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In cloud manufacturing, customers register customized requirements, and manufacturers provide appropriate services to
complete the task. A cloudmanufacturing manager establishes manufacturing schedules that determine the service provision time
in a real-time manner as the requirements are registered in real time. In addition, customer satisfaction is affected by various
measures such as cost, quality, tardiness, and reliability. 'us, multiobjective and real-time scheduling of tasks is important to
operate cloud manufacturing effectively. In this paper, we establish a mathematical model to minimize tardiness, cost, quality, and
reliability. Additionally, we propose an approach to solve the mathematical model in a real-time manner using a multiobjective
genetic algorithm that includes chromosome representation, fitness function, and genetic operators. From the experimental
results, we verify whether the proposed approach is effective and efficient.

1. Introduction

Cloud manufacturing (CM) is an advanced model that
provides a cloud-based manufacturing platform on which
enterprises virtualize and share their manufacturing services
such as welding, milling, and machining to produce highly
customized products [1–3]. A task to produce a customized
product consists of several activities, and each activity
provides a related manufacturing service. 'e task is pro-
cessed in the following order [4]. First, a platform manager
determines the manufacturing services and an appropriate
processing order. 'is step is called a task definition. 'e
manager then establishes a schedule by selecting services
from the platform and determines the start times of each
service, considering availability, processing time, and service
order. 'is step, called task scheduling, differs from service
allocation in that it considers time [5]. In other words, it
allows duplicate assignment of a service (in this case, delay
may occur), while service allocation does not. Finally, the
task sequence begins processing according to the schedule.

Because task scheduling is an important operational
problem in CM, many researchers have recently addressed

it. Zhou et al. [6] modeled a scheduling problem to minimize
the weighted sum of differences between requirement levels
and actual levels in terms of time, cost, and quality, and
service type is considered a major constraint.'ey improved
a genetic algorithm (GA) to solve the scheduling problem
and compared it with particle swarm optimization (PSO)
and simulated annealing in an experiment in which each
task was given a different weight. 'ey argued that their
proposed algorithm outperformed other algorithms in terms
of objective value. Cao et al. [7] investigated a task-sched-
uling problem in terms of time, quality, cost, and service and
adopted fuzzy decision-making theory to transform these
criteria into degrees of relative superiority. 'ey presented a
mathematical model that maximizes the weighted sum of the
relative degrees and applied ant colony optimization (ACO)
to obtain a solution. 'rough experiments, they showed that
ACO outperformed GA and PSO in every iteration. Liu et al.
[8] revealed that workloads affect total completion time,
service utilization, and so forth in task-scheduling problems.
'ey compared two scheduling methods based on workload.
'e first completes the tasks with larger workloads first,
while the second completes tasks with smaller workloads
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first. 'ey concluded that the first method yields a superior
performance. Jiang et al. [9] addressed a task-scheduling
problem in CM that specializes in disassembly, with the
objective of minimizing both total expected makespan and
cost. 'ey designed a multiobjective algorithm using the
nondominated sorting genetic algorithm II (NSGA-II) to
solve the task-scheduling problem. Li et al. [10] studied a
task-scheduling problem for distributed robots in CM in
which tasks were scheduled by allocating a robot to a
subtask, considering geographical location. 'ey solved the
problem from three perspectives: difference of workload
among robots, overall cost, and overall processing time with
a GA.

Although previous research investigated task scheduling
from multiple perspectives, the chosen approaches were
unrealistic in terms of multiobjective and real-time char-
acteristics. Scheduling problems should consider two or
more objectives simultaneously. Some researches such as in
[6] considered multiple objectives as a weighted sum, but
they also were not practical as it proved difficult to choose
the proper weight. Only a few (e.g., [9]) considered si-
multaneous objectives, when modeling the scheduling
problem. In addition, the proper services should be used in
real-time process (sub) tasks whenever they are registered
because this aspect is an important characteristic of CM
platform operations.

