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In this paper, we set forth a framework for solving a multiattribute group decision-making (MAGDM) problem, namely, the
selection of a firm for participation in a Saudi oil refinery project in Pakistan. &is project will prove a key success factor for the
economic growth of Pakistan due to its enormous economic impact on the energy sector, industrial development, commerce,
transportation, and so on. &is multiplicity justifies that several intricate components comprising both intrinsic and external
attributes should be adequately evaluated for the selection of such a firm, that is, the formulation of this question as a MAGDM
problem. Nonbinary evaluation with two-dimensional ambiguity and uncertainty in the parameters are general concerns in
modern literature, and they fit into this problem. Within this context, one of the most superior and amenable theories (complex
spherical fuzzy N-soft sets, henceforth CSFNSfSs) shall be used to formulate a new comprehensive method, known as complex
spherical fuzzy N-soft-VIKOR (CSFNSf-VIKOR) method. According to the general spirit of the benchmark technique, the
normalized Euclidean distances and the weights of the attributes are jointly handled, and as consequence, two main features
(“maximum group utility” and “minimum individual regret”) are acquired.&e coefficient strategy with reference to group utility
measure and individual regret measure of opponents are employed for the compromise measure. Armed with this novel tool, we
single out the most feasible firm according to the preference order of the alternatives examined by the decision-makers on the
subject of linear normalized weights of experts and attributes. Furthermore, a comparative analysis justifies the CSF-VIKOR
method, and some results prove its capabilities and validity. Moreover, a sensitivity test certifies the stability of the
proposed method.

1. Introduction

In 1998, the VIKOR approach was drafted by Opricovic [1]
as a multiattribute decision-making (MADM) method. In
the setting of civil engineering, this system attempted to find
a compromise solution based on two dominant principles
(group utility measure and individual regret of opponent),
where the compromise solution means a decision done by
generic involvement. Due to the paradigm of maximum
group utility and minimum individual regret, the feasible
solution closest to the best values and most distant from the
worst value is resolved by the recourse to the Lp-metric as an
aggregation function, according to Opricovic. Opricovic and

Tzeng [2] extended the VIKOR theory for MADM for the
postearthquake reconstruction problem in Central Taiwan
and the selection of destination for the mountain climber,
respectively. Yazdani-Chamzini et al. [3] employed the
modified version of the VIKOR method along with the
combination of TOPSIS, MOORA, additive weighting, and
ratio assessment techniques in order to address a multi-
criteria decision-making (MCDM) problem relating to re-
newable energy resources.

People habitually live with real-life properties that are
not sufficiently precise and not fully objective, such as
“beautiful,” “tall,” or “experienced.” Many decision-related
problems must take into account such properties. To
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contend with such vague and uncertain data, Zadeh [4]
presented the notion of fuzzy set. Suh et al. [5] assessed the
mobile service quality through the proposed ground-
breaking fuzzy-VIKOR method using an integrated
weighted approach. Lee et al. [6] extended the VIKOR
technique for the MAGDM problem of detection of flood
risks under the fuzzy frame. Li and Liu [7] presented the
VIKOR with the combination of the QUALIFLEX method
on the basis of trapezoidal fuzzy numbers corresponded to
each two-dimensional linguistic data. Chang [8] disclosed
the situation about the private and governmental hospital
agencies in Taiwan with the help of the new fuzzy-VIKOR
approach. Wang and Chang [9] resolved the MAGDM
problem through fuzzy-VIKOR methodology. Another
MAGDM problem, the selection of machine tools evaluated
by the fuzzy-VIKOR approach is introduced by Wu et al.
[10].

In accordance with fuzzy descriptions, the degree of
truthiness (or satisfaction), collected from the closed unit
interval [0, 1], denotes the correspondence of an object
related to a parameter. Under these interpretations, its in-
ability to represent the nonassociation of the object related to
that particular parameter is quite obvious. For this reason, in
1986, Atanassov [11] eradicated this obstacle through the
extended concept of intuitionistic fuzzy set (IFS) and con-
fronted the vague opinion through both a degree of tru-
thiness ϕ and a degree of falsity χ, which are jointly subject to
the constraint: ϕ + χ ≤ 1. Roostaee et al. [12] developed the
theoretical background for an IF-VIKORmethod to rank the
suppliers following the opinions of decision-makers, and
Gupta et al. [13] extended the IF-VIKOR ideology for al-
locating the best environment for plantation. Krishankumar
et al. [14] resolved a personnel selection problem through the
extended version of the IF-VIKOR method.

