi-
furcation condition for arbitrary three-dimensional frac-
tional order system [42] has been satisfied. /us, it can be
stated that the circuit’s stability switches and the circuit
undergo a Hopf bifurcation through E when either
α= 0.690015, Lα= 29.5238Hsecα− 1 or Cα= 0.111774 Fsecα− 1

has been satisfied. As an illustration, the phase portraits of
iL(t) and vC(t) with Lα= 29.5238Hsecα− 1 can be simulated

as depicted in Figure 12, where a limit cycle, which indicates
a periodic solution, can be observed. It should be mentioned
here that such Hopf bifurcation cannot occur when
α≠ 0.690015, Lα≠ 29.5238Hsecα− 1, and Cα≠ 0.111774 Fsecα− 1

despite the fact that l1 ≠ 0 is satisfied (since l1 = − 0.2A/secα− 1

is always based on the assumed parameter according to (24)).
/is is because m2,3 ≠ 0 as can be seen from Figures 7, 9, and
11.

Before proceeding further, it should be mentioned here
that our dimensional consistency aware fractional domain
Chua’s circuit cannot be realized by simply replacing the
capacitor, the inductor, and the memristor by the fractional
ones. /is is because (10) is not merely (3) with fractional
derivatives. However, (10) can be rewritten in terms of
fractional integrals as

x(t) � − AαJ
α
t [x(t) + u(t)x(t) − u(t)],

u(t) � −
1
Lβ

J
β
t B (x(t))

2
u(t) − u(t)  + v(t) ,

v(t) �
1

Cc

J
c
t u(t),

(32)

where Jαt , J
β
t , and J

c
t , respectively, denote the fractional

integral operators of order α, β, and c with respect to t. Note
that the order of the fractional derivative terms has been
allowed to be incommensurate for obtaining full degree of
freedom; thus, Lα and Cα must become Lβ and Cc, which can
be, respectively, given by Lβ � Lσβ− 1 and Cc � Cσc− 1, where
0< β≤ 1 and 0< c≤ 1 for maintaining the dimensional
consistency. By using (32), the emulator of our dimensional
consistency aware circuit can be obtained generically
without referring to any specific physical system as depicted
in Figure 13. Based on this generic emulator, the specific
circuit emulator can be obtained by using merely the shelf
components. An example of such circuit emulator is
depicted in Figure 14. Moreover, x(t), u(t), and v(t) are in
terms of voltages. Note also that this circuit emulates the
conventional simplest Chua’s chaotic circuit if all fractional
capacitors have been replaced by the conventional ones.
From Figure 14, it can be seen that the OPAMPs and
fractional capacitors have been used for realizing the frac-
tional integrators; AD633, which is off the shelf analog
voltage multiplier, has been adopted for performing mul-
tiplication and the OPAMP-based unity gain inverting
amplifiers have been used as the invertors. Here, we choose
TL084 as our OPAMP.

For realizing the fractional capacitors, we firstly ap-
proximate the impedance function of fractional capacitor
generally given by Zδ(s) � C− 1

δ s− δ where Cδ � Cσδ− 1 and
0< δ ≤ 1 as follows [45]:

C
− 1
δ s

− δ ≈ K + 
N

i�1

Li

s + Mi

 , (33)

where N can be arbitrary positive integer. /us, the circuit
that approximates the fractional capacitor which is solely
composed of resistors and capacitors which are off the shelf
components can be obtained as depicted in Figure 15, where
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R0 =K, Ri= Li/Mi, and Ci= 1/Li. It should be mentioned here
that K, Li’s, and Mi’s can be computed by using the method
of undetermined coefficients [45]. As a practical example, a
circuit that approximates a fractional capacitor with
Cδ= 1 μFsecδ− 1 and δ = 0.9 can be realized by assuming that
N= 3 as the RC approximated circuit with 3 R//C stages
composed ofR0 = 1MΩ, R1 = 62.84MΩ, R2 = 250 kΩ,
R3 = 2.5 kΩ, C1 = 1.23 μF, C2 = 1.835 μF and C3 = 1.1 μF. If we
let σ = 1 sec, A= 0.2A, L= 3.3H, C= 1F, B= 1.7S, x(0) = 0.1 V,
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Figure 6: m1 vs α.
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Figure 7: m1 vs Lα.
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Figure 9: m2,3 vs α.
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Figure 12: vC(t) vs iL(t) (Lα � 29.5238Hsecα− 1).
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x(t)u(t) × +

–1 

–AαJαt

(a)

u(t)x(t) B

x(t)

v(t)

–1

–1/Lβ×× + + Jβt

(b)

u(t) 1/Cγ v(t)Jγt

(c)

Figure 13: /e generic emulator of dimensional consistency aware fractional domain Chua’s circuit.

