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Crow search algorithm (CSA) is a new type of swarm intelligence optimization algorithm proposed by simulating the crows’
intelligent behavior of hiding and retrieving food. ,e algorithm has the characteristics of simple structure, few control pa-
rameters, and easy implementation. Like most optimization algorithms, the crow search algorithm also has the disadvantage of
slow convergence and easy fall into local optimum. ,erefore, a crow search algorithm based on improved flower pollination
algorithm (IFCSA) is proposed to solve these problems. First, the search ability of the algorithm is balanced by the reasonable
change of awareness probability, and then the convergence speed of the algorithm is improved. Second, when the leader finds
himself followed, the cross-pollination strategy with Cauchy mutation is introduced to avoid the blindness of individual location
update, thus improving the accuracy of the algorithm. Experiments on twenty benchmark problems and speed reducer design
were conducted to compare the performance of IFCSA with that of other algorithms. ,e results show that IFCSA has better
performance in function optimization and speed reducer design problem.

1. Introduction

In modern societies where global resources are increasingly
scarce, optimization has become one of the most important
and hottest research topics [1]. It is in the core process of
various engineering fields such as engineering, science,
energy, and computer. With the increasing complexity of
scientific and engineering problems, traditional mathe-
matical methods sometimes cannot solve them well.
,erefore, some scholars have proposed metaheuristic al-
gorithms, such as particle swarm optimization (PSO) [2], bat
algorithm (BA) [3], butterfly optimization algorithm (BOA)
[4], flower pollination algorithm (FPA) [5], pigeon inspired
optimization (PIO) [6], whale optimization algorithm
(WOA) [7], gray wolf optimizer (GWO) [8], and teaching-
learning-based optimization (TLBO) [9]. Compared with
traditional algorithms, these intelligent algorithms can make
up for the defects of the traditional algorithm in the problem
of great complexity. However, they still have the problems of
low solution accuracy and slow convergence speed.

Crow search algorithm (CSA) [10] is a new swarm in-
telligence optimization algorithm proposed by Askarzadeh
in 2016. ,e algorithm has the advantages of simple
structure, fewer control parameters, and easy implementa-
tion. Now it has been widely used to solve various practical
optimization problems in chemical engineering and QSAR
[11], image processing [12], feature selection [13], neural
network and support vector machine [14], aircraft main-
tenance inspection [15], wireless sensor network [16], and
other major engineering fields. However, like most opti-
mization algorithms, crow search algorithm itself also has
the defects of slow convergence speed and easy fall into local
optimum.

In view of the shortcomings of crow search algorithm,
many scholars have put forward their own improvement
schemes, which can be roughly divided into two categories.
One is to analyze and improve the parameters of the
standard crow search algorithm, and the other is to inte-
grate it with other intelligent algorithms to make up for the
shortcomings of crow search algorithm. For the first kind of
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improvement, Wu et al. proposed a crow search algorithm
incorporated in Levy flight (LFCSA) [17] and applied it to
update the finite element model. ,e chaotic sequence was
used to initialize the population, so that the particles were
evenly distributed in the solution space and the diversity of
the population was increased.,erefore, Liu et al. proposed
the chaotic binary crow search algorithm (CBCSA) [18] for
the discrete space, using it to solve the problem of {0–1}
knapsack. By introducing adaptive step size, Mohammdi
and Abdi proposed self-adaptive step size crow search
algorithm (MCSA) [19] and applied it to nonconvex
economic load scheduling. For the second kind of im-
provement, Xiao et al. [20] combined CSA with sine cosine
algorithm to solve pressure vessel design problem. Arora
et al. [21] combined the crow search algorithm with the
gray Wolf algorithm and used it to solve the problem of
feature selection.

All the above improved algorithms have improved the
performance of the algorithm to some extent, but some
improvements were only optimized for a certain strategy in
the crow update mechanism or simply mixed optimization
with other optimization algorithms. For example, LFCSA
uses Levy flight strategy, CBCSA takes advantage of the
particularity of chaos mapping, and MCSA introduces self-
adaptive flight step. Although these improved strategies can
make the algorithm jump out of local optimum better, they
cannot make up for the slow convergence speed. Other
improvements are simply hybrid optimizations with other
algorithms. ,is kind of improvement scheme ignores the
limitations of the fusion algorithm itself, which also makes
the optimization ability of the improved algorithm have
some defects. In response to these shortcomings, this article
mainly improves the standard crow search algorithm from
three aspects: increasing population diversity, self-adaptive
awareness probability, and improved cross-pollination
mechanism of flower pollination algorithm. ,e population
is initialized by tent chaotic sequence so that the particles are
evenly distributed in the search space, and the increase of
population diversity enables the algorithm to better jump
out of the local optimum and accelerate the convergence
speed. ,e next strategies are self-adaptive awareness
probability and improved cross-pollination mechanism. It is
beneficial to balance the global search ability and local search
ability of the crow search algorithm and avoid the blindness
of updating the random search position of crows, thus
improving the solution accuracy and convergence speed of
the algorithm.

In Section 2 of the paper, we will review the crow search
algorithm and the flower pollination algorithm. In Section 3,
the improved strategy will be described to produce an
improved crow search algorithm. In Section 4, the proposed
algorithm will be tested by using 20 well-known benchmark
functions and applied to a practical engineering problem.
Finally, the conclusion is given in Section 5.