Meta-heuristic algorithms have been frequently
employed to solve computational engineering problems
[11–17]. For example, Hoang [11] integrated history-based
adaptive differential evolution and linear population size
reduction to find the optimal hyperparameters of the sup-
port vector machine for pitting corrosion detection. Chen
et al. [12] developed a hybrid of variable neighborhood
search (VNS) and estimation of distribution algorithm
(EDA), called VNS-EDA, to compose the feature subset for
credit risk classification. Jiang et al. [18] improved particle
swarm optimization (PSO) by integrating with the gravi-
tational search algorithm with dependent random coeffi-
cients. Peng et al. [19] introduced chaotic search for the
fuzzy neural network to improve PSO to handle complex
engineering problems.

A GA is one of the most famous meta-heuristic algo-
rithms to solve diverse scheduling problems such as project
scheduling [20, 21], job-shop scheduling [22], parallel ma-
chine scheduling [23], and flow-shop scheduling [24, 25]
and usually performs well. In addition, a multiobjective
genetic algorithm (MOGA) has also been successfully ap-
plied to various multiobjective problems, such as a sched-
uling problem to minimize both production cost and time.
For example, Tang et al. [26] addressed a multiobjective
radio frequency identification network-planning problem
with the objective of minimizing collision and interference
of the network and network cost. 'ey integrated a divide
and conquer greedy heuristic algorithm and an MOGA to
solve the problem. Zhang et al. [27] addressed multiobjective
assembly line-balancing problems to minimize cycle time
and rebalancing cost by modifying NSGA-II. Because GA is
appropriate for handling the multiobjective scheduling
problem, as shown in many previous researches, we choose

GA to solve a multiobjective real-time task-scheduling
problem in CM.

In this paper, we study a multiobjective real-time task-
scheduling problem in CM where tasks are scheduled
whenever they are registered. 'e major research contents
and contributions are as follows. First, we formalized the
scheduling problem as a binary integer programming model
with four objectives to minimize total tardiness, cost, quality,
and reliability penalties. In addition, we design an MOGA to
solve the problem by focusing on feasibility because most
solutions to the problem are infeasible. Finally, we conduct
an experiment to verify the proposed approach’s perfor-
mance. Table 1 summarizes how the contribution of our
study extends previous research results.

'e rest of this paper is organized as follows. Section 2
describes the problem and introduces a mathematical model.
Section 3 develops the proposed approach by focusing on
designing a multiobjective GA that includes chromosome
representation, a fitness function, and genetic operators.
Section 4 conducts the experiments and compares the ef-
ficiency of the GA, and Section 5 concludes the paper.

2. Problem Description and
Mathematical Model

2.1. Notation. Table 2 shows notations used in this paper.

2.2. Problem Description. In cloud manufacturing, cus-
tomers upload their requirements in the cloud-based
manufacturing platform, and then the requirements are
converted into a task, each of which consists of several
activities and saved in the task pool. Enterprises virtualize
and upload their manufacturing services (e.g., milling and
cutting), and the services are saved in the service pool. 'e
task-scheduling problem is to make a schedule for each
task in the task pool by assigning a set of proper
manufacturing services in the service pool.'e considered
task-scheduling problem is to assign a proper service to
each activity of every task to minimize total tardiness and
cost, quality, and reliability penalties at each time. Fig-
ure 1 shows a typical example of the structure of a task-
scheduling problem. 'e schedule is constructed by a
manager (or management system) on a cloud-based
manufacturing platform.

Each task is composed of several activities in sequence or
in parallel. Task Tt

2, in Figure 1, for example, is composed of
three activities: At

2,1, At
2,2, and At

2,3. (At
2,1, At

2,2) are com-
posed sequentially, while (At

2,2, At
2,3) are in parallel. 'e

required service type differs according to the activity. For
example, if Sk is the service type needed by At

i,j, then one of
Sk,v (v � 1, 2, . . . , |Sk|) can be matched to At

i,j. Each activity
can be processed only after the preceding activities have been
completed. 'e activity without preceding activities (the
root activity) can be processed only after the task to which it
belongs is registered. Finally, services may have different
performance metrics such as cost and quality even though
they are of the same type. Services should be scheduled
considering all required levels of tasks.
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Additional assumptions of the problem are summarized
as follows:

(1) Required service type to process each activity is
known

(2) 'e maximum allowed cost, minimum allowed
quality and reliability, and due date are given

(3) 'ere is no rework for any activity
(4) Customer satisfaction can be measured by cost,

quality, reliability, and due date
(5) Geographical distances among service providers are

not considered
(6) 'e outcome of a task is delivered to the customer

once the task is completed

2.3. Mathematical Model. We describe objective functions
and constraints of the established mathematical model in
Sections 2.3.1 and 2.3.2, respectively.