–

+
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+
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–
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–

+

r = 1000/B C2β = 0.001Cβ 
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–

+

100kΩ 
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1kΩ
v(t)

r = 1000/B

(b)

Figure 14: Continued.
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u(0) = 0V, v(0)= 0.1V, α= 0.8, and β= 0.95, c= 0.85, the
phase portraits of x(t), 0.2u(t), and 0.2v(t) can be simulated
by using PSPICE which has been adopted in many previous
works [40, 45] as depicted in Figures 16–18. Note that N= 7
has been assumed because the resulting approximated RC
circuit with suchN yields the results which are as accurate as
the 7th order Oustaloup approximation-based results [45].
/e parameter values of this circuit emulator can be sum-
marized in Table 1 where the OPAMP’s supply voltage (Vsup)
of ±15V has been adopted.

5.2. �e Novel Simplest Circuit. Now, the novel simplest
chaotic circuit will be considered. After the fractional do-
main generalization, we have

1
σ1− αD

α
t vC(t) � −

1
C

k x
2
(t) − x(t) − 1 vC(t) + iL(t) ,

1
σ1− αD

α
t iL(t) �

1
L

vC(t),

1
σ1− αD

α
t x(t) � a1x(t) + a3x

3
(t) + b1vC(t) + c11vC(t)x(t).

(34)

By defining a1α � a1σ1− α, a3α � a3σ1− α, b1α � b1σ1− α,
and c11α � c11σ1− α the following dimensional consistency
aware fractional domain model of the simplest paralleled
structured chaotic circuit can be obtained.

D
α
t vC(t) � −

1
Cα

k x
2
(t) − x(t) − 1 vC(t) + iL(t) ,

D
α
t iL(t) �

1
Lα

vC(t),

D
α
t x(t) � a1αx(t) + a3αx

3
(t) + b1αvC(t) + c11αvC(t)x(t).

(35)

After some rearrangement, the matrix vector formatted
of (35) can be given as follows:

D
α
t y(t) � B(y(t), t)y(t), (36)

where

+

C3γ = 0.001Cγ

v(t)
1kΩ

u(t)
–

–

+

100kΩ 

100kΩ 

(c)

Figure 14: An example of specific circuit implementation of the emulator depicted in Figure 13.

C1 C2 Cn

R0
R1 RnR2

Figure 15: /e RC circuit approximation of fractional capacitor [45].
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Figure 17: 0.2v(t) vs x(t).

10 Mathematical Problems in Engineering



y(t) �

vC(t)

iL(t)

x(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B(y(t), t) �

−
k

Cα
x
2
(t) − x(t) − 1  −

1
Cα

0

1
Lα

0 0

b1α + c11αx(t) 0 a1α + a3αx2(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(37)

Since the fractional derivative has been interpreted in the
modified Riemann–Liouville sense, we have

y(t) �
1
Γ(1 − α)


t

0
(t − τ)

− α− 1
[B(y(τ), τ)y(τ)

− B(y(0), 0)y(0)]dτ.

