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-is study induced a weak Hopf algebra from the path coalgebra of a weak Hopf quiver. Moreover, it gave a quiver representation
of the said algebra which gives rise to the various structures of the so-called weak Hopf algebra through the quiver. Furthermore, it
also showed the canonical representation for each weak Hopf quiver. It was further observed that a Cayley digraph of a Clifford
monoid can be embedded in its corresponding weak Hopf quiver of a Clifford monoid. -is lead to the development of the
foundation structures of weak Hopf algebra. Such quiver representation is useful for the classification of its path coalgebra.
Additionally, some structures of module theory of algebra were also given. Such algebras can also be applied for obtaining the
solutions of “quantum Yang–Baxter equation” that has many applications in the dynamical systems for finding interesting results.

1. Introduction

A bialgebra H is equipped with the structures of algebra
(H, m) and coalgebra. If H is a linear space over a field K,
then H is called an algebra if H has a unit u: K⟶ H and a
multiplication m: H⊗H⟶ H, such that
m(Id⊗m) � m(m⊗ Id) (associativity) and Id � m(u⊗ Id) �

m(Id⊗ u) (unitary property), where Id is the identity map of
H. H is called a coalgebra if H has a comultiplication
Δ: H⟶ H⊗H and a counit ε: H⟶ K, such that
(Δ⊗ Id)Δ � (Id⊗Δ)Δ (coassociativity of Δ ) and
Id � (ε⊗ Id)Δ � (Id⊗ ε)Δ (counitary property) [1]. -en,
we have a unique element ρ ∈ Homk(H, H), such that
idH ∗ ρ � ρ∗ idH � με, where “∗ ” is the convolution in
Homk(H, H). With this map ρ, H becomes a Hopf algebra.
Montgomery [2] described the action of Hopf algebra on
rings, Me [3] wrote a series of mathematics lecture notes,
Redford [4] deliberated the structure of Hopf algebras with a
projection, Daele and Wang [5] discussed the source and
target algebras for weak multiplier Hopf algebras, Yang and

Zhang [6] proposed the ore extensions for Sweedler’s Hopf
algebra, Smith [7] formulated the quantum Yang–Baxter
equation and quantum quasigroups, Nichita [8] introduced
the Yang–Baxter equation with open problems, and Cibils
and Rosso [9] introduced the Hopf quiver. According to
them, a Hopf quiver is just a Cayley graph of a group. -ey
discussed some matters regarding representations of Hopf
algebra/quantum group and quiver. A quiver representation
is a set Vi|i ∈ Q0  of k-vector spaces Vi having finite bases
together with the set ∅a: Vt(a)⟶ Vh(a) ∈ Q1  of k-linear
maps. We denote a representation by R � (Vi,∅a) [10].

A bialgebra H over a field k is called a weak Hopf algebra
if there is an element T in the convolution algebra
Homk(H, H), such that id∗T∗ id � ρ∗ id and
T∗ id∗T � T, and T represents a weak antipode of H. Li
obtained solutions for quantumYang–Baxter equation using
such weak Hopf algebra [1, 11, 12]. A weak Hopf algebra H

with a weak antipode T is a semilattice graded weak Hopf
algebra if H � ⊕ λεYHλ, where the graded sums Hλ; λεY are
the subweak Hopf algebras (which are Hopf algebras) with
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antipodes restrictions T|Hλ
for each λεY [13]. -en, there

exist a homomorphism φλ,μ: Hλ⟶ Hμ if λμ � μ, such that
aεHλ and bεHμ, and the multiplication a · b in H is given by

a · b � φλ,λμ(a)φμ,λμ(b). (1)

A Clifford monoid S is a regular semigroup S. Its center
C(S) contains each of its idempotent. In other words, this is
a semilattice of groups which is a collection of maximal
subgroups Gλ: λεY  of a regular monoid S, such that S �

∪ λεYGλ and GλGμ⊆Gλμ for all λ, μ � Y, where Y is a sem-
ilattice. For any λ, μ � Y with λμ � μ, there are group ho-
momorphism φλ,μ: Gλ⟶ Gμ with φλ,λ as an identity
homomorphism on Gλ, and if λμ � μ and μ] � ], then
φμ,]φλ,μ � φλ,]. -e multiplication in S for all a, b ∈ S is
defined as above in H. -e partial ordering “≤ ” in Y is given
by “λ≤ μ if and only if λμ � λ for all λ, μ ∈ Y.”