2.3.1. Objective Functions. 'e objectives are to minimize
the total penalty associated with tardiness, cost, quality,
and reliability. In this section, we explain how to obtain
objective values from the service schedule.

Actual delivery time 􏽢D
t

i of task Tt
i is the maximum

among completion times of activities that do not have the
following activities. Because completion time of At

i,j is
calculated as the sum of service assignment time and pro-
cessing time, 􏽢D

t

i is obtained as follows:

􏽢D
t

i � max
Ft

i,j
�∅

􏽘

k�Type At
i,j􏼐 􏼑,∀v,τ ≥ t

x
t,τ
i,j,k,v × τ + pk, v − 1􏼐 􏼑􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(1)

where Ft
i,j and pk,v denote the set of At

i,j’s following activities
and the processing time of Sk,v, respectively. With equation (1),
the tardiness penalty 􏽥T

t

i of Tt
i is computed as the difference

Table 1: Contribution of this paper to previous research.

Previous
study

Considering
multiobjective

Considering real-
time

Considering various composition
types

Improving meta-heuristic
algorithm

Zhou et al. [6] √ √ √
Cao et al. [7] √ √ √
Liu et al. [8] √ √
Jiang et al. [9] √ √ √
Li et al. [10] √ √
'is paper √ √ √ √

Table 2: Notations.

Notation Description

Service related

Sk Type k service, k � 1, 2, . . . , l

Sk, v vth type k service, v � 1, 2, . . . , |Sk|

ck, v Cost of Sk, v

qk, v Quality of Sk, v

rk, v Reliability of Sk, v

pk, v Processing time of Sk, v

Task and activity
related

Tt
i

Task i registered at time t � 1, 2, . . . , T, i � 1, 2, . . . , nt, where nt is the number of tasks registered at
time t

At
i,j Activity j in task Tt

i , j � 1, 2, . . . , mt
i , where mt

i is the number of activities in Tt
i

Type(At
i,j) Service type required for At

i,j, type(At
i,j) ∈ S1, S2, . . . , Sl􏼈 􏼉

Pt
i,j Set of precedent activities of At

i,j

Ft
i,j Set of following activities of At

i,j

Dt
i Due date of Tt

i

Ct
i Maximum allowed cost to complete Tt

i

Qt
i Minimum allowed quality of Tt

i

Rt
i Minimum allowed reliability of Tt

i
􏽢D

t

i Actual delivery date of Tt
i

􏽢C
t

i Actual cost to complete Tt
i

􏽢Q
t

i Actual quality of Tt
i

􏽢R
t

i Actual reliability of Tt
i

􏽥T
t

i Tardiness penalty on Tt
i

􏽥C
t

i Cost penalty on Tt
i

􏽥Q
t

i Quality penalty on Tt
i

􏽥R
t

i Reliability penalty on Tt
i

Decision variables xt,τ
i,j,k,v � 1, if Sk, vismatched toAt

i,j at time τ ≥ t, and � 0, otherwise
I(St

k,v) � 1, if Sk,v is available at time t, and � 0, otherwise
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between 􏽢D
t

i and Dt
i if it is bigger than zero, and zero

otherwise:

􏽥T
t

i � max 􏽢D
t

i − D
t
i , 0􏼐 􏼑, (2)

where Dt
i is the due date of Tt

i . By expanding equation (2) to
all tasks registered at t, we have the first objective function,
which is the sum of tardiness penalty for every task regis-
tered at t:

minimizeZ1 � 􏽘

nt

i�1

􏽥T
t

i . (3)