2. Overview of Crow Search Algorithm and
Flower Pollination Algorithm

2.1. Crow Search Algorithm. ,e crow is a very clever bird,
which can remember the face of human beings and warn its
kind when encountering danger. One of the most obvious
characteristics of the cleverness of crows is their ability to
hide food and remember the location of the hidden food. At
the same time, they will follow each other to get a better
source of food, but when the crow finds itself followed by
other crows, it will try to change the hidden place of its food
to avoid food theft. Based on the living habits of crows, the
crow search algorithm has the following principles:

(1) Crows are social animals
(2) Crows can remember the location of the hidden food
(3) Crows will follow each other and steal others’ food
(4) Crows do their best to protect their food from being

stolen

Based on the four principles, the basic process of CSA is
described as follows:

Step 1: initializing the parameters of CSA. ,ese in-
clude population size (n), maximum iteration number
(Maxsize), flight step size (fl), and awareness proba-
bility (AP).
Step 2: initializing the individual crows and memory
matrix. n crows are generated in the search space of
d − dimension, and each crow xi � (Xi,1, Xi,2, . . . , Xi,d)

represents a feasible solution of a problem. Since the
initial population has no experience, it is assumed that
the initial memory matrix is the initial position.
Step 3: evaluating the quality of each crow according to
the fitness function.
Step 4: generating a new location for each crow in the
d − dimensional search space. Assuming that crow i

randomly follows a crow (for example, crow j), in order
to find the place of the hidden food of crow j, the
position update of crow i can be divided into the
following two situations:

Case 1: crow j does not find that crow i is following it.
In this case, the position update formula of crow i is

x
i,iter+1

� x
i,iter

+ ri + fl
i.iter

× m
i,iter

− x
i,iter

 . (1)

Case 2: crow j finds that crow i is following it, and
crow j will take crow i to a random position.

To sum up, the position update formula of crow i is

x
i,iter+1

�
x

i,iter
+ ri × fl

i,iter
× m

i,iter
− x

i,iter
 , rj ≥AP,

a randomposition, otherwise.

⎧⎨

⎩

(2)
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Here, ri, rj are random numbers that obey the uniform
distribution of [0, 1]. AP represents the perception
probability. When the AP is smaller, the probability of
occurrence of Case 1 is greater, and the algorithm tends
to search locally. When the AP is larger, the probability
of finding in Case 2 is greater, and the algorithm tends
to search globally. fli.iter is the flight step length of crow
i. Whenfli.iter < 1, the next position of crow i is between
xi,iter and mj,iter, as shown in Figure 1. When fli.iter > 1,
the next position of crow i is outside the line between
xi,iter and mj,iter, as shown in Figure 2.,erefore, fl will
affect the search ability of the algorithm. If the value is
too large, it tends to search globally, and the algorithm
has poor convergence. If the value is too small, it is easy
to fall into the local optimum.
Step 5: checking whether the new position of each crow
is feasible. If possible, change the crow’s position.
Otherwise, it is not updated.
Step 6: calculating the fitness value of the new position
of each crow.
Step 7: updating the memory matrix of each crow.

m
i,iter+1

�
x

i,iter+1
, f x

i.iter+1
  is better than f m

i.iter
 ,

x
i,iter

, otherwise.

⎧⎪⎨

⎪⎩

(3)

Step 8: repeating Steps 4–7 until the termination
condition is reached.

2.2. Flower Pollination Algorithm. Flower pollination algo-
rithm is a new metaheuristic swarm intelligence optimiza-
tion algorithm proposed by Yang, a scholar from Cambridge
University, UK, in 2012. ,e algorithm simulates the two
processes of cross-pollination and self-pollination of flow-
ering plants, which corresponds to the global search
mechanism and local search mechanism in the algorithm.
Because the algorithm has few parameters, simple structure,
and easy implementation, it has widely attracted the interest
of other scholars.

In order to simplify the problem and make the algorithm
more efficient, considering that there is only one solution to
the optimization problem, Yang assumes that each flowering
plant can only produce one flower and each flower can only
produce one pollen gamete. Flower pollination process can
be summarized as the following four rules:

(1) Biological cross-pollination is considered a global
pollination process in which pollen carriers carry
pollen on Levy flights

(2) Abiotic self-pollination is regarded as a local polli-
nation process

(3) ,e reproduction probability is the constancy of
flowers, and the value of reproduction probability is
proportional to the similarity of two flowers

(4) ,e transition probability p ∈ [0, 1] is used to
control the transition between local pollination and
global pollination

,rough the above rules, the following mathematical
model is established.

Definition 1. In the process of global pollination, the for-
mula of pollen position update is

x
i,iter+1

� x
i,iter

+ L × x
i,iter

− gbest . (4)

Here, xi,iter+1 and xi,iter, respectively, represent the so-
lution of the iter + 1 generation and the iter generation;
gbest is the global optimal solution in an iteration process;
and L is the step size, which obeys the Levy distribution. ,e
calculation formula of L is as follows:

L ∼
λΓ(λ)sin(πλ/2)

π
.
1

S
1+λ S≫ S0≫ 0( . (5)

Here, Γ(λ) is the standard gamma function; λ � 1.5.

Definition 2. ,e position update formula for the partial
pollination stage is as follows:

x
i,iter+1

� x
i,iter

+ ε × x
j,iter

− x
k,iter

 . (6)

Here, xj,iter and xk,iter randomly select solutions different
from xi,iter in the population, and ε is the probability of

Crow i

xi,iter

x i,iter+1 = x i,iter + ri  × fl i,iter + (m j,iter – x i,iter)

mj,iter

Crow j

Origin

Next position of crow i

Figure 1: Schematic diagram for updating the position of crow i

when fl< 1.

Crow i

xi,iter

x i,iter+1 = x i,iter + ri  × fl i,iter

× (m j,iter – x i,iter)

mj,iter

Crow j

Origin

Next position of crow i

Figure 2: Schematic diagram for updating the position of crow i

when fl> 1.
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reproduction, which is a random number subject to the
uniform distribution of [0, 1].

Definition 3. ,e transition between global pollination and
local pollination is controlled by the value of transition
probability p ∈ [0, 1]. A large number of simulation ex-
periments show that the algorithm can obtain the best
optimization performance when p � 0.8.

3. Crow Search Algorithm Based on Improved
Flower Pollination Algorithm (IFCSA)

In order to improve the convergence speed and accuracy of
the algorithm, two strategies are used, namely, self-adaptive
awareness probability and improved cross-pollination
mechanism of flower pollination algorithm. ,e following is
a detailed description of these three strategies.