Pythagorean fuzzy sets (PyFSs) evolved as an extension
of IFSs. Introduced by Yager [15], PyFS also deal with both
degree of truth ϕ and degree of falsity χ, but they are under
the modified condition: ϕ2 + χ2 ≤ 1. Gul et al. [16] extended
the VIKOR based approach within the field of PyFSs and
evaluated the safety risks in the mine industry. Rani et al.
[17] proposed the PyF-VIKOR method within the tool of
entropy and divergence measures for the selection of re-
newable energy technology in India. Ma et al. [18] intro-
duced the group decision-making framework using complex
Pythagorean fuzzy information.

People habitual nature sometimes has a neutral judg-
ment. &is is generally exhibited in certain problems or
events like voting situations. &erefore, along with the
judgments of yes or no, there is often a need for an abstain
part of the opinion (possibly related to the satisfaction of a
particular parameter). Since the Pythagorean fuzzy set is not
able to handle such part of the decisional attitude, Cuong
[19] introduced picture fuzzy set (PFS) along with the degree
of truth ϕ, remain neutral ψ, and degree of falsity χ but with
their range limited by an inequality: ϕ + ψ + χ ≤ 1. Meksa-
vang et al. [20] extended the decision-making approach
based on the VIKOR methodology for the picture fuzzy
environment, which was applied for sustainable suppliers
along with an application in the beef industry. Liu and You

[21] presented the PF-VIKOR technique for green supplier
evaluation and selection.

However, PFSs are very reliable to deal with imprecision
and fuzziness and still useless when the sum of the degrees of
truth, neutrality, and falsity exceeds 1. To get over this
drawback, Gundogdu and Kahraman [22–25] worked out a
model with a relaxed condition, introduced the idea of
spherical fuzzy sets (SFSs), and employed them on MADM
problems. Later on, Mahmood et al. [26] proposed
T-spherical fuzzy sets, as an extension of SFSs. Gundogdu
et al. [27, 28] developed the theory for the SF-VIKOR
method and applied it to the MADM problem for waste
management problems and selection of site, respectively.

&e aforementioned models of fuzzy knowledge have a
one-dimensional structure. &is pattern is incompatible
with certain types of problems. Ramot et al. [29] developed a
fuzzy set model in two-directional frames, known as com-
plex fuzzy set (CFS). In this model, the degree of truth is
ϕ � tei2πζ , which is divided into amplitude term t and pe-
riodic term ζ that belongs to the unit closed interval. For the
sake of decision-making, complex fuzzy aggregation oper-
ators are defined by Akram and Bashir [30]. Alkouri and
Salleh [31] generalized the ideology to a complex intui-
tionistic fuzzy set (CIFS), which accounts for both degree of
truthiness ϕ � tei2πζ and falsity χ � fei2πρ along with the
constraints t + f≤ 1 and ζ + ρ≤ 1. Ullah et al. [32] intro-
duced a complex Pythagorean fuzzy set (CPyFS) with de-
grees of truth ϕ � tei2πζ and falsity χ � fei2πρ within the
complex unit circle and restricted by the constraints t2 +

f2 ≤ 1 and ζ2 + ρ2 ≤ 1. Currently, Akram et al. [33] presented
the model of a complex spherical fuzzy set (CSFS) rep-
resenting three degrees of truth ϕ � tei2πζ , neutrality
ψ � qei2πϱ, and falsity χ � fei2πρ subjected to conditions t2 +

q2 + f2 ≤ 1 and ζ2 + ϱ2 + ρ2 ≤ 1. &ey also extended the
VIKOR method under the CSF environment. &e yielding
and tractable conditions of the CSF representation make it a
privileged framework for the modelization of two-dimen-
sional ambiguous knowledge. In the advantageous
CSF-VIKOR technique, decision-makers scrutinize the
competencies of the feasible choices with reference to the
preferred criteria and indicate initial observation through
the use of linguistic information, which further enhanced the
virtues of complex spherical fuzzy numbers.

