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A mathematical model of the dive phase is an important research content for improving the accuracy of terminal control in the
small unmanned aerial vehicle. (e acquisition of the diving model poses new challenges, such as the small installation space,
ultra-low flying height of small suicide drones, short flight time, strong coupling, less observable measurement, and elastic
deformation of the wings during the drone dive phase. Based on the autoregressive moving average method, a multi-input
multioutput noise term topology mathematical model is proposed in this paper.(rough an improved least squares identification
method, the diving model in the flight test is analyzed and verified. (e identification results of the diving model obtained by the
proposed method are compared with the least squares method dive model. (e results indicate that the mathematical model and
identification method proposed in this paper can effectively obtain the parameters of the drone dive model.

1. Introduction

With the development of SUAV technology, the function of
unmanned aerial vehicles (UAVs) has gradually expanded
from a single function of scouting, interference, and damage
assessment to the integration of scouting and strikes. During
the execution of scouting and searching above a target area,
the SUAV can immediately hit the target when a time-
sensitive target is found. Due to strong maneuverability and
high attack precision (with a controllable range at the meter
level), the SUAV can effectively destroy the target while
carrying fewer combat damage units, thereby exhibiting high
benefits in actual combat. Representative SUAVs are the
Switchblade, the Coyote, and the Hero loitering munition.

During attacks, divemodeling is quite important in the end
trajectory control. To enhance the controlling precision of
SUAV during attacks, the diving model should reflect the
SUAV’s actual performance. Researchers mainly adopted wind
tunnel tests and computational fluid dynamics (CFD) software
for the establishment of mathematical models of conventional

air vehicles [1]. Both methods require high professional skills
and are time-consuming as well as costly. Currently, certain
engineering calculation software of aerodynamic parameters
exhibit poor computational accuracy, which can thereby affect
the precision of the entire mathematical model. By utilizing the
system response to specific input single utilization, the system
identification method can rapidly and effectively acquire the
mathematical model of the entire air vehicle, which has been
extensively applied during flight tests of conventional air ve-
hicles [2]. Since the introduction of “identification” by
American scholar Zadeh in 1956 [3], system identification, a
method of system modeling, has been continuously developed
for over 60 years. Following booming, the system identification
was rapidly applied to system modeling of air vehicles [4–6].
(e aforementioned has become amaturemodelingmethod in
the conventional air vehicle field.

Recently, with the development of low-cost micro-
electromechanical system (MEMS) sensor technology, sys-
tem identification has been utilized in extensive applications
in the SUAV field. With the unscented Kalman filter (UKF),
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Mararu Naruoka et al. [7] performed system identification
on a Mitsubishi MARS07AF. (is was an SUAV carrying
MEMS devices in 2009. However, the identification results
significantly differed from the wind tunnel test data. In 2010,
Khaled S. Hatamleh et al. used an inertial measurement unit
(IMU) on the UAV for the related model parameters esti-
mation [8]. In 2011, Andrei Dorobantu et al. employed the
frequency-domain identification technique for both longitu-
dinal and transverse model identification of a low-sized fixed-
wingUAV [9]. In 2012, AaronWypyszynski conductedmodel-
identification flight tests on a small UAV and identified its
aerodynamic parameters [10]. In 2012, Arnaud Koehl et al.
established a 6-DOF model of GLMAV, a coaxial-rotor UAV,
and performed parameter identification through Kalman fil-
tering [11]. In 2015, Konstantin identified the four-rotor UAV
model by using the recursive algorithm [12]. Kailong Liu et al.
employed a recursive algorithm to investigate the battery
temperature prediction method with regard to the battery
safety problem [13, 14]. In addition, with the improvement of
hardware processing capabilities, methods such as machine
learning and Kalman filtering are also used in model identi-
fication and parameter prediction of complex systems [15–18].