(38)

For solving (36) in a numerical manner, the nonlinear
transformation has also been applied. As a result, we have

d
dξ

Y(ξ) � B(Y(ξ), ξ)Y(ξ), (39)

i.e.,

Y(ξ) � Y(0) + 
ξ

0
B(Y(z), z)Y(z)dz, (40)

where

Y(ξ) �

VC(ξ)

IL(ξ)

X(ξ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B(Y(ξ), ξ) �

−
k

Cα
X

2
(ξ) − X(ξ) − 1  −

1
Cα

0

1
Lα

0 0

b1α + c11αX(ξ) 0 a1α + a3αX2(ξ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(41)

Note also that y(t) � Y(ξ). Similar to [30], we let
a1 � 1.8, a3 � − 3.9, b1 � 1.4, c11 � − 1.5, k� 1, C� 130mF,
L� 50mH, vC(0) � 0.1 V, iL(0)� 0.1A, and x(0)� 0.2. We
also assume that α� 0.9 and σ � 1 sec and numerically solve
(36). By using the obtained solutions and keeping the above
relationship between y(t) and Y(ξ) along with that of ξ and t
mentioned above in mind, the phase portraits of x(t), iL(t),
and vC(t) can be simulated as depicted in Figures 19–21,
where the strange attractors can be observed. In addition, we
have found that λ1 � 1.37332, λ2 � − 0.23593, λ3 � − 12.1655,
and DL � 2.09348. Since λ1> 0, λ1 + λ2 + λ3 � − 11.02811,
which is less than 0, and DL is a fractional number, a dis-
sipative chaotic behavior, which is even more dissipative
than Chua’s circuit analyzed in the previous section, can be
observed. /e Lyapunov exponents and dimensions of this
circuit and Chua’s circuit are summarized in Table 2.

Similar to the simplest Chua’s circuit considered in the
previous subsection, we also determine the condition on α in
which this novel simplest circuit ceased to be chaotic. Unlike
Chua’s circuit, which employs only one equilibrium point, the
novel simplest circuit employs three pointswhich can be given in
terms of (vC(t), iL(t), x(t)) as E1 � 0, 0, 0( ,
E2 � 0, 0,

���������
− (a1α/a3α)


( , and E3 � 0, 0, −(���������

− (a1α/a3α)


). Among these equilibrium points, only E2 will be
considered because such point implies that x(0)≥ 0 which
guarantees the chaotic behavior of the circuit as the local activity
of the memristive device can be assured [30]. As a result, the
Jacobian matrix at E2 can be given by following Definition 3 as

JE2
�

k

Cα

a1α

a3α
+

����

−
a1α

a3α



+ 1  −
1

Cα
0

1
Lα

0 0

b1α + c11α

����

−
a1α

a3α



0 − 2a1α

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (42)
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Figure 18: 0.2v(t) vs 0.2u(t).

Table 1: Parameter values of the circuit emulator depicted in
Figure 14.

Parameter Value
r 588Ω
C1α 5mFsecα− 1

C2β 3.3mFsecβ− 1

C3c 1mFsecc− 1

α 0.8
β 0.95
c 0.85
Vsupply ±15V
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Figure 19: iL(t) vs x(t) (novel circuit).
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Figure 20: vC(t) vs x(t) (novel circuit).
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Figure 21: vC(t) vs iL(t) (novel circuit).
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/erefore, the characteristic equation can be obtained by
following Corollary 1 as follows:

det

l −
k

Cα

a1α

a3α
+

����

−
a1α

a3α



+ 1 
1

Cα
0

−
1

Lα
l 0

− b1α − c11α

����

−
a1α

a3α



0 l + 2a1α

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 0, (43)

which yields

l1 � − 2a1α,

l2 �
k a1α + a3α( 

2a3αCα
+ j

ka1αLα +

�������������������������������������������

4a1αa3αCαLα + k a1α + a3α( Lα
�������
− a1α/a3α


− ka1αLα 

2


2 ������
a1αa3α

√
CαLα

,

l3 �
k a1α + a3α( 

2a3αCα
− j

ka1αLα +

�������������������������������������������

4a1αa3αCαLα + k a1α + a3α( Lα
�������
− a1α/a3α


− ka1αLα 

2


2 ������
a1αa3α

√
CαLα

.

(44)

By using (44), we have found that the novel simplest
chaotic circuit ceases to be chaotic if (a1α + a3α/2a3αα)≤ 0
has been satisfied. /is is because l2 and l3 will reside in the

stable region of the complex plane. Moreover, this circuit
also ceases to be chaotic if

α≤
2
π
tan− 1

−
4a2

3αLαCα − a2
1α + a1αa3α + a2

3α + 2 a1α + a3α( 
�������
− a1αa3α

√
 k2L2

α 
(1/2)

a1α + a3α +
�������
− a1αa3α

√
 kLα

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (45)

has been satisfied due to the aforementioned stable region
enlargement. Based on the assumed parameters, we have
found that α≤ 0.75317 must be satisfied for this novel circuit
ceases to be chaotic.