&ough CSFSs are highly competent and skillful, they
neglect the possibility of nonbinary parameterized infor-
mation. In this panorama, Akram et al. [34] presented the
concept of complex spherical fuzzyN-soft sets (CSFNSfSs)

within the TOPSIS methodology, which has the ability to
look over the modern real-life ranking problems in every
field of science. In relation to this, the idea of N-soft sets
(NSfSs) was presented by [35] as an extension of soft set
theory [36], which accommodates all kind of attributes. Soon
afterwards, Akram et al. [37] explored the scope of N-soft
sets and put forward hybrid models, namely, fuzzy N-soft
sets (FNSfSs), intuitionistic fuzzy N-soft sets (IFNSfS),
and hesitant N-soft sets. Recently, Zhang et al. [38] com-
bined N-soft theory with PyFSs and proposed the novel
model of Pythagorean fuzzy N-soft set (PyFNSfS). &e
CSFNSf model was presented (by Akram et al. [34]) within
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research conducive to an extension of the TOPSIS method
that can deal with MAGDM problems based on CSFNSf

information. For other notations and applications, the
readers are referred to [39–44].

In modern times, ranking evaluation systems (instead of
linguistic information) can be in use as a primary source in
furtherance of decision-making problems and surveys. &e
CSF-VIKOR technique (proposed by Akram et al. [33]) is
unqualified for situations comprising parameterized ranking
information. &erefore, we develop a novel technique,
namely, the CSFNSf-VIKOR method. &e delineation and
explanation related to this technique do not pertain to any of
the existing techniques; hence, it requires a concrete analysis.
Of course, the proposed model successfully evaluates de-
cision-making problems related to the modern era. &e
purpose of our concept is to extend the VIKOR method
under the circumstances of CSFNSfSs. Its motivations are
given as follows:

(i) &e two-dimensional influential technique of
CSF-VIKOR is inadequate to operate with data
comprising ordered grades along with two or several
parameters.

(ii) &e fuzzy N-soft models, along with intuitionistic
fuzzy N-soft, Pythagorean fuzzy N-soft, and
complex Pythagorean fuzzy N-soft environments
provide an array of models that operate under
parameterized ranking systems. But they are all
useless when it comes to incorporating uncertain
data containing neutral opinions.

(iii) &e CSFNSf-TOPSIS method uses a different
methodology but ultimately computes a feasible
solution, which merely does not take into account
the relative importance of distances from the ideal
solution.

(iv) &ese limitations provoke the development of
CSFNSf-VIKORmethod that gives us the ability to
incorporate information regarding ordered grades
among complex valued degrees of truth, neutrality,
and falsity.

&e main aim of our proposed idea is to develop the
methodology of VIKOR within the hybrid model of
CSFNSfSs specifically for the solution of MAGDM
problems precisely. &e contributions of this paper are as
follows:

(i) We introduce a hybrid MAGDM VIKOR approach
whose structure is based on CSFNSfSs, and it is
known as CSFNSf-VIKOR technique. &is
methodology qualifies for situations that comprise
parameterized ranking information; hence, it suc-
cessfully evaluates a large proportion of existing
MAGDM problems, as well as decision-making
problems with nonbinary parameterized informa-
tion as an initial assessment.

(ii) Linear normalized weights of experts and attributes
are defined along with normalized Euclidean dis-
tance for sake of maximum group utility measure,

individual regret, and compromise ranking whose
values are arranged in ascending order for final
decisions.

(iii) &e presented technique is supported through a
real-life application from the grounds of economy
and business assisted by comparative analysis and
sensitivity tests.