Cibils introduced the Hopf quiver and discussed the
structures of the Hopf algebra obtained corresponding to the
Hopf quiver [9]. By [14], the categories of Hopf algebra are
discussed for the representation has tensor structures in-
duced from the graded Hopf structures of kΓ. By [15], the
path coalgebra kΓ of a quiver Γ admits a coquasitriangular
Majid algebra structure if and only if Γ is a Hopf quiver of the
form Γ(G, R) with G abelian. Here, the authors gave a
classification of the set of graded coquasitriangular Majid
structures on connected Hopf quiver. Huang and Tao gave a
thorough list of coquasitriangular structures of the graded
Hopf algebra over a connected Hopf quiver [16]. Ahmed and
Li introduced the concept of the so-called weak Hopf quiver
and discussed some structures of its corresponding weak
Hopf algebras and weak Hopf modules [17]. Some literature
that help for better understanding of these algebra is listed.
Auslander et al. [18] gave the theory of representation of
artin algebra, China and Montgomery [19] defined the basic
coalgebras, Cibils [20] found the tensor product of Hopf
bimodules on a group, Nakajima [21] initiated the quiver
varieties for ring and representation theorists, Simson [22]
discussed the coalgebras, comodules, pseudocompact alge-
bras, and tame comodule type, andWoodcock [23] put some
remarks on the theory of representation of coalgebras.

In this study, we introduce a notion of weak Hopf quiver
representation that generalizes the Hopf quiver represen-
tation. We also prove that the Cayley digraph of a Clifford
monoid S is embedded in the weak Hopf quiver of the al-
gebra of the Clifford monoid which is also a weak Hopf
algebra. Some calculations are made for obtaining the im-
ages of various mappings calculated by the tool of
Mathematica.

2. Preliminaries

We include some necessary concepts of the related matter in
this study to make the reader familiar with the matter of the
work. First, we include the definition of weak Hopf quiver
which is given as follows:

Definition 1 (see [17]). Let S � ∪ λ∈YGλ be a Cliffordmonoid,
where Y is a semilattice of Gλ; λ ∈ Y, the subgroups of S.

(1) A ramification data r of S means a sum of rλ �


cλ∈


Cλ

rCλ
Cλ of subgroups Gλ; λ ∈ Y, i.e.,

r � λ∈Yrλ � λ∈Y
cλ∈


Cλ

rCλ
Cλ.

(2) -en, r could be viewed as a positive central element
of the Clifford monoid ring of S, where Cλ represents
the collection of total conjugacy classes of subgroup
Gλ for λ ∈ Y.

Let Γ be a quiver satisfying the following conditions:

(a) -e set of vertices of Γ just represents the set S

(b) Let x ∈ Gμ, y ∈ Gλ; x, y ∈ S and λ, μ ∈ Y; if μ≱λ, then
there does not exists an arrow from x to y, and if
μ≥ λ, then the number of arrows from x to y is equal
to that from φμ,λ(x) to y which is equal to rCλ

, if there
exist cλ ∈ Cλ, such that y � cλφμ,λ(x).

-en, Γ is said to be the corresponding weak Hopf quiver
of r. Γ0 is the set of vertices and Γ1 is the set of arrows of Γ.

Definition 2 (see [17]). Let for a quiver Γ and kΓ be the
k-space with basis the set of all paths in Γ, where k is a field.
Define kΓa by the algebra withmultiplication and underlying
k-space kΓ as

qp �
bm, . . . , b1an, . . . , a1, if t an(  � s b1( ,

0, otherwise,
 (2)

for the paths p � an, . . . , a1 and q � bn, . . . , b1. -en, kΓa
becomes an associative algebra, known as path algebra of Γ
[3,16].