3.1. Self-Adaptive Awareness Probability. ,e awareness
probability has a greater impact on the performance of the
standard crow search algorithm. When the perception
probability AP is larger, the individuals in the population are
more inclined to search globally, but it is not conducive to
improving the convergence accuracy. When the perception
probability AP is smaller, the individuals in the population
are more inclined to search locally and easily fall into the
local optimum. However, when AP is a fixed value, the
global search and local search capabilities cannot be bal-
anced. In response to the problem, the inverse incomplete Γ
function is introduced to make the awareness probability
drop nonlinearly, so as to balance the global search and local
search capabilities. ,e formula is as follows:

AP � 1÷ AP1 ×
AP2 − AP1

λ
  × Γ λ, 1 −

iter
Maxiter

    × 100 .

(7)

Here, AP2 and AP1 are, respectively, the upper and lower
limits of AP; λ is a random variable; and Maxiter is the
maximum number of iterations.

Figure 3 shows the decreasing curve of nonlinear
awareness probability AP when AP1 � 0.05, AP2 � 0.25, and
λ � 0.01. It can be seen from Figure 3 that the AP is large at
the beginning of iteration, which makes the algorithm focus
on global search. With the iterative process, the AP value
decreases gradually, which makes the algorithm tend to
search locally, the population concentrate quickly, and the
convergence process improve. Nonlinear decreasing
awareness probability can better balance global search and
local search, thus improving the performance of the
algorithm.

3.2. Based on Improved Cross-Pollination. From the analysis
of (2), it can be seen that when the leader finds that he is
being followed, the position of the individual is randomly
generated. Although this location update strategy can pre-
vent the algorithm from falling into the local optimum to a
certain extent, it also reduces the convergence speed and

accuracy of the algorithm. For this reason, this article solves
this problem by introducing improved cross-pollination.

Firstly, it is assumed that all crows obtain the global
optimal position based on their own experience and
memory as thieves. Secondly, the idea of cross-pollination
is used to effectively guide the crow individuals to fly close
to the optimal individual to reach the optimal value.
However, the cross-pollination strategy itself has some
limitations. In the later stage of iteration, it will lead to the
decrease of population diversity, which will result in
falling into local optimum and difficulty in jumping out.
Introducing the cross-pollination strategy of Cauchy
mutation proposed by Zhang and Gao [22], the formula is
as follows:

x
i,iter+1

� gbest + x
i.iter

× C(0, 1). (8)

Here, gbest is the optimal value and C(0, 1) is Cauchy
distribution.

To sum up, the crow position update formula is as
follows:

x
i,iter+1

�
x

i,iter
+ ri × fl

i.iter
× m

i,iter
− x

i,iter
 , rj ≥AP,

gbest + x
i.iter

× C(0, 1), otherwise.

⎧⎪⎨

⎪⎩

(9)

3.3. Basic Flow of IFCSA. ,e pseudocode of the algorithm
(IFCSA), which is based on the improved flower pollination
algorithm, is shown in Figure 4.

4. Experimental Simulation and Result Analysis

4.1. ExperimentalParameter Settings. ,e IFCSA is validated
by comparing it with five famous optimization algorithms,
namely, BOA [4], SSA [23], GWO [8], CSA [10], and
MISCSA [24]. We used 20 well-known benchmark test
functions for validation.,e set of benchmark test functions
is explained in Tables 1∼3 . We used the most common
parameter settings that exist in the literature for the seven
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Figure 3: Decreasing curve of nonlinear awareness probability.
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Table 1: High-dimensional unimodal benchmark functions.

Benchmark function Dim Range fmin

f1 � 
n
i�1x

2
i 30 [−100, 100] 0

f2 � 
n
i�1|xi| + 

n
i�1 |xi| 30 [−10, 10] 0

f3 � max |xi|, 1≤ i≤ n  30 [−100, 100] 0
f4 � 

n
i�1(

i
j�1xj)

2 30 [−100, 100] 0
f5 � 

n
i�1ix

4
i + random[0, 1) 30 [−1.28, 1.28] 0

f6 � 106x2
1 + 

n
i�2x

2
i 30 [−100, 100] 0

f7 � 
n
i�110

6(i− 1)/n−1x2
i 30 [−100, 100] 0

Table 2: High-dimensional multimodal benchmark functions.

Benchmark function Dim Range fmin

f8 � 
n
i�1[x2

i − 10 cos(2πxi) + 10] 30 [−5.12, 5.12] 0

f9 � −20 exp(−0.2
���������
1/n

n
i�1x

2
i


) − exp(1/n

n
i�1cos(2πxi)) + 20 + e 30 [−32, 32] 0

f10 � 1/4000
n
i�1x

2
i − 

n
i�1 cos(xi/

�
i

√
) + 1 30 [−600, 600] 0

f11 � 
n
i�1|xi sin(xi) + 0.1xi| 30 [−10, 10] 0

f12 � 
n/4
i�1[(x4i− 3 + 10x4i− 2)

2 + 5(x4i− 1 − x4i)
2 + (x4i− 2 − 2x4i− 1)

4 + 10(x4i− 3 − x4i)
4] 30 [−4, 5] 0

f13 � sin2(πw1) + 
n−1
i�1 (wi − 1)

2
[1 + 10 sin2(πwi+)] + (wn − 1)

2
[1 + sin2(2πwn)],

wherewi � 1 + xi + 1/4, for all i � 1, 2, 1, . . . , n
30 [−10, 10] 0

f14 � 0.1 sin2(32πx1) + 
n

i�1(xi − 1)
2
[1 + sin2(3πxi + 1)] + (xn − 1)

2
[1 + sin2(2πxn)] 

+
n

i�1u(xi, 5, 100, 4)

u(xi, a, k, m) �

k(xi − a)
m

, xi > a

0, − a<xi < a

k(−xi − a)
m

, xi < a

⎧⎪⎨

⎪⎩

30 [−50, 50] 0

Table 3: Fixed-dimensional multimodal benchmark functions.