Model identification of small UAVs research is currently
mainly focused on longitudinal or horizontal models in the
cruise phase [19–23]. (e research on the diving phase of
SUAVs is mainly focused on control rate, guidance rate, and
recognition of the diving model. In 2017, Zhou [24] con-
ducted an integrated design for the guidance and controller
of the suicide UAV. Moreover, the author verified the ef-
fectiveness of the system. He [25] proposed a hypersonic
gliding vehicle spiral dive maneuver penetration concept
and designed an adaptive proportional guidance rate for
virtual portrait targets. Karpenko [26] investigated the
evaluation method of attack aircraft’s dive characteristics
and analyzed the time and height loss of attack aircraft in
different dive and pull modes. Wang [27] studied the
guidance and control laws of antitank missiles with curved
firing and self-seeking. Moreover, the author established a
guidance and control law suitable for ballistic control. With
the rapid expansion of military applications of suicide at-
tacks by small UAVs and to improve the accuracy of UAV
strikes, the problem of accurate modeling and identification
of the diving model needs to be solved urgently. As an SUAV
gradually approaches the target during diving, the position
and attitude should be constantly corrected. (is phase has
strong nonlinear characteristics and is a multi-input mul-
tioutput system [8, 9]. In general, due to installation space
and landing weight limitations, testing equipment such as
attack angle and sideslip angle sensors cannot be installed.
Moreover, only a certain amount of data can be acquired. In
addition, since the SUAV always flies at a low velocity, the
flight is easily disturbed by many factors, such as gusts.

In this paper, a topological mathematical model of multi-
input and multioutput noise terms for SUAV is first con-
structed. (en, an improved multivariable augmented re-
cursive least squares identification method is proposed, and
the feasibility of the method is verified by the simulation
model. Finally, the identification methods are compared and
verified through flight tests of SUAV.

2. Mathematical Model

(e diving phase of SUAV is a very complex and highly
coupled nonlinear dynamic system. Its six-degree-of-free-
dom motion equations can be expressed as [28, 29]
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where μ, ], and ω are body velocities along with the x-axis, y-
axis, and z-axis. Parameters p, q, and r are angular rates along
the x-axis, y-axis, and z-axis. Parameters ϕ, θ, and ψ are Euler
angles along the x-axis, y-axis, and z-axis. Coefficients CX,
CY, CZ, CL, CM, and CN are aerodynamic force and moment
coefficients. Cb

w is the coordinate transformation matrix, and
m, S, and b are the quality, reference area, and wingspan of
the small UAV, respectively. Parameter q is the air density,

Ib �

Ixx 0 Ixz

0 Iyy 0
Izx 0 Izz

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ is the inertia matrix, with Ixx being the
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rolling moment of inertia, Iyy being the pitching moment of
inertia, Izz being the yawing moment of inertia, and Ixz and
Izx are inertia products. (e parameter VA is the airspeed,
while μA, ]A, and ωA are airspeed vector components along
the x-axis, y-axis, and z-axis in the body frame. Parameter n
is the rotational speed of the propeller, D is the diameter of
the propeller, and CFT

is the thrust coefficient.
(e aerodynamic force of SUAV has a very complicated

nonlinear relationship with many factors such as the ge-
ometry, flight speed, aerodynamic angle, and even atmo-
spheric temperature of the aircraft. During the flight test,
factors such as aerodynamic angle and wing deformation do
not have the measurement conditions. If all these factors are
simultaneously taken into account, model identification and
solution will be relatively difficult. Limited by the research
funding, the abovementioned complex parameters can be
hardly obtained. (erefore, the ARMA model is used in this
paper to solve this problem.(is method treats the model as
a gray box, which can fit the model according to the input
and output data of the system. Moreover, it can predict the
output features of the model with sufficient accuracy,
thereby reducing the amount of calculation and the difficulty
of the identification test.

(e ARMA model is a common and high-precision
time-series short-term prediction method. It exhibits ex-
tensive applications in many domains such as fault detec-
tion, controller model identification, sensor correction, and
structural testing and identification [30–33]. (e dynamic
discrete system input u(k) and the output sampling value
series y(k) can be expressed as the following linear differ-
ence equation:

y(k) + a1y(k − 1) + a2y((k − 2) + . . . + ana
y k − na(  � b0u(k)+

b1u(k − 1) + . . . + bnb
u k − nb( ,

(2)

where ai(i � 1, 2, . . . , na) and bi(i � 0, 1, . . . , nb) are the
coefficients of autoregression items.