Definition 3 (see [4]). Let Γ be a quiver (finite or infinite)
and define kΓC to be a coalgebra with comultiplication Δ of
kΓC defined by

Δ(p) � p⊗ s(p) + 
n−1

i�1
an, . . . , ai+1 ⊗ ai, . . . , a1 + t(p)⊗p,

(3)

for any path p � an, . . . , a1: ai ∈ Γ1; i � 1, . . . , n. For special
case, a trivial path ei, the comultiplication is Δ and is de-
scribed byΔ(ei) � ei ⊗ ei for each vertex i ∈ Γ0 and the counit
ε is defined by

ε(p) �
0, if n≥ 1,

1, otherwise.
 (4)

We use kΓ the path coalgebra of the quiver Γ.

Lemma 1 (see [4]). If kΓ is the path coalgebra corresponding
to the quiver Γ, then kΓ is pointed and G(kΓ) � Γ0. 7ere is a
necessary and sufficient condition between the semilattice-
graded weak Hopf algebra and the existence of a weak Hopf
quiver corresponding to a Clifford monoid with some rami-
fication data.

Theorem 1 (see [1]). Let Γ represent a quiver; then, the
following two statements are equivalent:
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(i) 7e path coalgebra kΓ acknowledges a semilattice-
graded weak Hopf algebra structure, such that all
graded summands are themselves graded Hopf
algebra

(ii) With respect to some ramification data, Γ is the weak
Hopf quiver of some Clifford monoid S

7e following proposition tells us that the collection of
elements of group-like of path coalgebra kΓ of a weak Hopf
quiver Γ is a Clifford monid.

Proposition 1 (see [1]). If Γ(S, r) is a weak Hopf quiver
corresponding to a ramification data r of a Clifford monoid S,
then Γ0 is the collection of elements of group-like of path
coalgebra kΓ, and kΓ0 � kS, the Clifford monoid algebra of S

is a subweak Hopf algebra of kΓ.

Definition 4 (see [4]). Suppose u and v represent the vertices
in Γ, and k represents a field. -e (v, u)-isotypic component
of a kΓ0-bicomodule M is vMu � m{ ∈M|δL(m) � v

⊗m, δR(m) � m⊗ u}. In particular, v(kΓn)u is the vector
space of n-paths from vertex u to vertex v.

3. Structures of Weak Hopf Quivers

Here, we discuss the structures of weak Hopf quiver and its
algebra. We start by the following example.

3.1. An Illustrative Example. Let Y � α, β, c, ρ, σ, δ  be the
semilattice with multiplication “·” as given in Table 1.

For a ring R with identity R2×2 denotes the 2 × 2 full
matrix ring over R, U(R) the group consisting of all units in
R. Let Z be the integer numbers ring. For a prime p, Zp is a
field, and U(Z2×2

p ) is just the 2 × 2 general linear group
GL2(Zp) over Zp. Assume that Gα � eα  and Gδ � eδ  are
the trivial groups, Gβ � GL2(Z2), Gc � U(Z2×2

4 ),

Gρ � GL2(Z3), Gσ � U(Z2×2
6 ). -en, Gu ∩Gv � ∅, for any

u, v ∈ Y, u≠ v, setting S � ∪ u∈YGu. -e multiplication is
defined as above on S makes S � ∪ u∈YGu a Clifford monoid
with regards to the semilattice Y [11].

-e following mappings exist between the subgroups of
the Clifford monoid.

φδ,δ: Gδ⟶ Gδ, defined by φδ,δ(eδ) � eδ

φδ,σ : Gδ⟶ Gσ , defined by φδ,σ(eδ) � eσ

φδ,c: Gδ⟶ Gc, defined by φδ,c(eδ) � ec

φδ,β: Gδ⟶ Gβ, defined by φδ,β(eδ) � eβ

φδ,ρ: Gδ⟶ Gρ, defined by φδ,ρ(eδ) � eρ

φδ,α: Gδ⟶ Gα, defined by φδ,α(eδ) � eα

We denoteCλ as a conjugacy class of the groupGλ, λ ∈ Y.
For each x ∈ Gδ and y ∈ Gδ, there exists cδ ∈ Cδ, such that
y � cδφδ,δ(x). Since there is only one arrow (the loop) from
Gδ to Gδ, therefore, rCα

� 1.