Benchmark function Dim Range fmin

f15 � 0.5 + sin2(
�����������
x2
1 + x2

2 + 0.5


)/(1.0 + 0.0001(x2
1 + x2

2))
2 2 [−100, 100] 0

f16 � (1.5 − x1 + x1x2)
2 + (2.25 − x1 + x1x

2
2)

2 + (2.625 − x1 + x1x
3
2)

2 2 [−4.5, 4.5] 0
f17 � 

11
i�1[aj − x1(b2i + bix2)/b2i + bix3 + x4]

2 4 [−5, 5] 0.00030
f18 � 2x2

1 − 1.05x4
1 + x6

1/6 + x1x2 + x2
2 2 [−5, 5] 0

f19 � (x2 − 5.1
4π2x

2
1 + 5

πx1 − 6)2 + 10(1 − 1/8π)cos x1 + 10 2 [−5, 5] 0.398

f20 � [1 + (x1 + x2 + 1)
2
(19 − 14x1 + 3x

2
1 − 14x2 + 6x1x2 + 3x

2
2)] ×

[30 + (2x1 − 3x2)
2
(18 − 32x1 + 12x

2
1 + 48x2 − 36x1x2 + 27x

2
2)]

2 [−2, 2] 3

Initialize the initial position

Calculate the AP

for iter = 1 : Maxiter
for i = 1 : n

if rj = AP
xi,iter+1 = xi,iter + ri × fli.iter × (mi,iter – xi,iter)

else
xi.iter+1 = gbest + xi.iter × C(0,1)

Check boundary
Evaluate the new position of crows
Update the memory matrix of each crow

endif
endfor

endfor

Figure 4: Pseudocode of the IFCSA.
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algorithms used in validation. ,e details about parameter
settings are explained in Table 4. For the sake of fairness, we
used a fixed population size for all algorithms: n � 50 in-
dividuals; all algorithms are executed in 30 independent
runs. All algorithms are implemented in MATLAB (version
R2020a) and executed on HP computer (Windows 10, Intel
Core i5-6300HQ, 2.3GHz, 8GB RAM). ,e number of it-
erations in each run for each algorithm equals 1000. ,e
experimental data obtained after running are shown in
Tables 5∼7, where Best, Worst, Mean, and Std represent the
optimal value, worst value, average value, and Std value
obtained by the algorithm independently running 30 times.
,e algorithm performance is ranked according to the ac-
curacy of the optimal value. ,e best results are formatted in
bold type.

4.2. Improved Strategy Effectiveness Analysis

4.2.1. Effectiveness Analysis of Self-Adaptive Awareness
Probability. ,e awareness probability is one of the decision
variables of the standard crow search algorithm, which has a
greater impact on the performance of the algorithm. In order
to verify whether the adaptive decreasing perceived prob-
ability can improve the convergence speed of the algorithm.
Six groups of benchmark test functions in Table 1–3 are
selected for comparative experiment. Among them, f1 and f2
are high-dimensional unimodal functions, f8 and f10 are
high-dimensional multimodal functions, and f14 and f16 are
fixed multimodal functions.

As can be seen from Figures 5–8, for f1, f2, f8, f10, and f14,
IFCSA with adaptive change awareness probability has
better convergence effect under the same number of itera-
tions. It can be seen from Figure 10 that, for function f16,
although the convergence effect of IFCSA with adaptively
changing awareness probability is worse than IFCSA
without adaptively changing perception probability, it can
find the theoretical optimal value, which is acceptable.

4.2.2. Effectiveness Analysis of the Cross-Pollination Strategy
with Cauchy Mutation. ,is sections aims to verify whether
the improved strategy can avoid the blindness of individual
location update and improve the accuracy and convergence
ability of the algorithm. At the same time, it aims to further
clarify that under the condition that the leader finds himself
followed, the performance of the algorithm under the cross-
pollination mechanism with Cauchy mutation is better than
that under the standard cross-pollination mechanism. ,e
standard crow search algorithm, the crow search algorithm
that introduces the standard cross-pollination strategy, and
the crow search algorithm that introduces the alienation
pollination strategy with Cauchy mutation are used for
comparison experiments on 20 benchmark functions. ,ey
were run independently 30 times, and the average value was
taken as the final criterion.

From the simulation results in Table 8, it can be seen that,
for most benchmark functions, the optimization perfor-
mance of the algorithm that introduces the standard cross-
pollination strategy is worse than that of the standard crow

search algorithm. In the benchmark function f16, the opti-
mization performance of the algorithm that introduces the
standard cross-pollination strategy is the best, but the
performance of the algorithm that introduces the cross-
pollination strategy with Cauchy mutation is also good,
which is acceptable. However, in the 20 benchmark func-
tions, the standard crow search algorithm introduces the
cross-pollination strategy with Cauchy mutation, the per-
formance of the algorithm is greatly improved, and the effect
is better than the introduction of the standard cross-polli-
nation strategy, except for the benchmark function f16. In
short, the crow search algorithm that introduces the cross-
pollination strategy with Cauchy mutation has better per-
formance in function optimization.

4.3. Comparative Experiment of Different Intelligent
Algorithms

4.3.1. High-Dimensional Unimodal Function Test Results.
It can be seen from the experimental results in Table 5 that the
optimization performance of IFCSA is better than that of the
other algorithms for most high-dimensional unimodal func-
tions. In the test function of f5, although the performance of
IFCSA is inferior to that of MISCSA, the accuracy obtained by
them is almost the same. In the other six test functions of f1, f2,
f3, f4, f6, f7, compared with other algorithms, the optimization
accuracy of IFCSA is improved to a certain extent. In addition,
the variance of IFCSA is lower than that of the other algo-
rithms, which indicates that IFCSA has good stability. In a
word, IFCSA can solve high-dimensional unimodal problems
well, which demonstrates its effectiveness and feasibility in
solving high-dimensional unimodal problems.

Figures 11–24 are the convergence curve graphs and
variance graphs of the algorithms of BOA [4], SSA [23],
GWO [8], CSA [10], MISCSA [24], and IFCSA for different
test functions. All convergence curves are drawn based on
the optimal values. Figures 13 and 21 show that GWO
converges faster than IFCSA in the middle of the iteration,
but GWO will fall into the local optimum, and IFCSA can
jump out of the local optimum to get a better solution. It can
be seen from Figures 11, 15, 17, and 23 that the convergence
speed and optimization accuracy of IFCSA are better than
those of other algorithms. As can be seen from Figures 12,
14, 16, 18, 20, 22, and 24, the performance of IFCSA al-
gorithm is very stable. ,is shows that IFCSA can better
solve high-dimensional unimodal problems compared to
other intelligent algorithms and some improved algorithms.