&e rest of the article is structured as follows. Section 2
contains preliminaries from CSFNSf model [34] with some
operations, comparison rule, and averaging operator. In
Section 3, a descriptive theory for CSFNSf-VIKORmethod
is developed along with a flowchart. Section 4 interpreted a
real-life MAGDM problem of firm’s selection for the Saudi
oil refinery project. Section 5 narrated the proposed method
by a sensitivity test. In Section 6, we compare our proposed
method with the existing techniques. In Section 7, the merits
of the CSFNSf-VIKORmethod are clarified. In the end, we
present concluding remarks and mention some future re-
search work in Section 8.

2. Complex Spherical Fuzzy N-Soft Sets

Definition 1 (see [34]). Let J be a nonempty set and X⊆T,
whereas T be a set of parameters (or attributes), and C �

0, 1, 2, . . . , N − 1{ } be a set of grades level with
N ∈ 2, 3, . . . ,{ }. &en a complex spherical fuzzy N-soft set
(CSFNSfS) on X is denoted by a triplet ( €EH,X, N), de-
fined as follows:

€E H xa( 􏼁 � 〈 €E xa( 􏼁, H xa( 􏼁􏼐 􏼑〉: xa ∈ X􏽮 􏽯

� 〈 jb, c
b
a􏼐 􏼑, ϕba,ψba, χba( 􏼁􏼐 􏼑〉􏽮 􏽯

� 〈 jb, c
b
a􏼐 􏼑, twse

i2πζws , qbae
i2πϱba , fbae

i2πρba􏼐 􏼑􏼐 􏼑〉􏽮 􏽯,

(1)

along with the assumption of €E: X⟶ 2J×H, where NSfS

be defined on J, and H is a function from X to CSFN. &e
notation CSFN denotes the collection of all complex
spherical fuzzy numbers of J, and tba, ζba, qba, ϱba, fba, and
ρba will be taken from unit closed interval, with constraint

0≤ t
2
ba + q

2
ba + f

2
ba ≤ 1,

0≤ ζ2ba + ϱ2ba + ρ2ba ≤ 1.
(2)

&e term cb
a denotes the ranking of attributes for the

alternative jb, for all jb ∈ J.

Definition 2 (see [34]). Let €EH(xa) � ((jb, cb
a),

tbaei2πζba , qbaei2πϱba fbaei2πρba ) be a CSFNSfS. &en the
complex spherical fuzzy N-soft number (CSFNSfN) is
defined as follows:

5ba � c
b
a, tbae

i2πζba , qbae
i2πϱba , fbae

i2πρba􏼐 􏼑, (3)

and the hesitancy degree is defined as follows:
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Ω5ba
�

����������������

1 − t
2
ba + q

2
ba + f

2
ba􏼐 􏼑

􏽱

e
i2π

����������
1− ζ2ba+ϱ2

ba
+ρ2

ba( )
􏽰

. (4)

Definition 3. (see [34]). Let 5ba � (cb
a, tbaei2πζba ,

qbaei2πϱba , fbaei2πρba ) be CSFNSfN. &e score function
Sc(5ba) is defined as follows:

Sc5ba
�

cb
a

N − 1
􏼠 􏼡

2

+ t
2
ba − q

2
ba − f

2
ba􏼐 􏼑 + ζ2ba − ϱ2ba − ρ2ba􏽨 􏽩,

(5)

where Sc5ba
∈ [−2, 3]. &e accuracy function Ac(5ba) is de-

fined as follows:

Ac5ba
�

cb
a

N − 1
􏼠 􏼡

2

+ t
2
ba + q

2
ba + f

2
ba􏼐 􏼑 + ζ2ba + ϱ2ba + ρ2ba􏽨 􏽩,

(6)

where Ac5ba
∈ [0, 3].

Definition 4 (see [34]). Let 5bl � (cb
l , tlje

i2πζbl , qble
i2πϱbl ,

fble
i2πρbl ) and 5ba � (cb

a, tbaei2πζba , qbaei2πϱba , fbaei2πρba ) be two
CSFNSfNs.