φσ,σ : Gσ⟶ Gσ , defined by φσ,σ : Z6⟶ Z6,

U(Z6) � 1, 5 

φσ,σ(1) � 1,φσ,σ(2) � 2,φσ,σ(3) � 3,φσ,σ(4) � 4,φσ,σ(5)

� 5,φσ,σ(6) � 0,

(5)

φσ,c: Gσ⟶ Gc, defined by φσ,c: Z6⟶ Z4,

U(Z4) � 1, 3 

φσ,c(1) � 1,φσ,c(2) � 2,φσ,c(3) � 3,φσ,c(4) � 0,φσ,c(5)

� 1,φσ,c(6) � 2,

(6)

φσ,β: Gσ⟶ Gβ, defined by φσ,β: Z6⟶ Z2, U(Z2) �

1 

φσ,β(1) � 1,φσ,β(2) � 0,φσ,σ(3) � 1,φσ,σ(4) � 0,φσ,σ(5)

� 1,φσ,σ(6) � 0,

(7)

φσ,ρ: Gσ⟶ Gρ, defined by φσ,ρ: Z6⟶ Z3,

U(Z3) � 1, 2 

φσ,ρ(1) � 1,φσ,ρ(2) � 2,φσ,ρ(3) � 0,φσ,ρ(4) � 1,φσ,ρ(5)

� 2,φσ,ρ(6) � 0,

(8)

φσ,α: Gσ⟶ Gα, defined by φσ,α(aσ) � eα∀aσ ∈ Gσ

φc,c: Gc⟶ Gc, defined by φc,c: Z4⟶ Z4,

U(Z4) � 1, 3 

φc,c(1) � 1,φc,c(2) � 2,φc,c(3) � 3,φc,c(4) � 0, (9)

φc,β: Gc⟶ Gβ, defined by φc,β: Z4⟶ Z2,

U(Z2) � 1 

φc,β(1) � 1,φc,β(2) � 0,φc,β(3) � 1,φc,β(4) � 0,

(10)

φc,α: Gc⟶ Gα, defined by φc,α(ac) � eα∀ac ∈ Gc

φβ,β: Gβ⟶ Gβ, defined by φβ,β: Z2⟶ Z2,

U(Z2) � 1 

φβ,β(1) � 1,φβ,β(2) � 0, (11)

φβ,ρ: Gβ⟶ Gρ, defined by φβ,ρ: Z2⟶ Z3,

U(Z3) � 1, 2 

φβ,ρ(1) � 1,φβ,ρ(2) � 2,φβ,ρ(3) � 0, (12)

Table 1: -e semilattice (Y � α, β, c, ρ, σ, δ , ·).

α β c ρ σ δ
α α α α α α α
β α β β α β β
c α β c α β c

ρ α α α ρ ρ ρ
σ α β β ρ σ σ
δ α β c ρ σ δ
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φβ,α: Gβ⟶ Gα, defined by φβ,α(aβ) � eα∀aβ ∈ Gβ

φρ,ρ: Gρ⟶ Gρ, defined by φρ,ρ: Z3⟶ Z3, U(Z3) �

1, 2 

φρ,ρ(1) � 1,φρ,ρ(2) � 2,φρ,ρ(3) � 0, (13)

φρ,α: Gρ⟶ Gα, defined by φρ,α(aρ) � eα,∀aρ ∈ Gρ

φα,α: Gα⟶ Gα, defined by φα,α(eα) � eα

For each given mapping φλ,μ: Gλ⟶ Gμ, if it exists, and
for any x ∈ Gλ and y ∈ Gμ, there exists cμ ∈ Cμ, such that
y � cμφλ,μ(x) for all λ, μ ∈ Y, μ≥ λ. -e semilattice of the
subgroups of the Clifford monoid along with the mappings
among them is shown in Figure 1.