4.3.2. High-Dimensional Multimodal Function Test Results.
,e experimental data in Table 6 shows that the optimal value
and average value of IFCSA for functions f8∼f13 rank first in the
comparison algorithm, which shows that IFCSA can solvemost
high-dimensional multimodal functions well. In the test
function of f14, the optimal value obtained by IFCSA is slightly
smaller than those of GWO and SSA, ranking third in the
comparison algorithm. Experimental results show that IFCSA
can effectively solve high-dimensional multimodal functions
and has strong global search capabilities.
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Figures 25–31 are the convergence curves of all algo-
rithms for solving high-dimensional multimodal functions
independently run 30 times. Figures 25–30 show that IFCSA
can find the optimal value faster and better for some high-
dimensional multimodal functions. Furthermore, in the
functions f8 and f10, IFCSA can find the theoretical optimal
value. Figures 32–38 are the variance graphs of f8∼f14, which
shows that IFCSA has good stability. ,e experimental re-
sults show that, compared with some classic intelligent al-
gorithms and some improved algorithms, IFCSA can better
solve high-dimensional multimodal functions.

4.3.3. Fixed-Dimensional Multimodal Function Test Results.
Table 7 shows the experimental results of different algo-
rithms for fixed multimodal functions. From the experi-
mental results in Table 7, it can be seen that the best values of
IFCSA in functions f15, f16, f17, f19, and f20 are all ranked first,
and they are all theoretical best values. It can be also seen
from the standard deviation in Table 7 that the performance
of IFCSA is relatively stable. Although the IFCSA does not
obtain a better optimal value than GWO in the function f18,
the optimal value obtained by the IFCSA is of the order of
100−178, which is acceptable.

Table 4: Parameter settings.

Algorithm Parameter settings
BOA p � 0.8, c � 0.01, α � 0.1
FPA p � 0.8
CSA AP � 0.1, fl � 2
MISCSA AP � 0.1, fl � 2, α1 � 0.4, α2 � 0.7, δ1 � 0.4, δ2 � 0.001, s � 0.8
IFCSA AP � 0.1, fl � 2

Table 5: Results of high-dimensional unimodal benchmark functions.

Function Index BOA SSA GWO CSA MISCSA IFCSA

f1

Best 1.53E− 14 5.66E− 09 1.40E− 68 3.41E− 03 7.59E− 33 2.26E− 102
Worst 1.85E− 14 1.40E− 08 1.26E− 72 3.73E− 02 7.83E− 30 1.03E− 89
Mean 1.69E− 14 8.84E− 09 9.11E− 70 1.36E− 02 7.98E− 31 6.03E− 91
Std 9.60E− 16 1.74E− 09 2.82E− 69 7.20E− 03 1.56E− 30 2.03E− 90
Rank 4 5 2 6 3 1

f2

Best 2.02E− 12 1.56E− 04 3.43E− 42 3.80E− 01 3.85E− 17 1.69E− 50
Worst 1.17E− 11 3.05E+ 00 4.46E− 40 2.75E+ 00 2.02E− 15 4.66E− 43
Mean 9.19E− 12 6.77E− 01 6.50E− 41 1.47E+ 00 4.55E− 16 1.56E− 44
Std 2.97E− 12 7.52E− 01 9.17E− 41 6.29E− 01 4.20E− 16 8.51E− 44
Rank 4 5 2 6 3 1

f3

Best 1.01E− 11 8.78E− 01 1.46E− 18 1.22E+ 00 5.80E− 17 1.57E− 50
Worst 1.27E− 11 9.46E+ 00 6.98E− 17 5.48E+ 00 2.28E− 15 4.79E− 44
Mean 1.15E− 11 4.50E+ 00 1.25E− 17 3.09E+ 00 5.24E− 16 2.87E− 45
Std 6.68E− 13 2.38E+ 00 1.57E− 17 1.02E+ 00 5.20E− 16 1.06E− 44
Rank 4 5 2 6 3 1

f4

Best 1.48E− 14 5.93E+ 00 4.57E− 26 4.07E+ 02 1.06E− 30 4.02E− 100
Worst 1.89E− 14 2.51E+ 02 4.53E− 17 1.53E+ 03 1.33E− 27 1.38E− 88
Mean 1.70E− 14 6.46E+ 01 1.55E− 18 8.79E+ 02 2.52E− 28 6.89E− 90
Std 9.12E− 16 5.98E+ 01 8.27E− 18 3.26E+ 02 3.93E− 28 2.59E− 89
Rank 4 5 3 6 2 1

f5

Best 8.80E− 05 2.27E− 02 9.33E− 05 7.07E− 03 6.38E− 06 9.98E− 06
Worst 1.18E− 03 1.16E− 01 1.35E− 03 3.99E− 02 3.53E− 04 3.39E− 04
Mean 5.96E− 04 5.79E− 02 5.17E− 04 2.09E− 02 5.35E− 05 9.12E− 05
Std 3.01E− 04 2.28E− 02 3.35E− 04 7.87E− 03 6.36E− 05 7.17E− 05
Rank 3 6 4 5 1 2

f6

Best 1.34E− 14 3.45E+ 03 7.91E− 72 6.67E+ 02 5.90E− 30 2.17E− 97
Worst 1.81E− 14 3.09E+ 04 1.18E− 68 2.62E+ 03 6.76E− 27 7.54E− 88
Mean 1.61E− 14 8.82E+ 03 1.08E− 69 1.45E+ 03 9.79E− 28 2.71E− 89
Std 1.13E− 15 5.69E+ 03 2.77E− 69 5.15E+ 02 1.53E− 27 1.38E− 88
Rank 4 6 2 5 3 1