(1) If Sc5bl
< Sc5ba

, then 5bl ≺ 5ba (5bl is inferior to 5ba)

(2 )If Sc5bl
> Sc5ba

, then 5bl ≻ 5ba (5bl is superior to 5ba)

(3 )If Sc5bl
� Sc5ba

, then

(i) Ac5bl
<Ac5ba

, then 5bl ≺ 5ba (5bl is inferior to 5ba)

(ii) Ac5bl
>Ac5ba

, then 5bl ≻ 5ba (5bl is superior to 5ba)

(iii) Ac5bl
� Ac5ba

, then 5bl ∼ 5ba (5bl is equivalent to
5ba)

Definition 5 (see [34]). Let 5bl � (cb
l , tble

i2πζbl , qble
i2πϱbl ,

fble
i2πρbl ) and 5ba � (cb

a, tbaei2πζba , qbaei2πϱba , fbaei2πρba ) be
two CSFNSfNs and λ> 0. Some operations for CSFNSfNs

are as follows:

λ5bl � c
b
l ,

�������������

1 − 1 − t
2
bl􏼐 􏼑

λ
􏼔 􏼕

􏽲

e
i2π

���������

1− 1− ζ2bl( )
λ

􏼂 􏼃

􏽱

, q
λ
ble

i2πϱλ
bl , f

λ
ble

i2πρλ
bl⎛⎝ ⎞⎠,

5
λ
bl � c

b
l , t

λ
ble

i2πζλbl ,

�������������

1 − 1 − v
2
bl􏼐 􏼑

λ
􏼔 􏼕

􏽲

e
i2π

���������
1− 1− ϱ2

bl( )
λ􏼂 􏼃

􏽱

,

�������������

1 − 1 − f
2
bl􏼐 􏼑

λ
􏼔 􏼕

􏽲

e
i2π

���������
1− 1− ρ2

bl( )
λ􏼂 􏼃

􏽱

⎛⎝ ⎞⎠,

5bl ⊕ 5ba � max c
b
l , c

b
a􏼐 􏼑,

�������������

t
2
bl + t

2
ba − t

2
blt

2
ba

􏽱

e
i2π

���������
ζ2bl+ζ

2
ba− ζ2blζ

2
ba

√

, qblqbae
i2πϱblϱba , fblfbae

i2πρblρba􏼒 􏼓,

5bl ⊗ 5ba � min c
b
l , c

b
a􏼐 􏼑, tbltbae

i2πζblζba ,

�������������

v
2
lj + v

2
kj − v

2
ljv

2
kj

􏽱

e
i2π

���������
ϱ2

bl
+ϱ2

ba
− ϱ2

bl
ϱ2

ba

√
,

���������������

f
2
lj + f

2
kj − f

2
ljf

2
kj

􏽱

e
i2π

���������
ρ2

bl
+ρ2

ba
− ρ2

bl
ρ2

ba

√

􏼒 􏼓.

(7)

Proposition 1 (see [34]). Let 5ba � (cb
a, tbaei2πζba ,

qbaei2πϱba , fbaei2πρba ) and 5bl � (cb
l , tble

i2πζbl ,qble
i2πϱbl ,fble

i2πρbl )

be two CSFNSfNs and λ>0, then the following properties
hold:

(1) 5ba ⊕ 5bl � 5bl ⊕ 5ba

(2) 5ba ⊗ 5bl � 5bl ⊗ 5ba

(3) λ5ba ⊕ λ5bl � λ(5bl ⊕ 5ba), λ> 0

(4) λ15ba ⊕ λ25ba � (λ1 + λ2)5ba, λ1, λ2 > 0
(5) 5λba ⊗ 5λbl � (5bl ⊗ 5ba)λ, λ> 0
(6) 5

λ1
ba ⊗ 5

λ2
ba � 5

(λ1+λ2)

ba · λ1, λ2 > 0

Proof

(1) 5ba ⊕ 5bl

� max c
b
a, c

b
l􏼐 􏼑,

�������������

t
2
ba + t

2
bl − t

2
bat

2
bl

􏽱

􏼔 􏼕e
i2π

���������
ζ2ba+ζ2bl− ζ2baζ

2
bl

√
􏼂 􏼃

, qbaqbl􏼂 􏼃e
i2π ϱbaϱbl[ ], fbafbl􏼂 􏼃e

i2π ρbaρbl[ ]􏼒 􏼓,

� max c
b
l , c

b
a􏼐 􏼑,

�������������

t
2
bl + t

2
ba − t

2
blt

2
ba

􏽱

􏼔 􏼕e
i2π

���������
ζ2bl+ζ

2
ba− ζ2blζ

2
ba

√
􏼂 􏼃

, qblqba􏼂 􏼃e
i2π ϱblϱba[ ], fblfba􏼂 􏼃e

i2π ρblρba[ ]􏼒 􏼓,

� 5bl ⊕ 5ba.