In addition, we have also found that satisfying either (46)
or (47) makes the novel circuit ceases to be chaotic despite

the fact that (45) has not been satisfied./is is because l2 and
l3 will be moved to the stable region. Here, we let a1 � 1.8,
a3 � − 3.9, b1 � 1.4, c11 � − 1.5, k� 1, σ � 1 sec, and α� 0.9;
therefore, (46) and (47) become Lα ≤ 8.58018mHsecα− 1 if
C� 130mF and Cα ≥ 757.56mFsecα− 1 if L� 50mH,
respectively.

Lα ≤
2a2

3α a2
1α + a1αa3α + a2

3α + 2 a3α − a1α( 
�������
− a1αa3α

√
+ a2

3α C(1 + cos[απ])

a2
1α + 3a1αa3α + a2

3α( 
2
k2

⎡⎣ ⎤⎦, (46)

Cα ≥
a2
1α + a1α + a3α(  a3α + 2 �������

− a1αa3α
√

  k2Lα

4a2
3αcos2[απ/2]

. (47)

Table 2: Lyapunov exponents and dimensions.

Circuit λ1 λ2 λ3 λ1 + λ2 + λ3 DL

Chua’s circuit 0.0473804 0.0255304 0.550074 − 0.528224 2.03972
Chua’s circuit (dimensional consistency ignored) 0.0202319 0.000902803 0.437888 − 0.418559 2.04414
Novel circuit 1.37332 − 0.23593 − 12.1655 − 11.02811 2.09348

Mathematical Problems in Engineering 13



At this point, we will study the dynamic of E2 and the
novel circuit and also verify the above conditions. For this
circuit, it has been found that m1 can also be given by (29)

according to (44); thus, the dynamic of m1 with respect to α
similar to that depicted in Figure 6 can be obtained. On the
other hand, m2,3 can be found as

m2,3 �
απ
2

− tan− 1
−

4a2
3αLαCα − a2

1α + a1αa3α + a2
3α + 2 a1α + a3α( 

�������
− a1αa3α

√
 k2L2

α 
(1/2)

a1α + a3α +
�������
− a1αa3α

√
 kLα

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦. (48)

As a result, the dynamics of m1 with respect to other
bifurcation parameters and those of m2,3 can be simulated
as depicted in Figures 22–26 which also imply that the
circuit’s stability is solely governed by l2 and l3. In this
case, the circuit becomes asymptotically stable when ei-
ther α< 0.75317, Lα < 8.58018Hsecα− 1 or
Cα > 757.56 Fsecα− 1 has been assured and vice versa and
become marginally stable when either α � 0.75317, Lα �

8.58018Hsecα− 1 or Cα � 757.56 Fsecα− 1 has been satisfied.
/is verifies (45)–(47) as the circuit becomes nonchaotic
in these scenarios. On the other hand, the real eigenvalue
can be given by l1 � − 3.6 A/secα− 1 ≠ 0 along the entire
ranges of bifurcation parameters because l1 is constant
with respect to these parameters as can be seen from (44).
If at least one of the above marginal stability conditions on
bifurcation parameters has been satisfied, we have m2,3 � 0
where

z

zα
m2,3

α�0.75317
�
π
2
≠ 0,

z

zLα
m2,3

Lα�8.58018×10− 3
� 9.22967≠ 0,

z

zCα
m2,3

Cα�757.56×10− 3
� − 0.104536≠ 0,

(49)

and as a result, the transversality condition has been
established; thus, the Hopf bifurcation condition has been
satisfied. /erefore, the stability switches and the circuit
undergoes a Hopf bifurcation through E2 when either
α � 0.75317, Lα � 8.58018Hsecα− 1 or Cα � 757.56 Fsecα− 1.
As an illustration, the phase portraits of iL(t) and vC(t) with
Cα � 757.56 Fsecα− 1 can be simulated as depicted in Fig-
ure 27 where a limit cycle can be obtained. Note also that
such bifurcation does not exist when α≠ 0.75317,
Lα ≠ 8.58018Hsecα− 1, and Cα ≠ 757.56 Fsecα− 1 despite the
fact that l1≠ 0. /is is because m2,3 ≠ 0 as can be seen from
Figures 22, 24, and 26.