f7

Best 1.49E− 14 4.97E+ 04 1.44E− 70 7.57E+ 03 6.03E− 29 1.63E− 95
Worst 1.90E− 14 3.65E+ 05 2.08E− 67 5.13E+ 04 1.23E− 25 1.34E− 87
Mean 1.74E− 14 1.57E+ 05 2.30E− 68 2.19E+ 04 8.07E− 27 1.26E− 88
Std 1.08E− 15 8.29E+ 04 4.33E− 68 9.20E+ 03 2.40E− 26 2.94E− 88
Rank 4 6 2 5 3 1
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Figures 39–44 are the convergence curves of the 6 al-
gorithms for different fixed multimodal functions, and
Figures 45–50 are the variance graphs of the 6 algorithms.
From Figures 39, 41, 43, and 44, it can be seen that IFCSA
can converge to the global optimum faster than the other five
algorithms. Figure 40 shows that the optimization perfor-
mance of IFCSA is weaker than MISCSA, while the overall
performance of IFCSA is better than that of the other al-
gorithms. It can be seen from Figure 42 that the optimization
performance of IFCSA is better than that of the other al-
gorithms except GWO. In short, IFCSA has certain ad-
vantages in optimizing fixed multimodal functions.

4.4. Statistical Validation. According to the paper by Derrac
et al. [25], it is not rigorous to only use the average value,
standard deviation, optimal value, and worst value obtained
after the algorithm is independently run 30 times as the
evaluation index of the algorithm performance. ,erefore,
Wilcoxon rank sum test is carried out on the 20 benchmark
test functions in Tables 1∼3 for the six algorithms in this
paper. Moreover, the p values obtained after rank sum check

of the six algorithms are recorded in Table 9. If the algorithm
with the best performance is IFCSA, a pair comparison is
performed between IFCSA and BOA, IFCSA and SSA, etc.
Since the best algorithm cannot be compared with itself, it is
marked as “NA,” indicating that it is not applicable, which
also means that the corresponding algorithm does not have
corresponding data to be compared with itself in the rank
sum verification process. When the p value is less than 0.05,
there is a big difference between the two comparison al-
gorithms. Otherwise, it indicates that there is some similarity
between the two comparison algorithms, and the value of p

is marked in bold type.

4.5. EngineeringOptimization Problem. As can be seen from
the previous section, IFCSA has better performance in
function optimization than other intelligent algorithms and
some improved algorithms. In order to further verify
whether IFCSA is effective in practical engineering appli-
cations, it is applied to the speed reducer design problem.
,e problem is one of the most fully researched problems in
the optimization test. It represents a simple gearbox design,

Table 6: Results of high-dimensional multimodal benchmark functions.

Function Index BOA SSA GWO CSA MISCSA IFCSA

f8

Best 0.00E+ 00 2.49E+ 01 0.00E+ 00 1.09E+ 01 0.00E+ 00 0.00E+ 00
Worst 2.10E+ 02 7.46E+ 01 4.51E+ 00 4.08E+ 01 0.00E+ 00 0.00E+ 00
Mean 1.24E+ 01 4.60E+ 01 1.50E− 01 2.27E+ 01 0.00E+ 00 0.00E+ 00
Std 4.76E+ 01 1.27E+ 01 8.24E− 01 8.63E+ 00 0.00E+ 00 0.00E+ 00
Rank 1 6 1 5 1 1

f9

Best 6.05E− 12 1.78E+ 00 7.99E− 15 1.91E+ 00 8.88E− 16 8.88E− 16
Worst 1.32E− 11 3.63E+ 00 1.51E− 14 4.70E+ 00 8.88E− 16 8.88E− 16
Mean 1.12E− 11 1.78E+ 00 1.31E− 14 3.30E+ 00 8.88E− 16 8.88E− 16
Std 1.39E− 12 8.54E− 01 2.59E− 15 6.50E− 01 0.00E+ 00 0.00E+ 00
Rank 4 5 3 6 1 1

f10

Best 0.00E+ 00 2.27E− 08 0.00E+ 00 3.11E− 02 0.00E+ 00 0.00E+ 00
Worst 3.66E− 15 4.91E− 02 1.35E− 02 2.58E− 01 0.00E+ 00 0.00E+ 00
Mean 9.25E− 16 1.01E− 02 1.10E− 03 1.05E− 01 0.00E+ 00 0.00E+ 00
Std 1.05E− 15 1.17E− 02 3.43E− 03 4.18E− 02 0.00E+ 00 0.00E+ 00
Rank 1 6 1 5 1 1

f11

Best 1.52E− 15 5.72E− 02 1.57E− 41 6.60E− 03 4.12E− 18 1.88E− 52
Worst 1.24E− 12 4.92E+ 00 5.50E− 04 5.17E− 01 5.08E− 17 1.08E− 46
Mean 4.70E− 14 1.73E+ 00 2.21E− 05 1.04E− 01 1.91E− 16 7.20E− 48
Std 2.25E− 13 1.15E+ 00 1.00E− 04 1.45E− 01 3.83E− 17 2.24E− 47
Rank 4 5 2 6 3 1

f12

Best 9.11E− 15 9.43E− 02 1.45E− 07 2.82E− 01 2.49E− 34 1.79E− 103
Worst 1.65E− 14 1.17E+ 00 1.17E− 05 1.94E+ 00 1.21E− 30 5.87E− 92
Mean 1.39E− 14 4.51E− 01 2.80E− 06 6.99E− 01 1.14E− 31 2.86E− 93
Std 1.70E− 15 2.98E− 01 2.77E− 06 3.74E− 01 2.24E− 31 1.12E− 92
Rank 3 5 4 6 2 1

f13

Best 1.51E+ 00 2.69E− 01 7.22E− 01 2.70E− 01 6.31E− 01 1.37E− 04
Worst 2.52E+ 00 1.27E+ 01 1.27E+ 00 3.21E+ 00 2.34E+ 00 8.21E− 01
Mean 2.00E+ 00 6.61E+ 00 9.89E− 01 1.06E+ 00 1.47E+ 00 5.99E− 02
Std 2.47E− 01 3.05E+ 00 1.52E− 01 7.62E− 01 3.94E− 01 1.68E− 01
Rank 6 2 5 3 4 1

f14

Best 1.55E+ 00 2.91E− 10 1.43E− 05 4.90E+ 00 1.40E+ 00 1.60E− 03
Worst 3.00E+ 00 1.10E− 01 6.23E− 01 3.95E+ 01 4.22E+ 00 2.90E+ 00
Mean 2.57E+ 00 7.93E− 03 3.16E− 01 2.03E+ 01 2.92E+ 00 7.19E− 01
Std 3.50E− 01 2.07E− 02 1.52E− 01 9.93E+ 00 7.59E− 01 6.88E− 01
Rank 5 1 2 6 4 3

8 Mathematical Problems in Engineering



which can be used between the aircraft engine and the
propeller to make the components rotate at the most ef-
fective speed.