'e actual cost 􏽢C
t

i to complete Tt
i is calculated as the sum

of costs of services assigned to the task as given by

􏽢C
t

i � 􏽘

m(t/i)

j�1
􏽘

k�Type At
i,j􏼐 􏼑,∀v

ck, v × x
t,τ
i,j,k,v􏼐 􏼑, (4)

with equation (4), the cost penalty cpt
i on Tt

i is

􏽥C
t

i � max 􏽢C
t

i − C
t
i , 0􏼒 􏼓, (5)

where Ct
i is the maximum allowed cost to complete Tt

i . By
expanding equation (5) to all tasks, the second objective
function is obtained as follows:

minimizeZ2 � 􏽘

nt

i�1

􏽥C
t

i . (6)

Similarly, the actual quality 􏽢Q
t

i of Tt
i is the average of

qualities of services, and actual reliability 􏽢R
t

i is the product of
reliabilities of services assigned to the task as given by

􏽢Q
t

i �

􏽐
m(t/j)
j�1 􏽐

k�Type At
i,j􏼐 􏼑,∀v

qk,v × x
t,τ
i,j,k,v􏼐 􏼑

m
t
j

,

􏽢R
t

i � 􏽙

m(t/j)

j�1
􏽘

k�Type At
i,j􏼐 􏼑,∀v

rk,v × x
t,τ
i,j,k,v􏼐 􏼑,

(7)

where 􏽐k�Type(At
i,j

),∀v(rk,v × xt,τ
i,j,k,v) is the reliability of the

service assigned to activity At
i,j.

'e quality penalty is 􏽥Q
t

i � max(Qt
i − 􏽢Q

t

i , 0), and the re-
liability penalty is 􏽥R

t

i � max(Rt
i − 􏽢R

t

i , 0). 'e third and fourth
objective functions become (8) and (9), respectively:

minimizeZ3 � 􏽘

nt

i�1

􏽥Q
t

i , (8)

minimizeZ4 � 􏽘

nt

i�1

􏽥R
t

i . (9)

2.3.2. Constraints. Constraints are related with service type,
activity precedence, and service availability. Services of the
required type can be assigned to an activity; therefore,

Task pool Service pool

Service available at t

Service not available at t
Assigning relationship

• •
 •

• •
 •

• •
 •

• •
 •

• •
 •

• • •

T1
t

T2
t

S1

S1,1

S1,2

S1,3

S1,|S1|

S2,1

S2,2

S2,3

S2,|S2|

S3,1

S3,2

S3,3

S3,|S3|

Sl,1

Sl,2

Sl,3

Sl,|Sl|

S2 S3 Sl

Tnt
t Ant,1

t Ant,2
t

Ant,3
t

Ant,4
t

A1,1
t A1,2

t

A2,2
t

A2,3
t

A2,1
t

Figure 1: Typical example of task scheduling.
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􏽘

Sk

v�1
􏽘

T

τ ≥ t

x
t,τ
i,j,k,v � 1, ∀Type A

t
i,j􏼐 􏼑 � k (k � 1, 2, . . . , l). (10)

Another constraint is the activity precedence. A service
cannot be allocated to an activity with a preceding activity
that has not been completed, which is expressed as follows:

τ0 ≤ τ1, if x
t,τ0
i,j0 ,k0 ,v0

× x
t,τ1
i,j1 ,k1 ,v1

� 1, andA
t
i,j0
∈ P

t
i,j1

, (11)

where τ0 is the assignment time for a preceding activity with
assignment time τ1. x

t,τ0
i,j0 ,k0 ,v0

× x
t,τ1
i,j1 ,k1 ,v1

� 1 implies that Sk0 , v0
and Sk1 ,v1

are assigned to At
i,j0

and At
i,j1

at τ0 and τ1,
respectively.

'e next constraint is service availability. A service
cannot be allocated to other activities until it is released:

􏽘

pk,v

w�0
􏽘
i,j

x
t,τ−w
i,j,k,v ≤ 1, ∀τ, T

t
i , j, k, v. (12)

Constraint (12) can also be expressed by means of in-
dicator variables as follows:

I S
τ
k, v􏼐 􏼑≥x

t,τ
i,j,k,v, ∀τ, T

t
i , j, k, v. (13)

In other words, xt,τ
i,j,k,v � 0 if I(Sτk, v) � 0, and xt,τ

i,j,k,v � 1
otherwise. 'e indicator I(St

k,v) can prevent the system from
allocating an unavailable service and resolve an unexpected
situation in which a service becomes unavailable suddenly.
For example, a service Sk,v that is supposed to be allocated to
a task at time τ ≥ t may suddenly become unavailable be-
cause of a service-provider issue (e.g., contract expiration).
'e proposed GA can resolve this by setting I(Sτk,v) � 0 for
τ ≥ t and then continuing to search the solutions.