(e multi-input multioutput system of the SUAV,
consisting of r-dimensional inputs and m-dimensional
outputs, is displayed in Figure 1. (e control input matrix
and system output matrix are represented as
[u1(k), u2(k), . . . , ur(k)]T and [y1(k), y2(k), . . . , ym(k)]T,
respectively, while the sustained colored noise matrix can be
expressed as []1′(k), ]2′(k), . . . , ]m

′(k)]T.
According to the analysis of the characteristics during

diving, the structure of the diving model can be expressed as

Y(k) + A1Y(k − 1) + A2Y(k − 2) + ... + Ana
Y k − na(  � B0U(k)+

B1U(k − 1) + ... + Bnb
U k − nb(  + V(k),

(3)

where A1, A2, . . . , Ana
denotes a 2∗ 2 matrix to be identified,

B0, B1, . . . , Bnb
is also a 2∗ 2 matrix to be identified, and

V(k) denotes a 2∗ 2 colored noise matrix in the model
indicating interference factors such as wind gusts and
temperature during the test. Parameters U(k) and Y(k) are
the control input matrix and the state output matrix, re-
spectively. U(k) and Y(k) can be written as

U(k) �
ele(k)

ail(k)
 ,

Y(k) �
q(k)

p(k)
 ,

(4)

where ele(k) and ail(k) are the k-th PWM control input data
in pitching and rolling channels, while q(k) and p(k) denote
the k-th pitching angular rate and the rolling angular rate
corresponding to control inputs, respectively.

To determine the structural parameters na and nb, the
one-step-ahead prediction value of the model output can be
written as
Y(k | k − 1; θ) � −A1Y(k − 1) − A2Y(k − 2) − . . . − Ana

Y k − na( 

+ B0U(k) + B1U(k − 1) + . . . + Bnb
U k − nb( .

(5)

(e parameter θ is calculated through least squares,
while the output prediction error vector can be defined as

ε(k, θ) � 
2

j�1
Yi − Yi(k | k − 1; θ) . (6)

(e loss function of the model can be defined as

min
1

nm


nm

i�1
ε2(k, θ). (7)

3. Algorithm

(e least squares method was proposed by Gauss to de-
termine the orbit of Ceres. Within the method, the optimal
functional matching was searched for by employing the sum
minimization of squares of the errors. Currently, the least
squares method is a common method for parameter esti-
mation on the test data that exhibits extensive applications
and popularization in many domains. Despite simplicity and
practicability, the least squares method is no longer an
unbiased estimation for the system including colored noise.
(erefore, given that an SUAV is a multi-input multioutput
coupling system during the diving phase, while the colored
noise imposed considerable disturbance, a multivariable
recursive augmented least squares identification method is
derived in this paper.

3.1. Standard Augmented Recursive Least Squares Method.
(e standard recursive least squares identification algorithm
can be expressed as

θk+1 � θk + Kk+1 yk+1 − hk+1
θk ,

Kk+1 � Pkh
T
k+1 1 + hk+1Pkh

T
k+1 

− 1
,

Pk+1 � Pk − Kk+1hk+1Pk.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

During the actual small aircraft test process, due to the
influence of gust and other environmental effects, the actual
noise is not white noise. (erefore, it is necessary to identify
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the noise model and take it into account. Noise model
parameters are jointly identified. (e noise model can be
expressed as

]′(k) � D z
− 1

 ](k) � c1](k − 1) + c2](k − 2)

+ ... + cnc
] k − nc(  + ](k),

(9)

where ]′ represents random noise with the nonzero mean, ]
represents random noise with the mean value of 0, and
c1, c2, ..., cnc

represent the parameters of the noise model that
require identification. (e model can be expressed as

y(k) � −a1y(k − 1) − a2y(k − 2) − . . . − ana
y k − na( 

+ b1u(k − 1) + b2u(k − 2) + . . . + bnb
u k − nb( 

+ c1](k − 1) + c2](k − 2) + . . . + cnc
] k − nc(  + ](k).