,e goal of speed reducer design is to minimize the
weight of the gear under bending stress, the lateral deflection
of the shaft, and the constraint of the shaft. As shown in

Table 7: Results of fixed-dimensional multimodal benchmark functions.

Function Index BOA SSA GWO CSA MISCSA IFCSA

f15

Best 3.33E− 16 8.66E− 15 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
Worst 1.02E− 02 9.72E− 03 9.72E− 03 9.72E− 03 0.00E+ 00 0.00E+ 00
Mean 8.15E− 03 1.94E− 03 2.27E− 03 7.00E− 04 0.00E+ 00 0.00E+ 00
Std 3.71E− 03 3.95E− 03 4.18E− 03 2.46E− 03 0.00E+ 00 0.00E+ 00
Rank 5 6 1 1 1 1

f16

Best 1.55E− 05 4.57E− 18 1.29E− 09 3.68E− 27 0.00E+ 00 0.00E+ 00
Worst 3.98E− 01 5.52E− 15 2.37E− 07 7.56E− 24 1.40E− 28 0.00E+ 00
Mean 8.38E− 02 1.03E− 15 3.28E− 08 7.73E− 25 5.56E− 30 0.00E+ 00
Std 1.26E− 01 1.34E− 15 4.51E− 08 1.54E− 24 2.56E− 29 0.00E+ 00
Rank 6 4 5 3 1 1

f17

Best 0.00031 0.00031 0.00030 0.00030 0.00031 0.00030
Worst 0.00038 0.00124 0.02036 0.00122 0.00133 0.00122
Mean 0.00033 0.00081 0.00381 0.00034 0.00043 0.00037
Std 0.00002 0.00026 0.00754 0.00017 0.00020 0.00023
Rank 4 4 1 1 4 1

f18

Best 2.29E− 19 7.08E− 18 0.00E+ 00 7.24E− 28 1.22E− 43 2.41E− 177
Worst 2.61E− 17 2.86E− 15 0.00E+ 00 1.04E− 24 7.79E− 41 4.06E− 166
Mean 6.01E− 18 7.11E− 16 0.00E+ 00 1.88E− 25 1.19E− 41 1.45E− 167
Std 7.05E− 18 7.43E− 16 0.00E+ 00 2.45E− 25 1.70E− 41 0.00E+ 00
Rank 5 6 1 4 3 2

f19

Best 0.398 0.398 0.398 0.398 0.398 0.398
Worst 1.212 0.398 0.398 0.398 0.398 0.398
Mean 0.441 0.398 0.398 0.398 0.398 0.398
Std 1.532E− 01 2.410E− 15 1.252E− 07 0.000E+ 00 0.000E+ 00 0.000E+ 00
Rank 1 1 1 1 1 1

f20

Best 3.0002 3.0000 3.0000 3.0000 3.0000 3.0000
Worst 3.2338 3.0000 3.0000 3.0000 3.0000 3.0000
Mean 3.0297 3.0000 3.0000 3.0000 3.0000 3.0000
Std 5.10E− 02 7.55E− 14 3.91E− 06 1.47E− 15 1.65E− 15 1.37E− 15
Rank 6 1 1 1 1 1
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Figure 5: Comparison chart of f1 convergence curve.
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Table 8: Results of experiments with different strategies.

Function CSA CSA+FPA (without tent chaos to the initial
position)

CSA+FPA+Cauchy mutation (without tent chaos to the initial
position)

f1 1.43E− 02 1.01E+ 03 2.90E− 94
f2 1.40E+ 00 9.04E+ 00 5.31E− 48
f3 2.62E+ 00 1.37E+ 01 1.04E− 47
f4 8.61E+ 02 3.18E+ 03 9.65E− 95
f5 2.17E− 02 1.35E− 01 3.43E− 04
f6 1.47E+ 03 2.41E+ 03 2.30E− 92
f7 2.54E+ 04 3.03E+ 05 1.39E− 90
f8 2.18E+ 01 7.79E+ 01 0.00E+ 00
f9 3.29E+ 00 8.99E+ 00 8.88E− 16
f10 9.90E− 02 9.84E+ 00 0.00E+ 00
f11 2.15E− 01 4.60E+ 00 1.37E− 49
f12 6.01E− 01 4.55E+ 01 1.21E− 95
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Figure 51, the optimization problem includes seven decision
variables, namely, surface width (b or x1), module of teeth (m
or x2), number of teeth on pinion (z or x3), length of shaft 1

between bearings (l1 or x4), length of shaft 2 between
bearings (l2 or x5), diameter of shaft 1 (d1 or x6), and di-
ameter of shaft 2 (d2 or x7).

Table 8: Continued.

Function CSA CSA+FPA (without tent chaos to the initial
position)

CSA+FPA+Cauchy mutation (without tent chaos to the initial
position)

f13 7.77E− 01 3.21E+ 00 1.26E− 01
f14 2.04E+ 01 1.14E+ 04 1.30E+ 00
f15 9.72E− 04 3.89E− 03 0.00E+ 00
f16 4.01E− 25 0.00E+ 00 1.52E− 30
f17 0.00037 0.00034 0.00030
f18 2.35E− 25 2.78E− 163 2.90E− 182
f19 0.398 0.398 0.398
f20 3.00E+ 00 3.00E+ 00 3.00E+ 00
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,e mathematical model of the problem is as follows:

Min. f(x) � 0.7854x1x
2
2 3.3333x

2
3 + 14.9334x3 − 43.0934  − 1.508x1 x

2
6 + x

2
7  + 7.477 x

3
6 + x

3
7  + 0.7854 x4x

2
6 + x5x

2
7 ,

S.t. g1(x) �
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g7(x) �
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Table 10 shows the optimal values and values of de-
cision variables obtained after 30 independent runs of
different algorithms for deceleration design problems. ,e
results are compared with those of CSO [26], Gandomi
et al. [27], ABC [28], Akhtar et al. [29], and Montes et al.