For implementing the emulator of the fractional domain
simplest paralleled structured chaotic circuit, (35) must be
firstly rewritten in terms of fractional integration. Since we
let the order of the fractional derivative terms be incom-
mensurate, Lα and Cα become Lc and Cβ. We also define y(t)
= vC(t) and z(t) = iL(t). As a result, we have

x(t) � J
α
t a1αx(t) + a3αx

3
(t) + b1αy(t) + c11αy(t)x(t) ,

y(t) � −
1

Cβ
J
β
t k x

2
(t)y(t) − x(t)y(t) − y(t)  + z(t) ,

z(t) �
1
Lc

J
c
t y(t).

(50)

/erefore, the resulting generic emulator can be ob-
tained as depicted in Figure 28.

An example of circuit emulator implemented based on
such generic one is depicted in Figure 29 where x(t), y(t), and
z(t) in terms of voltages and C1α � 1mFsecα− 1 have been
assumed. In addition, NR1 and NR2 are floating negative
resistors because a3< 0 and c11< 0. /ese negative resistors
have been realized by using OTA which is off the shelf
component, by following [46], where the transconductances
of these OTAs have been given by gm1 � 0.001a3α and
gm2 � 0.001c11α. /e OPAMP-fractional capacitor-based
fractional integrators, unity gain inverting amplifier, and
AD633 multiplier have also been adopted. We also use
TL084 as our OPAMP and the aforementioned RC ap-
proximated circuit with N� 7 for realizing the fractional
capacitors. It should be mentioned here that this emulator
emulates the novel simplest paralleled structured chaotic
circuit when all fractional capacitors have been replaced by
the conventional ones. If we let σ � 1 sec, α� 0.8, β� 0.95,
c � 0.85, a1 � 1.8, a3 � − 3.9, b1 � 1.4, c11 � − 1.5, k� 1,
C� 130mF, L� 50mH, x(0)� 0.2V, y(0)� 0.1 V, and z(0)�

0.1V, the phase portraits of x(t), y(t), and z(t) can be
simulated by PSPICE as depicted in Figures 30–32. /e
circuit parameter values for realizing this emulator are
summarized in Table 3 (±15V DC supply voltage for each
OPAMP has also been assumed).

6. Conclusion

/e simplest Chua’s chaotic circuit and its novel parallel
structured counterpart have been generalized in the frac-
tional domain with the dimensional consistency awareness
for the first time in this work. /e analysis has been per-
formed where the chaotic behaviors can be observed. /e
conditions for both which cease to be chaotic have also been
determined. With these conditions, the behaviors of the
circuits can be controlled. We have found that the inclusion
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Figure 27: vC(t) vs iL(t) (Cα � 757.56 Fsecα− 1).
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Figure 28: /e generic emulator of the dimensional consistency aware simplest paralleled structured fractional domain chaotic circuit.
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Figure 29: Continued.
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of time dimensional consistency awareness significantly
affects the behaviors of the fractional domain circuit. /is is
because different Lyapunov exponent spectra/dimension
and condition for the circuit which cease to be chaotic can be
obtained when such consistency awareness has been taken
into account. /e dynamical analyses including Hopf

bifurcation analyses of these circuits have also been done
where their conditions for being nonchaotic have been
verified. It has been found that both circuits have undergone
Hopf bifurcations through their equilibrium. Moreover, the
their emulators have also been realized and simulated by
PSPICE. At this point, it can be seen that this work has been
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C3γ = 0.001Cγ 

z(t)
1 kΩ 

y(t)
–

+

100 kΩ 
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Figure 29: An example of specific circuit implementation of the emulator depicted in Figure 28.
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found to be beneficial to the analysis and design of fractional
chaotic circuit along with the related research areas.
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