(10)

Noise sequence ]′(k) can be replaced by the estimation
of ](k){ }:

](k) �
0, k≤ nc,

yk − hk
θk−1, k> nc,

 (11)

where

h(k) � −y(k − 1), −y(k − 2), . . . , −y k − na( , u(k − 1), u(k − 2), . . . , u k − nb( , ](k − 1), ](k − 2), . . . , ] k − nc(  . (12)

(e noise sequence can be supplemented as the iden-
tified object. Parameters to be reformulated are as follows:

θ � a1, a2, . . . , ana
, b1, b2, . . . , bnb

, c1, c2, . . . , cnc
 

T
. (13)

(e model can be expressed as

y(k) � h(k)θ + ]k. (14)

(e calculation expression of the augmented least
squares recursive method can be formulated as

θk+1 � θk + Kk+1 yk+1 − hk+1
θk ,

Kk+1 � Pkh
T
k+1 1 + hk+1Pkh

T
k+1 

− 1
,

Pk+1 � Pk − Kk+1hk+1Pk.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(15)

3.2. Improved Multivariable Augmented Recursive Least
SquaresMethod. (emultivariable identification model can
be defined as

Y(k) + A1Y(k − 1) + A2Y(k − 2) + . . . + Ana
Y k − na( 

� B0U(k) + B1U(k − 1) + . . . + Bnb
U k − nb(  + ]′(k),

(16)

where

Y(k) � y1(k) y2(k) . . . ym(k) 
T

,

U(k) � u1(k) u2(k) . . . ur(k) 
T
,

]′(k) � v1′(k) v2′(k) . . . vm
′ (k) 

T
.

(17)

To improve the model’s ability to deal with the noise
interference in the experiment, a noise topology model is

added, and parameter ]′(k)  is augmented. (erefore, (16)
can be written as

Y(k) + A1Y(k − 1) + A2Y(k − 2) + . . . + Ana
Y k − na( 

� B0U(k) + B1U(k − 1) + . . . + Bnb
U k − nb( 

+ C1](k − 1) + C2](k − 2) + . . . + Cnc
] k − nc(  + ](k),

(18)

where
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i � 1, . . . , nc( .

(19)

(e j-th column in the model can be rewritten as

SUAV
Inputs

SUAV
outputs

u1

v1 v2 v3 vm

u2
u3

ur

y1
y2
y3

ym

Noise

Figure 1: Multi-input multioutput system of SUAV.
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yj(k) � −a
1
j1y1(k − 1) − . . . − a

1
jmym(k − 1) − a

2
j1y1(k − 2) − . . . − a

2
jmym(k − 2)

− . . . − a
na

j1y1 k − na(  − . . . − a
na

jmym k − na(  + b
0
j1u1(k) + . . . + b

0
jrur(k)

+ b
1
j1u1(k − 1) + . . . + b

1
jrur(k − 1) + . . . + b

nb
j1u1 k − nb(  + . . . + b

nb

jrur k − nb( 

+ c1j1]1(k − 1) + . . . + c
1
jm]m(k − 1) + . . . + c

nc

j1]1 k − nc(  + . . . + c
nc

jm]r k − nc(  + ]j(k).

(20)

In a matrix form, (20) can be further rewritten as

Yj � Hjθj + ]j, (21)

where

Hj �

−y1(k − 1), . . . , −ym(k − 1), −y1(k − 2), . . . , −ym(k − 2), . . . , −y1 k − na( , . . . , −ym k − na( ,

u1(k), . . . , ur(k), u1(k − 1), . . . , ur(k − 1), . . . , u1 k − nb( , . . . , ur k − nb( ,

]1(k − 1), . . . , ]m(k − 1), . . . , ]1 k − nc( , ]m k − nc( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (22)

If the noise ]′(k) is a zero-mean unideal random series,
the consistency and unbiased estimated value of θj can be
described as

θj � H
T
j Hj 

− 1
H

T
j Yj. (23)

If j � 1, 2, . . . , m, the estimated values of the param-
eters in various rows, denoted as θ1, θ2, . . . , θm, can be ac-
quired. (erefore, the estimated parameter value of the
system can be acquired.