Finally, because every decision variable is binary, we
need the following:

x
t,τ
i,j,k,v ∈ 0, 1{ }, ∀τ, T

t
i , k, v, j. (14)

3. Genetic Algorithm

'is section describes the design procedure of the multi-
objective GA to solve the mathematical model developed in
the previous section. Figure 2 shows an illustrative flowchart
of the proposed multiobjective GA, with which the schedule
for a taskTt

i is constructed in the order of the registered time.
'at is, the proposed GA selects the proper services for a
task, which are scheduled to process the task and then
service availability is updated. 'erefore, a task can be
scheduled as soon as it is uploaded (that is, task can be
scheduled in a real-time manner).

3.1. Chromosome Representation. 'e hth chromosome in
the gth population is represented as χt[g][h] � (χt

1[g][h],

χt
2[g][h], . . . , χt

nt
[g][h]), where χt

i[g][h] is a chromosome
for scheduling Tt

i . χ
t
i [g][h] consists of χt

i,1[g][h], χt
i,2[g][h],

. . ., χt
i,mt

i

[g][h], and χt
i,1[g][h] has two elements such as

χt
i,j[g][h] � v

t
i,j[g][h], τt

i,j[g][h]􏼐 􏼑, (15)

where vt
i,j[g][h] is a service assigned to the activity and

τt
i,j[g][h] � (ττt,s

i,j[g][h], τt,s
i,j[g][h] + 1, . . . , τt,e

i,j[g][h] ) is a
processing period of At

i,j by vt
i,j[g][h]. Here, τt,s

i,j[g][h] is the
starting time and τt,e

i,j[g][h] � τt,s
i,j[g][h] + pk,v − 1 is the

completion time of At
i,j.

3.2. Generation of Initial Solution. If the GA generates initial
solutions randomly, then convergence would take an ex-
tended amount of time because most solutions are infeasible.
We therefore propose a method to generate initial solutions,
χt[1][h], that are feasible, through Algorithm 1.

'is algorithm generates solutions satisfying the con-
straints in Section 3.3 and operates ps times to generate
χt[1][1], χt[1][2], . . ., χt[1][ps], where ps is the number of
chromosomes in a population.

3.3. Fitness Function. Pareto ranking is employed as a fitness
function to select ps chromosomes and to yield the best
chromosome in each generation. 'is method calculates a
fitness value st[g][h] of χt[g][h] as follows [28]:

Generate initial population

Evaluate population with
multiobjectives

Select chromosomes with high
fitness value

Perform crossover for selected
chromosomes

Mutate child chromosomes and
compose new population

Termination
condition

Yield the best schedule

Satisfied

Not
satisfied

I(Sk,v), Ti
tt

Update I(Stk,v) t ≥ τ, k, v 

Figure 2: Flowchart of the proposed approach.
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s
t
[g][h] �

1
μ c1 χt

[g][h]􏼐 􏼑, c2 χt
[g][h]􏼐 􏼑, c3 χt

[g][h]􏼐 􏼑, c4 χt
[g][h]􏼐 􏼑􏼐 􏼑

, (16)

where ci(χt[g][h])(i � 1, 2, 3, 4) is the ranking of the value,
Zi, of the objective function with regard to χt[g][h] among
chromosomes in the same generation and μ(·) denotes a
mean function. Table 3 demonstrates how to calculate the
fitness value by means of Pareto ranking.