In Figure 1, the arrows show the mappings
φλ,μ: Gλ⟶ Gμ∀λ≥ μ; λ, μ ∈ Y.

H � kS � kGλ. (14)

-e weak Hopf quiver for the weak Hopf algebra
H � kS � ⊕ λ∈YkGλ � ⊕ λ∈YHλ, where each Hλ � kGλ is a
Hopf algebra. H is in fact a semilattice-graded weak Hopf
algebra with HλHμ⊆Hμ, if and only if λ≥ μ; λ, μ ∈ Y.

-e vertices and arrows of the weak Hopf quiver Γ �

(S, r) corresponding to H is described in the following table
instead of drawing its huge digraph, since there is a large
number of vertices and arrows in this quiver. -e mappings
of the type φλ,μ: Gλ⟶ Gμ,∀λ, μ ∈ Y which exist are shown
by the symbol “⟶ ” in Table 2.

Particularly in the above quiver given in Section 3.1, the
number of arrows originating in Γ(S, r) is given by

N � 440 × 1 + 439 × 288 + 103 × 96 + 55 × 6 + 49

× 48 + 1 × 1 � 139443.
(15)

-e number of arrows ending in Γ(S, r) is given by

N � 1 × 1 + 289 × 288 + 385 × 96 + 391 × 6 + 343

× 48 + 440 × 1 � 139443.
(16)

We note that the originating number of arrows is equal
to that ending in the quiver.

Let N denotes the amount of arrows of quiver Γ(S, r), Nλ
denote the amount of arrows originating from the vertex
represented by the element aλ of subgroup Gλ, and Nλ

denotes the amount of arrows ending at the vertex corre-
sponding to the element of subgroup Gλ. -en, we have the
following lemma:

Lemma 2

(a) 7e number of arrows originating in Γ(S, r) is given
by N � λ∈YNλ|Gλ|

(b) 7e number of arrows ending in Γ(S, r) is given by
N′ � λ∈YNλ|Gλ|

(c) N � N′ � total numbers of arrows of the weak Hopf
quiver Γ(S, r).

Proof. -e proofs of (a), (b), and (c) are obvious from
Table 2.

In view of Section 3.1, the following results can im-
mediately be identified and obtained in a weak Hopf quiver
Γ(S, r). □

3.2. Results. Let x ∈ Gλ, y ∈ Gμ, and
φλ,μ: Gλ⟶ Gμ, λ≥ μ; λ, μ ∈ Y. -en, there exists a unique
arrow from x to y (or φλ,μ to y) and satisfies
y � cμφλ,μ(x), cμ ∈ Cμ; therefore, rCμ

� 1∀μ ∈ Y.

(i) If rλ is the ramification data of group Gλ, then rλ �


Cλ∈


Cλ

rCλ
Cλ using (i)

(ii) -e ramification data of the Clifford monoid S �

∪ λ∈YGλ is

r � 
λ∈Y

rλ � 
λ∈y



Cλ∈

Cλ

rCλ
Cλ � 

λ∈y
c
λ∈Cλ

Cλ,

(17)

Where Cλ represents the collection of total con-
jugacy classes of a group Gλ.

(iii) -e number of arrows in Γ as obtained from
Section 3.1 is 139443

(iv) -e number of vertices of the weak Hopf quiver
Γ(S, r) from Section 3.1 is |S| � λεY|Gλ| � 440

(v) If there is an arrow from some element xεGλ to
some element y ∈ Gμ, then there are arrows from
each xεGλ to yεGμ

(vi) -e dimension of weak Hopf algebra H corre-
sponding to Γ is the number of vertices of the weak
Hopf quiver

(vii) -e loops which exist are the arrows from each
idempotent to itself. -us, the number of loops is
the order of the semilattice Y.