(8)
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(2) 5ba ⊗ 5bl

� min c
b
a, c

b
l􏼐 􏼑, tbatbl􏼂 􏼃e

i2π ζbaζbl[ ],

��������������

q
2
ba + q

2
bl − q

2
baq

2
bl

􏽱

􏼔 􏼕e
i2π

���������
ϱ2

ba
+ϱ2

bl
− ϱ2

ba
ϱ2

bl

√
􏽨 􏽩

,

���������������

f
2
ba + f

2
bl − f

2
baf

2
bl

􏽱

􏼔 􏼕e
i2π

���������
ρ2

ba
+ρ2

bl
− ρ2

ba
ρ2

bl

√
􏽨 􏽩

􏼠 􏼡

� min c
b
l , c

b
a􏼐 􏼑, tbltba􏼂 􏼃e

i2π ζblζba[ ],

��������������

q
2
bl + q

2
ba − q

2
blq

2
ba

􏽱

􏼔 􏼕e
i2π

���������
ϱ2

bl
+ϱ2

ba
− ϱ2

bl
ϱ2

ba

√
􏽨 􏽩

,

���������������

f
2
bl + f

2
ba − f

2
blf

2
ba

􏽱

􏼔 􏼕e
i2π

���������
ρ2

bl
+ρ2

ba
− ρ2

bl
ρ2

ba

√
􏽨 􏽩

􏼠 􏼡

� 5bl ⊗ 5ba.

(9)

(3) λ5ba ⊕ λ5bl

� c
b
a,

�������������

1 − 1 − t
2
ba􏼐 􏼑

λ
􏼔 􏼕

􏽲

􏼢 􏼣e
i2π

���������

1− 1− ζ2ba( )
λ

􏼂 􏼃

􏽱

􏼔 􏼕
, q

λ
ba􏽨 􏽩e

i2π ϱλ
ba[ ], f

λ
ba􏽨 􏽩e

i2π ρλ
ba[ ]⎛⎜⎝ ⎞⎟⎠

⊕ c
b
l ,

�������������

1 − 1 − t
2
bl􏼐 􏼑

λ
􏼔 􏼕

􏽲

􏼢 􏼣e
i2π

���������

1− 1− ζ2bl( )
λ

􏼂 􏼃

􏽱

􏼔 􏼕
, q

λ
bl􏽨 􏽩e

i2π ϱλ
bl[ ], f

λ
bl􏽨 􏽩e

i2π ρλ
bl[ ]⎛⎜⎝ ⎞⎟⎠

�

max c
b
a, c

b
l􏼐 􏼑,

�����������������������������������������������������

1 − 1 − t
2
ba􏼐 􏼑

λ
􏼔 􏼕 + 1 − 1 − t

2
bl􏼐 􏼑

λ
􏼔 􏼕 − 1 − 1 − t

2
ba􏼐 􏼑

λ
􏼔 􏼕 1 − 1 − t

2
bl􏼐 􏼑

λ
􏼔 􏼕

􏽲

􏼢 􏼣

e
i2π

������������������������������������

1− 1− ζ2ba( )
λ

􏼂 􏼃+ 1− 1− ζ2bl( )
λ

􏼂 􏼃− 1− 1− ζ2ba( )
λ

􏼂 􏼃 1− 1− ζ2bl( )
λ

􏼂 􏼃

􏽱

􏼔 􏼕
, q

λ
baq

λ
bl􏽨 􏽩e

i2π ϱλ
ba
ϱλ

bl[ ], f
λ
baf

λ
bl􏽨 􏽩e

i2π ρλ
ba
ρλ

bl[ ]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� max c
b
a, c

b
l􏼐 􏼑,

�����������������������

1 − 1 − t
2
ba + t

2
bl − t

2
bat

2
bl􏼐 􏼑

λ
􏼔 􏼕

􏽲

􏼢 􏼣e
i2π

����������������

1− 1− ζ2ba+ζ2bl− ζ2baζ
2
bl( )