For example, because the Z1 values of
χt[g][i](i � 1, 2, 3, 4) are 10, 12, 5, and 8, their ranks by
rank1(χt[g][i])(i � 1, 2, 3, 4) are 3, 4, 1, and 2, respectively
(see the first column of Table 3, circled by a bold blue
rectangle). 'e rankings of Z1, Z2, Z3, and Z4 with regard to
χt[g][1] are 3, 1, 3, and 2, respectively, and the fitness value
is calculated as (1/μ(3, 1, 3, 2)) � 0.444 (see the first row of
Table 3, delineated by a dashed red rectangle). Note that the
solution with a smaller objective function value takes a
higher ranking because they are to be minimized.

3.4. Genetic Operators. We adopt a uniform crossover op-
erator that selects one of the crossover lines randomly and
assigns chromosomes of parents to the children based on
those lines [29]. In this paper, we avoided generating in-
feasible solutions as presented in Algorithm 2.

4. Experiment

In this section, we conduct experiments to verify that the
proposed approach is practical under the experiment
environment:

OS: Microsoft Windows 10 Home (×64)
CPU: Intel® Core™ i7-6700 CPU

RAM: 16.0GB
Language: Python 3.6.9

First, a small toy problem is introduced to find all
possible solutions and calculate their fitness values by
means of a Pareto ranking method in Section 4.1, followed
by checking the ranks of the solutions obtained by the
proposed approach. Second, we apply the proposed ap-
proach to solve a more realistic, large-scale scheduling
problem and examine the search time to establish a
schedule in Section 4.2. 'e first experiment shows that
our approach can find a schedule that is effective and
sufficiently close to the optimal schedule. 'e second
experiment is to verify the given schedule as efficient and
appropriate for a large-scale practical problem in real
time.

4.1. Effectiveness Verification. Figure 3 shows the task type
introduced to compare the proposed method with an ex-
haustive search method. “S” and “H” are activities that re-
quire software and hardware services, respectively.

We assume three tasks, three software services, and three
hardware services in this problem. Information about the
tasks, such as maximum allowed due date (Dt

i ), cost (Ct
i),

minimum quality (Qt
i), and reliability (Rt

i ), is summarized
in Table 4.

Table 5 supplies information on services such as cost
(ck,v), quality (qk,v), reliability (rk,v), and processing time
(pk,v).

Input: I(Sτk,]) for all τ ≥ t, k, v

Procedure:
Step 1. i � 1.
Step 2. j � 1, and save the service type for At

i,j as k, and randomly select vt
i,j and τt,s

i,j which satisfies:
(1) I(Sτk,]) � 1 for τ � τs

i,j, τs
i,j + 1, . . . , τs

i,j + pk,v − 1, and
(2) τs

i,j is one of minimums among τ satisfying (1), and update I(Sτk,]) � 0 for ] � vt
i,j and

τ � τs
i,j, τ

s
i,j + 1, . . . , τs

i,j + pk,v − 1.
Step 3. Increase j by 1 and save the service type for At

i,j as k.
Step 4. Randomly select vt

i,j and τs
i,j which satisfies:

(1) I(Sτk,]) � 1 for τ � τs
i,j, τs

i,j + 1, . . . , τs
i,j + pi,j − 1,

(2) τs
i,j ≥ τs

i,j′ + pi,j′ − 1 for At
i,j′ ∈ PAt

i,j,
(3) τs

i,j is one of minimums among τ satisfying both (1) and (2), and update I(Sτk,]) � 0 for ] � vt
i,j and

τ � τs
i,j, τ

s
i,j + 1, . . . , τs

i,j + pk,v − 1.
Step 5. χt

i,j[1][h] � (vt
i,j, (τs

i,j, τs
i,j + 1, . . . , τs

i,j + pk,v − 1)).
Step 6. If i � nt and j � mt

i , terminate this algorithm. If j � mt
i and i≠ nt, increase i by 1

and go to Step 2. If j≠ mt
i , increase j by 1 and go to step 3.

output: χt[1][h].

ALGORITHM 1: Generation of initial solutions of χt[1][h].
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GA parameters in the proposed approach are set as
follows: the number of generations is 50; the number of
solutions per each generation is 20. 'erefore, the GA
searches 50×20 �1000 solutions. We calculate the ranks of
all solutions, including the one obtained by the proposed
approach. Any inferior solutions (e.g., those waiting to
allocate a service even though it is available, solutions that
allocate no service at all, and solutions that allocate a single
service to every activity) are ignored when searching all
possible solutions. Table 6 summarizes all possible solu-
tions, which are listed in the descending order of fitness
values. 'e values in bold indicate the solution obtained by
the proposed GA.