(viii) For a finite Clifford monoid, Γ(S, r) corresponding
to H � kS has no loop if and only if r � 0.-en, the

Gγ

Gβ

Gα

Gρ

Gσ

Gδ

Figure 1: Diagram of the semilattice of the subgroups of the
Clifford monoid.
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quiver is a set |S| of number of isolated vertices.
Otherwise, the weak Hopf quiver is a connected
diagraph.

(ix) Let S and S′ be two finite Clifford monoids, and
Γ(S, r) and Γ′(S,

�

r′) be the weak Hopf quivers
corresponding to two weak Hopf algebras H � kS

and H′ � kS, respectively. -en, the quivers Γ and
Γ′ are isomorphic if and only if there is a bijective
mapping φ: Γ⟶ Γ′ between their sets of vertices,
such that the number of arrows from v1 to v2,
v1, v2 ∈ Γ0, is equal to that from φ(v1) to φ(v2),
where φ(v1),φ(v2) ∈ Γ0

�

[1].

4. Representation of Weak Hopf Quiver

A Hopf quiver representation is defined in [15] and some
structures are given in this regard. We generalize this notion
as a weak Hopf quiver representation and discuss its
structures. One can see also the quiver representation of a
bialgebra [17].

Definition 5. (See [13]). A weak Hopf quiver representation
is a class of vector spaces Vi,λ|i ∈ Γ0, λ ∈ Y  of finite-di-
mensional k-vector spaces Vi,λ, i ∈ Γ0, λ ∈ Y together with a
collection of mappings.

ϕm
λ,μ: Vt(m),λ⟶ Vs(m),μ|m ∈ Γ1, t(m), s(m) ∈ Γ0, μ≥ λ, λ, μ ∈ Y . (18)

We denote (Vi,λ, Vj,μ); ϕm
λ,μ; i, j ∈ Γ0  by Rλ,μ. A

representation R of the weak Hopf quiver is given by
R � Rλ,μ; μ≥ λ, λ, μ ∈ Y .

Let R � Rλ,μ; μ≥ λ, λ, μ ∈ Y  and
S � Sλ,μ; μ≥ λ, λ, μ ∈ Y  be two representations of weak
Hopf quiver Γ(S, r), where Rλ,μ � (Vi,λ, Vj,μ);ϕm

λ,μ  and

Sλ,μ � (Wi,λ, Wj,μ);ψm
λ,μ . -e representation Sλ,μ is a sub-

representation of Rλ,μ if

(a) For all i, j ∈ Γ0, Wi,λ, Wj,μ are the subspaces of Vi,λ
and Vj,μ, respectively, and

(b) For every m ∈ Γ1, the restriction of ϕm
λ,μ to Wt(m),λ is

the mapping φm
λ,μ|Wt(m),λ

and is given by
φm
λ,μ|Wt(m),λ

: Wt(m),λ⟶Ws(m),μ.

-en, S � Sλ,μ: μ≥ λ; λ, μ ∈ Y  is called sub-
representsation of R � Rλ,μ: μ≥ λ; λ, μ ∈ Y .

A nonzero representation V is called simple if the only
subrepresentation of V is the zero representation and the V

itself.
Given that a representationR � (Vi,λ,φi

λ,λ) of the quiver
Γ(S, r), we can obtain a representation

φi
λ,λ: kΓ⟶ End ⊕ i∈Γ0

λ∈Y
Vi,λ

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠ of kΓ, see also the framed

representation in [13].
It suffices to define the representation on ei’s and fj’s,

and these generate the basis of a ring.

φi
λ,λ ei(  ≔ Id|vi,φ

j

λ,λ fj : Vt(j)λ⟶ Vh(j)λ, x↦φj

λ,λ(x).

(19)

-is gives an extension to a representation on all ele-
ments of kΓ.