(e inverse calculation of a matrix demands heavy calcu-
lation, whereas a singular matrix easily appears during the test
data processing. (erefore, the following expressions can be set:

Y(k + 1) �
Y(k)

h(k + 1)
 ,

H(k + 1) �
H(k)

h(k + 1)
 ,

](k + 1) �
](k)

v(k + 1)
 .

(24)

(e multivariable recursive augmented least squares
identification algorithm process is shown in Figure 2 and can
be consequently described as

θj,k+1 � θj,k + Kj,k+1 yj,k+1 − h
T
j,k+1

θj,k ,

Kj,k+1 � Pj,khj,k+1 1 + h
T
j,k+1Pj,khj,k+1 

− 1
,

Pj,k+1 � Pj,k − Kj,k+1hj,k+1Pj,k.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(25)

For the identification performance analysis, the fol-
lowing multi-input multioutput simulation model was
established:

y1(k)

y2(k)
  � −A1

y1(k − 1)

y2(k − 1)
  − A2

y1(k − 2)

y2(k − 2)
  + B0

u1(k − 1)

u2(k − 1)
  + B1

u1(k − 2)

u2(k − 2)
 

+ C1
]1(k − 1)

]2(k − 1)
  + C2

]1(k − 2)

]2(k − 2)
  +

]1(k)

]2(k)
 ,

(26)

where ](k){ } denotes the white noise N(0, 1) that follows a
normal distribution in the diving phase. A four-displacement
register with an input amplitude of 1 is used for the signal input.

4. Simulation Verification

To verify the effectiveness of the algorithm and analyze the
identification performance of the modified multivariate

augmented recursive least squares method, a simulation
model is taken as an example. Figure 3 represents the
comparison of the model noise identification results. (e
noise prediction of the system by the multivariate aug-
mented recursive least squares method is closer to the real
noise after approximation.(e first channel noise prediction
model characteristic parameters are within the range of
aven1

, varn1
and the second channel noise prediction model
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characteristic parameters are within the range of aven2
, varn2

.
(e identification results are shown in Figure 4 and Table 1.

5. Flight Test

An SUAV generally follows a single-wing and V-shaped
stern layout. Pitching and yawing are controlled by the
V-shaped stern control surface while rolling is manipulated

by the aileron. Electrically powered two-blade propellers are
used for power supply, and the electric motor is installed
behind the fuselage, i.e., a push-type SUAV is employed. As
presented in Figure 5, a single ejection device is used for the
launch. Table 2 lists the basic parameters of this SUAV.

After launching the ejection device, the SUAV is con-
trolled by the autopilot and a user in the loop to ensure that
the SUAV flies in accordance with the preset trajectory at a

Collect test data

Case 1 Case 2 Case i Case n

Covariance Pj, θj
initialization

Refresh parameters θj

Refresh parameters θj

Refresh parameters θj Refresh parameters θj

Calculate information
vector h (j, k),

Calculate information
vector h (j, k),

Calculate information
vector h (j, k),

Calculate information
vector h (j, k),

Gain vecctor
K (j, k), covariance

matrix P (j, k)
Gain vecctor

K (j, k), covariance
matrix P (j, k)

Gain vecctor
K (j, k), covariance

matrix P (j, k)

Gain vecctor
K (j, k), covariance

matrix P (j, k)

k=k+1

k=k+1

k=k+1 k=k+1

Solution 2

Solution 1

Solution i Solution n

Y1m Y2m Yim Ynm
U1 U2 Ui Un

Figure 2: Identification chart of diving test.
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Figure 3: Comparison of model identification noise results. (a) First channel. (b) Second channel.
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Figure 4: Convergence curves of identification matrix parameters. (a) First channel. (b) Second channel.

Table 1: Simulation identification result.