As seen in Table 6, our approach has found the 172th
solution among 34,012,224 solutions, which lies in the top
0.00051%. In other words, the proposed algorithm can find a
solution which is very close to the optimal. Because the
proposed algorithm makes a schedule after a task is

uploaded in the task pool, we expect that the number of tasks
has little effect on the result. From the experiment result and
the real-time property of the algorithm, we can conclude that
the proposed algorithm is effective for task scheduling in
cloud manufacturing.

4.2. Efficiency Verification. Next, a CM platform is assumed
dealing with a more complicated and realistic task, depicted
in Figure 4, which was adopted from [30].

We randomly generate six situations where 5, 10, 15, 20,
25, and 30 tasks are uploaded at a day, and we calculate
search time to establish the schedules in each situation. We
assume that every task is uploaded at t, andDt

i , Ct
i , Qt

i , and Rt
i

are uniformly distributed in the intervals [30, 60], [400, 450],
[95, 100], and [0.95, 1.00], respectively.

A total of 30 software services and 15 hardware ser-
vices are virtualized and shared in the platform, and every
service is idle at first. We assume that qk, v, rk, v, and pk, v

follow uniform distributions in the intervals [95, 100],
[0.95, 1.00], and [1, 3], respectively. 'e costs of hardware
and software services are assumed to be different from
each other; that is, ck, v of software and hardware service is

SS

S

S

S

H

H

Figure 3: Task type for effectiveness verification.

Table 3: An example of the Pareto ranking method.

Objective function value () = ranking of solutions on each objective
function Fitness value

Z1 Z2 Z3 Z4

χt[g][1]
χt[g][2]
χt[g][3]
χt[g][4]

10(3) 6(1) 8(3) 16(2) 0.444
12(4) 10(3) 6(2) 20(4) 0.308
5(1) 8(2) 4(1) 15(3) 0.571
8(2) 15(4) 10(4) 10(1)

⇒

0.364

Table 4: Task information.

Task Dt
i Ct

i Qt
i Rt

i

T1
1 10 160 98.5 0.98

T1
2 8 170 99.0 0.99

T2
1 14 150 98.0 0.98

Input: parent chromosomes χt[g][h1] and χt[g][h2] (h1 ≠ h2)

Procedure:
Step 1. Initialize i as 1.
Step 2. Initialize j as 1.
Step 3. Randomly select an element from h1, h2􏼈 􏼉, and let h be the chosen and 􏽥h be the other one.
Step 4. χt

i,j[g + 1][h3] � χt
i,j[g + 1][h] and χt

i,j[g + 1][h4] � χt
i,j[g + 1][􏽥h].

Step 5. If τt,e
i,j[g][h]≤ min

j

(τt,s

i,j
[g][􏽥h]), τt,e

i,j[g][􏽥h]≤ min
j

(τt,s

i,j
[g][h]), max

􏽥j
(τt,e

i,􏽥j
[g][h])≤ τt,s

i,j[g][􏽥h], and

max
􏽥j

(τt,e

i,􏽥j
[g][h])≤ τt,s

i,j[g][􏽥h], then exchange h and 􏽥h with a probability λ, where At

i,􏽥j
∈ PAt

i,j and At

i,j
∈ FAt

i,j.

Otherwise, do nothing.
Step 6. If j � mt

i and i � nt, terminate. If j � mt
i and i≠ nt, increase i by 1 and go to Step 2. If j≠mt

i , increase j by 1 and go to
Step 3.

Output: children chromosomes χt[g + 1][h3] and χt[g + 1][h4].

ALGORITHM 2: Procedure of uniform crossover.
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assumed to follow uniform distributions in [28, 40] and
[95, 100], respectively.

Table 7 shows the search times when the numbers of
solutions are 1000, 5000, and 10,000 and tasks are 5, 10, 15,
20, 25, and 30. It is obvious that as more solutions are
searched it takes longer but is more likely to find the best
solution. 'e rightmost column is the average scheduling
time per task when 10,000 solutions are considered.