-e direct sum of two weak Hopf quiver representations
is given as follows:

Definition 6 (see [21]). IfR � Rλ,μ; μ≥ λ, λ, μ ∈ Y  and S �

Sλ,μ; μ≥ λ, λ, μ ∈ Y  be two representations of weak Hopf
quiver Γ(S, r), where Rλ,μ � (Vi,λ, Vj,μ);ϕm

λ,μ  and

Sλ,μ � (Wi,λ, Wj,μ);ψm
λ,μ , then we define a direct-sum

representation as follows:

R⊕ S � Rλ,μ ⊕ Sλ,μ : μ≥ λ; λ, μ ∈ Y , (20)

with χm
λ,μ � ϕm

λ,μ ⊕ψm
λ,μ: μ≥ λ; λ, μ ∈ Y  by

(a) ui,λ � Vi,λ ⊕Wi,λ for every i ∈ Γ0 and λ ∈ Y

(b) χm
λ,μ: Vt(m),λ ⊕Wt(m),λ⟶ Vs(m),μ ⊕Ws(m),μ is de-
fined by the matrix

V
m
λ 0

0 W
m
λ

 , (21)

for m ∈ Γ1 and λ ∈ Y.
Now, we define a morphism of a weak Hopf quiver

representation to another weak Hopf quiver representation
as follows.

Definition 7 (see [15]). IfR and S be two representations of
the weak Hopf quiver Γ(S, r), then Φ: R⟶ S as a rep-
resentation morphism is a collection of k-linear maps

φi
λ,μ: Vi,λ⟶Wi,μ|i ∈ Γ0&μ≥ λ; λ, μ ∈ Y , where

R � Rλ,μ: μ≥ λ; λ, μ ∈ Y , S � Sλ,μ: μ≥ λ; λ, μ ∈ Y , such
that the following Figure 2 is commutative for all m ∈ Γ1.

Suppose φi
λ,μ: Vi,λ⟶Wi,μ is invertible for each i ∈ Γ0

and all μ≥ λ; λ, μ ∈ Y, we have the morphism Φ: R⟶ S,
which is called isomorphism from R to S.

A representation R of a weak Hopf quiver Γ is de-
composable if there exist two nonzero representations S and
T, such that R � S⊕T, and a nonzero representation is
indecomposable if it is not decomposable [15].

We introduce the notion of canonical representation of Γ
and observe that it is also a simple one.

Definition 8 (see [15]). A canonical representation
R � Rλ,μ: μ≥ λ; λ, μ ∈ Y  for weak Hopf quiver Γ(S, r) is a
collection of representations Rλ,μ, such that
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Rλ,μ � Vi,λ �
k, for one i ∈ Γ0,

0, otherwise
 ,φm

λ,μ � 0, for allm ∈ Γ1, μ≥ λ; λ, μ ∈ Y . (22)

A canonical representationRλ,μ must be a simple for all
λ, μ, μ≥ λ; λ, μ ∈ Y, since the only a subspace of each one is
Vi,λ, the null space at every vertex.

Let Γ be a weak Hopf quiver having no oriented cycles. A
representation R of Γ is simple if and only if it is canonical.

If Γ(S, r) is a weak Hopf quiver without any oriented
cycle, then there exists some vertex e1 ∈ Γ0, which is not a tail
of some arrows. -is type of arrow is called a sink.

Let Γ be a weak Hopf quiver with no oriented cycle, and
e1 ∈ Γ0 be a vertex, such that t(m)≠ e1, for all m ∈ Γ1.

Proposition 2. Let R be a canonical representation of a
weak Hopf quiver Γ(S, r). 7en, the representation
S � Sλ,μ: μ≥ λ; λ, μ ∈ Y , where

Sλ,μ � Wi,λ �
k, i � x,

0, i≠x
 ,φm

λ,μ � 0, for allm ∈ Γ1, μ≥ λ; λ, μ ∈ Y , (23)

for the weak Hopf quiver Γ(S, r) is a subrepresentation of R.