Parameter Truth value Identification value
A1(1, 1) 1.2 1.217
A1(1, 2) −0.2 −0.204
A2(1, 1) 0.8 0.785
A2(1, 2) −0.2 −0.194
B0(1, 1) 1 0.999
B0(1, 2) 0 0.0056
B1(1, 1) 0.7 0.713
B1(1, 2) −0.2 −0.212
B2(1, 1) 0.4 0.383
B2(1, 2) −0.2 −0.217
C1(1, 1) 0.1 0.0830
C1(1, 2) −0.2 −0.158
C2(1, 1) 0.3 0.212
C2(1, 2) −0.2 −0.106
A1(2, 1) −0.2 −0.155
A1(2, 2) 0.7 0.685
A2(2, 1) −0.3 −0.283
A2(2, 2) 0.7 0.679
B0(2, 1) 0 −0.0076
B0(2, 2) 1 0.981
B1(2, 1) 0.1 0.124
B1(2, 2) −0.7 −0.684
B2(2, 1) −0.2 −0.195
B2(2, 2) 0.7 0.697
C1(2, 1) −0.3 −0.214
C1(2, 2) 0.8 0.565
C2(2, 1) −0.1 0.101
C2(2, 2) 0.4 0.286
aven1 0.02 0.0183
varn1 1.0498 1.327
aven2 7.14e− 04 3.85e− 04
varn2 1.0695 1.384
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given velocity and height. During the flight, the target region
can be monitored by an airborne camera. When a target is
found, the SUAV dives, attacks, and destroys the target.

Many measurement devices including GPS receiver,
triaxial MEMS accelerometer, triaxial angular velocity gy-
roscope, air speedometer, and barometer are integrated into
the navigation, guidance, and control system of SUAV.More
specifically, longitude, latitude, height, and the heading
information of the SUAV are provided by the GPS receiver.
(e accelerated velocity and angular velocity information
are measured by the triaxial accelerometer and triaxial
angular velocity gyroscope, respectively. (e airspeed is
measured by the airborne airspeed sensor.

Before the flight test, the UAV sensor and navigation
equipment should be calibrated to reduce the noise impact.
(e flight test should be carried out in sunny weather and
with low wind presence. Wind speed measurement curve of
the flight test is displayed in Figure 6. (e initial state of the
drone was adjusted to the same settings before each dive test.
To improve the validity of the data and reduce the effect of
noise in the test data, data processing such as outlier pro-
cessing, sampling time correction, data interpolation en-
cryption, data coordination analysis, and data
reconstruction were carried out on the preidentification data
of the dive test [34, 35].

(e flight path of the SUAV is displayed in Figure 7.
During testing, when the SUAV finds the target, it adjusts
the attacking posture and consequently dives to attack. (e
SUAV performed five diving attacks in total. During the first
four diving attacks, when the SUAV dived and approached
the target, it was rapidly pulled up by the remote control
handle to achieve attitude adjustment. During the fifth
diving attack, the SUAV directly stroke the target.

(e adjusted pulse width outputs of each control ma-
nipulate channel during the simulated diving attack are
displayed in Figure 8. (e manipulated variables in the
pitching and rolling channels exhibited the most drastic
changes. Furthermore, these were consequently regarded as
the main controlled variables that also constitute the coupled
control input. (e throttle channel during diving was
controlled by the remote device under a constant input
control pattern.

6. Results and Discussion

(rough the model loss functions corresponding to different
parameter combinations comparison, the model structure of
the SUAV in the diving phase can be written as

Figure 5: SUAV and ejection device.

Table 2: Basic parameters of SUAV.

Parameter Value
Wingspan（m） 1.3
Length（m） 0.83
Wing area（m2） 0.3
Take-off weight（kg） 2
Motor X2820|-5
Battery Polymer lithium battery
Propeller APC 10 × 6
Steering engine (number) 4
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Figure 6: Wind speed of the flight test.
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Figure 7: Flight trajectory of small UAV.
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Figure 8: Changes of the PWM in the dive section. (a) First time. (b) Second time. (c) (ird time. (d) Fourth time. (e) Fifth time.
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where, A1, A2, B0, B1, B2, C1, and C2 denote the parameter
matrices to be identified.

(e first four sets of test data in the diving flight test were
used as the identification data, while the fifth set of test data
was used as the validation data. Table 3 lists the identification
results.