[30]. According to Table 10, IFCSA finds the optimal cost
of 2896.26, which is the least expensive among the com-
parison algorithms. ,e solution to find the optimal value
is as follows: x1 � 3.5, x2 � 0.7, x3 � 17, x4 � 7.3, x5 �

7.8, x6 � 2.9, x7 � 5.286683. ,e results show that IFCSA
has good performance in dealing with the optimization of
speed reducer design problem.
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Figure 31: Convergence curve of f14.
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Figure 33: Variance diagram of f9.
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Figure 34: Variance diagram of f10.
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Figure 35: Variance diagram of f11.
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Figure 36: Variance diagram of f12.
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Figure 37: Variance diagram of f13.
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Figure 38: Variance diagram of f14.
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Figure 39: Convergence curve of f15.
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Figure 40: Convergence curve of f16.
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Figure 41: Convergence curve of f17.
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Figure 42: Convergence curve of f18.
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Figure 43: Convergence curve of f19.
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Figure 44: Convergence curve of f20.
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Figure 46: Convergence curve of f16.
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Figure 47: Convergence curve of f17.
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Figure 48: Convergence curve of f18.
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Figure 49: Convergence curve of f19.

BOA SSA GWO CSA MISCSA IFCSA

F20

3

3.05

3.1

3.15

3.2

3.25

3.3

Figure 50: Convergence curve of f20.
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Figure 45: Variance diagram of f15.
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5. Conclusions

By studying the principle and updating the formula of the
standard crow search algorithm, IFCSA is proposed to
solve the problem that the algorithm slowly converges and
easily falls into local optimum in the later iteration. In this
paper, so as to improve the convergence ability of the
algorithm, the inverse incomplete gamma function is in-
troduced to make the perceptual probability decrease
nonlinearly. Aiming at the blindness of crows’ random
search for location updating, a cross-pollination strategy
with Cauchy mutation was introduced to make crows tend
to take the best individual direction, thus obtaining the
best value.,e experimental results in this paper also show

that the optimization performance of IFCSA is better than
that of the original algorithm and other intelligent
algorithms.

In future work, IFCSA will be used to solve more
complex optimization problems, such as multiresource
constrained project sequencing, image processing, and UAV
path planning. IFCSA will be also used to solve more en-
gineering examples, which is to provide reference value for
engineering applications.

Data Availability

,e data, models, or code generated or used during the study
are available at https://github.com/happyfate/IFCSA.

Table 9: Wilcoxon rank sum test and p value.

Function IFCSA/BOA IFCSA/SSA IFCSA/GWO IFCSA/CSA IFCSA/MISCSA
f1 3.02E− 11 3.02E− 11 3.02E− 11 3.02E− 11 3.02E− 11
f2 3.02E− 11 3.02E− 11 3.02E− 11 3.02E− 11 3.02E− 11
f3 3.02E− 11 3.02E− 11 3.02E− 11 3.02E− 11 3.02E− 11
f4 3.02E− 11 3.02E− 11 3.02E− 11 3.02E− 11 3.02E− 11
f5 1.33E− 10 3.02E− 11 3.82E− 10 3.02E− 11 5.57E− 03
f6 3.02E− 11 3.02E− 11 3.02E− 11 3.02E− 11 3.02E− 11
f7 3.02E− 11 3.02E− 11 3.02E− 11 3.02E− 11 3.02E− 11
f8 2.16E− 02 1.21E− 12 8.15E− 02 1.21E− 12 NA
f9 1.21E− 12 1.21E− 12 5.47E− 13 1.21E− 12 NA
f10 1.93E− 09 1.21E− 12 8.15E− 02 1.21E− 12 NA
f11 3.02E− 11 3.02E− 11 3.02E− 11 3.02E− 11 3.02E− 11
f12 3.02E− 11 3.02E− 11 3.02E− 11 3.02E− 11 3.02E− 11
f13 3.02E− 11 3.69E− 11 6.07E− 11 1.61E− 10 1.61E− 10
f14 5.57E− 10 2.44E− 09 7.62E− 03 3.02E− 11 2.61E− 10
f15 1.21E− 12 1.21E− 12 5.58E− 03 1.37E− 03 NA
f16 1.21E− 12 1.21E− 12 1.21E− 12 1.21E− 12 5.83E− 09
f17 8.15E− 09 2.34E− 09 1.35E− 09 6.76E− 09 6.84E− 09
f18 3.02E− 11 3.02E− 11 1.21E− 12 1.21E− 12 1.21E− 12
f19 1.21E− 12 3.09E− 04 1.21E− 12 NA NA
f20 1.10E− 11 1.10E− 11 1.10E− 11 1.35E− 06 3.55E− 06

l1

d1

d2 l2z

Figure 51: Schematic diagram of speed reducer design.

Table 10: Test results of different algorithms for speed reducer design.

IFCSA CSO [26] Gandomi et al. [27] ABC [28] Akhtar et al. [29] Montes et al. [30]
Best 2896.26 2996.60 3000.98 2997.06 3008.08 3025.01
x1 3.500000 3.500000 3.501500 3.499999 3.506122 3.506163
x2 0.700000 0.700000 0.700000 0.700000 0.700006 0.700831
x3 17.00000 17.00000 17.00000 17.00000 17.00000 17.00000
x4 7.300000 7.308000 7.605000 7.300000 7.549126 7.460181
x5 7.800000 7.802000 7.818100 7.800000 7.859330 7.962143
x6 2.900000 3.350000 3.352000 3.350215 3.365576 3.362900
x7 5.286683 5.287000 5.287500 5.287800 5.289773 5.309000
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