Proof. Obviously, for each i≠ x, 0{ } � Wi,λ is a subspace of
Vi,λ. Since Vx,λ is a nonzero k-vector space, k � Wx,λ⊆Vx,λ.
Define p � pi,λ; λ ∈ Y: i ∈ Γ0  a representation morphism,
such that pi,λ: Wi,λ⟶ Vi,λ is the inclusion mapping. To
verify that all mappings commute, m ∈ Γ1, such that
t(m)≠x, Wt(m),λ � 0{ }. So, ψm

λ,μ: Wt(m),λ⟶Wh(m),μ has its
domain as {0}, i.e., ψm

λ,μ � 0. Similarly,
pt(m),λ: Wt(m),λ⟶ Vt(m),λ is the inclusion of 0{ } that im-
plies pt(m),λ � 0. Hence, for all m ∈ Γ1, such that t(m)≠ x, we
have ph(m),λ ∘ψm

λ,μ � ph(m),λ ∘ 0 � 0 and
ψm
λ,μ ∘Pt(m),λ � φm

λ,μ ∘ 0 � 0, so the diagram is commutative.
For each m ∈ Γ1 with t(m) � x, we have that Vh(m),λ � 0{ }.
Hence, φm

λ,μ: Vt(m),λ⟶ Vh(m),μ is φm
λ,μ: Vx,λ⟶ Vx,μ � 0{ },

i.e., φm
λ,μ � 0{ }. Similarly, ψm

λ,μ � 0{ }, and ph(m),λ: 0{ }⟶ 0{ }

is also the zero mapping. So, for all m ∈ Γ1, such that
t(m) � x, we have ph(m),λ � ψm

λ,λ � 0 ∘ 0 � 0. Hence, the di-
agram is commutative. -us, S becomes a subrepresentation
of R. □

5. Weak Hopf Quiver as Cayley Graph

Let S be a semigroup and C be a subset of S. Recall that the
Cayley graph Cay (S, C) of S with the connection set C is
defined as the digraph with a vertex set S and arc set
E(Cay(S, C)) � (s, cs): s ∈ S, c ∈ C{ }.

In the following result, we give an embedding of a Cayley
graph of a Clifford monoid S into the weak Hopf quiver of
the corresponding weak Hopf algebra kS.

Theorem 2. Every Cayley graph Cay(S, C) of a Clifford
monoid S can be embedded into its corresponding weak Hopf
quiver Γ(S, r) of the weak Hopf algebra H � kS � ⊕ λεYkGλ.

Proof. Define mapping φ: Cay(S, C)⟶Γ(S, r), such that
φ(x) � ex ∈ Γ0, for all x ∈ V(S).

Let cyux represents the edge of the Cayley graph from
vertex x to vertex y in E(C).

-en, φ(cyux) � cyvx ∈ Γ1,∀cyux ∈ E(C), where y � cx

for some c ∈ C, x, y ∈ S, and cyvx is the arrow in Γ1, such
that y � cλφλ,μ(x) for some cλ (if it exist) in Cλ, the con-
jugacy class of Gλ for all x ∈ Gλ, y ∈ Gμ; μ≥ λ; λ, μ ∈ Y.

Vt(m),λ 
Vs(m),λ 

Wt(m),μ Ws(m),μψm
μ,μ

φmλ,λ

φt(m) λ,μ φs(m)
λ,μ

Figure 2: Commutative representation, where ψm
λ,μ: Wt(m),λ⟶Ws(m),μ.
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Clearly, φ is an injective mapping from Cay(S, C) to the
weak Hopf quiver Γ(S, r).

-us, the Cayley graph of a Clifford monoid S can be
embedded into its corresponding weak Hopf quiver
Γ(S, r). □

6. Conclusion

In this article, the formula that enumerates the arrows in the
weak Hopf quiver Γ(S, r) is devised. In addition, the veri-
fication of the fact is that the number of arrows originating
and ending is equal in such quiver. It is further observed that
a weak Hopf quiver representation appears as a general-
ization of the Hopf quiver representation. For each canonical
representation, there exists a subrepresentation as given in
Proposition 2.

Furthermore, it is perceived that the Cayley digraph of a
Clifford monoid is embedded in the corresponding weak
Hopf quiver of its corresponding weak Hopf algebra.
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