Figure 9 presents the convergence curves of the
identification parameters of the matrices A1, A2, B0, B1, B2,
C1, and C2 . At the beginning of iteration, the identifi-
cation parameters have significantly changed, which also
increased the predicted model noise, as presented in
Figure 10. Following approximately 100 iterations, the
parameters exhibited gentle changes and slight
adjustment.

Figure 11 is a comparison curve of the identification
results of a small drone dive model. (e identification
method proposed in this paper still predicts the changes in
the pitch and roll angular rates well.(e average errors of the
pitch and roll angular rate are 0.0143 rad/s and 0.00868 rad/s,
respectively, which is better than conventional least squares
identification results (average error of 0.0251 rad/s and

Table 3: Identification results of flight test.

Parameter Identification value
A1(1, 1) −1.659
A1(1, 2) 0.0512
A2(1, 1) 0.670
A2(1, 2) −0.0444
B0(1, 1) −6.57e− 5
B0(1, 2) −2.089e− 4
B1(1, 1) −0.00202
B1(1, 2) −0.000219
B2(1, 1) 0.00207
B2(1, 2) 0.000441
C1(1, 1) 0.0833
C1(1, 2) −0.00876
C2(1, 1) −0.0648
C2(1, 2) 0.00734
A1(2, 1) −0.369
A1(2, 2) −0.828
A2(2, 1) 0.208
A2(2, 2) 0.132
B0(2, 1) 1.634e− 4
B0(2, 2) 7.959e− 5
B1(2, 1) 0.000327
B1(2, 2) −0.00768
B2(2, 1) 0.00126
B2(2, 2) 0.00559
C1(2, 1) −0.0364
C1(2, 2) 0.00796
C2(2, 1) −0.100
C2(2, 2) 0.00647
avenele

0.0101
varnele

0.00841
avenail

0.00739
varnail

0.0144
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Figure 9: Convergence curves of identification matrix parameters.
(a) q channel. (b) p channel.
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0.0125 rad/s). During the dive, the UAV’s longitudinal
motion range is larger, and the degree of nonlinearity is
greater than that of the lateral direction, which makes the
longitudinal identification accuracy slightly worse than that
of the lateral direction.

Figure 12 presents the validation data of the diving
model. (e established model well predicted the change of q,
with a mean validation error of 0.0356 rad/s; by contrast, the
p was poorly validated, with a mean validation error of
0.0481 rad/s. (e prediction results are better than the
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Figure 10: Identification results of noise prediction. (a) Prediction noise of q channel. (b) Prediction noise of p channel.

-0.5

0

0.5

1

1.5

q 
(r

ad
/s

)

-1.5

-1

-0.5

0

0.5

1

p 
(r

ad
/s

)

100 200 300 400 500 6000
k

100 200 300 400 500 6000
k

Experimental data

Identification data (RLS)
Identification data (Modified RELS)

Figure 11: Curves of identification results.
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conventional identification method (the average error is
0.1054 rad/s and 0.0902 rad/s).

7. Conclusions

Based on the flight test of the SUAV, the mathematical model
of the dive phase was identified in this paper. A topological
mathematical model of multi-input and multioutput noise
terms for SUAV was constructed. Moreover, an improved
multivariable augmented recursive least squares method was
proposed. (e above method was applied and analyzed via the
identification test of a small UAV dive model. By comparing
the results with the least squares method, it was shown that the
proposed mathematical model and identification method can
effectively obtain the parameters of the drone dive model.
Furthermore, they can achieve high-precision identification of
the drone dive model. (is method is suitable for building
nonmechanical modeling of the system when experimental
data are available. In addition, the proposed method does not
support the change mechanism of the internal physical pa-
rameters of the model. Future research work will focus on the
application of tilt-rotor, trans-medium aircraft, and other new
configuration aircraft tests. In addition, it will generate relevant
test data, study the test modeling technology of special flight
phases, and expand the scope of application of the proposed
method. In terms of algorithm research, the results of more
identification methods will be compared to continuously
improve the identification performance of the model
algorithm.
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