As seen, the maximum search time is 12,438 seconds
(3.455 hours) for 10,000 solutions and 30 tasks. A search

time of three and a half hours is a relatively long time,
raising the concern that the proposed approach is inade-
quate to be applied to in real time. However, the average
time to schedule a task when we searched 10,000 solutions
is 205∼420 seconds, approximately 3∼7 minutes. In prac-
tice, it is not usual for a complicated task to be uploaded
every 7 minutes. In addition, the considered task is overly
complicated comparing to realistic tasks, implying that the
average time will be much lower than the experiment result
provided in this study. 'us, once a complete and full
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S
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S

S
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Figure 4: Task type for efficiency verification.

Table 5: Service information.

Software service ck,v qk,v rk,v pk,v

S1,1 22 100 1.00 1
S1,2 18 99 0.98 2
S1,3 14 97 0.97 3
Hardware service
S2,1 40 100 1.00 1
S2,2 34 98 0.98 2
S2,3 28 97 0.97 3

Table 6: Objective functions, ranks, and fitness values of all possible solutions.

Rank
Value Rank

Fitness value
Z1 Z2 Z3 Z4 Z1 Z2 Z3 Z4

1 1 94 0.0000 0.3187 353,454 5,661,611 1 3,899,820 4.034 × 10− 7

2 1 94 0.0000 0.3187 353,454 5,661,611 1 3,899,547 4.034 × 10− 7

3 1 96 0.0000 0.3101 353,454 6,921,456 1 2,932,620 3.918 × 10− 7

4 1 96 0.0000 0.3101 353,454 6,921,456 1 2,934,610 3.917 × 10− 7

5 1 90 0.0000 0.3361 353,454 4,163,149 1 6,170,497 3.742 × 10− 7

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
172 1 96 0.1071 0.3195 272,978 6,921,456 9,569,507 4,248,174 1.904 × 10− 7

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
34,012,224 7 98 0.1428 0.3727 14,330,889 7,321,564 14,768,747 11,846,972 8.287 × 10− 8

Table 7: Search time according to the numbers of solutions and tasks (unit: seconds).

'e number of solutions to be searched
1,000 5,000 10,000 Average scheduling time for each task

'e number of tasks to be scheduled

5 140 767 1,551 310
10 225 1,646 2,050 205
15 686 1,939 6,442 429
20 831 4,267 7,964 398
25 1,068 7,694 10,141 406
30 1,322 9,012 12,438 415
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schedule has been established, which may take several
hours, a couple of tasks can be added to the existing
schedule, which can be updated within 10minutes, to
produce an efficient schedule. 'erefore, we conclude that
the proposed approach is efficient and can be used in
practice with a large number of complicated tasks and
services. Even though the proposed algorithm is applied to
establish schedules under an unreal situation in terms of the
number of tasks and services, it can be applied to real tasks
and services uploaded in CM such as in [8].

5. Conclusion

CM is a manufacturing model based on the concept of
sharing manufacturing resources among manufacturing
enterprises to deal with highly customized requests of
customers. In CM, each request is regarded a task, and it is
assigned to one or more enterprises, called task scheduling.
'e objective of the task scheduling is to maximize customer
satisfaction, and therefore, tardiness, cost, quality, and so
forth should be considered. In addition, the task should be
assigned as soon as possible for practical usage.

'is paper addressed a real-time and multiobjective task-
scheduling problem to minimize total tardiness, cost, quality,
and reliability penalties in CM. 'is problem was formalized
as a binary integer programming model, and the MOGA was
designed to solve themodel by focusing on generating feasible
solutions. From the experiment, we showed that the schedule
based on the proposed approach is near the optimal schedule
for small problems. In addition, we verified that the proposed
approach establishes effective schedules in a real-timemanner
for a more realistic large-scale problem.

In future research, we will develop a GA that does not
generate infeasible or inferior solutions. 'is will surely
reduce the search time remarkably. In addition, we will
conduct practical research to apply our algorithm to the
commercialized cloud manufacturing system. Finally, we
will improve the proposed multiobjective GA to apply it to
train the deep learning model-based CM scheduler.
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