λ
􏼂 􏼃

􏽱

􏼔 􏼕
, qbaqbl( 􏼁

λ
e

i2π ϱbaϱbl( )
λ

, fbafbl( 􏼁
λ
e

i2π ρbaρbl( )
λ

⎛⎜⎝ ⎞⎟⎠

� λ max c
b
a, c

b
l􏼐 􏼑,

�������������

t
2
ba + t

2
bl − t

2
bat

2
bl

􏽱

􏼔 􏼕e
i2π

��������
ζ2ba+2

bl
− ζ2baζ

2
bl

􏽰
􏽨 􏽩

, qbaqbl( 􏼁e
2π ϱbaϱbl( ), fbafbl( 􏼁e

2π ρbaρbl( )􏼠 􏼡

� λ 5ba ⊕ 5bl( 􏼁.

(10)

(4) λ15ba ⊕ λ25ba

� c
b
a,

�������������

1 − 1 − t
2
ba􏼐 􏼑

λ1
􏼔 􏼕

􏽲

􏼢 􏼣e
i2π

����������

1− 1− ζ2ba( )
λ1􏼂 􏼃

􏽱

􏼔 􏼕
, q

λ1
ba􏽨 􏽩e

i2π ϱλ1
ba

􏼂 􏼃
, f

λ1
ba􏽨 􏽩e

i2π ρλ1
ba

􏼂 􏼃⎛⎜⎝ ⎞⎟⎠

⊕ c
b
l ,

�������������

1 − 1 − t
2
ba􏼐 􏼑

λ2
􏼔 􏼕

􏽲

􏼢 􏼣e
i2π

����������

1− 1− ζ2ba( )
λ2􏼂 􏼃

􏽱

􏼔 􏼕
, q

λ2
ba􏽨 􏽩e

i2π ϱλ2
ba

􏼂 􏼃
, f

λ2
ba􏽨 􏽩e

i2π ρλ2
ba

􏼂 􏼃⎛⎜⎝ ⎞⎟⎠

�

max c
b
a, c

b
l􏼐 􏼑,

��������������������������������������������������������

1 − 1 − t
2
ba􏼐 􏼑

λ1
􏼔 􏼕 + 1 − 1 − t

2
ba􏼐 􏼑

λ2
􏼔 􏼕 − 1 − 1 − t

2
ba􏼐 􏼑

λ1
􏼔 􏼕 1 − 1 − t

2
ba􏼐 􏼑

λ2
􏼔 􏼕

􏽲

􏼢 􏼣

e
i2π

���������������������������������������

1− 1− ζ2ba( )
λ1􏼂 􏼃+ 1− 1− ζ2ba( )

λ2􏼂 􏼃− 1− 1− ζ2ba( )
λ

􏼂 􏼃 1− 1− ζ2ba( )
λ2􏼂 􏼃

􏽱

􏼔 􏼕
, q

λ1
baq

λ2
ba􏽨 􏽩e

i2π ϱλ1
ba
ϱλ2

ba
􏼂 􏼃

, f
λ1
baf

λ2
ba􏽨 􏽩e

i2π ρλ1
ba
ρλ2

ba
􏼂 􏼃

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� max c
b
a, c

b
a􏼐 􏼑,

�����������������

1 − 1 − t
2
ba􏼐 􏼑

λ1+λ2( )
􏼔 􏼕

􏽲

􏼢 􏼣e
i2π

�������������
1− 1− ζ2ba( )

λ1+λ2( )􏽨 􏽩

􏽱

􏼔 􏼕
, qba( 􏼁

λ1+λ2( )e
i2π ϱba( )

λ1+λ2( )

, fba( 􏼁
λ1+λ2( )e

i2π ρba( )
λ1+λ2( )

⎛⎜⎝ ⎞⎟⎠

� λ1 + λ2( 􏼁 c
b
a, tbae

i2πζba , qba( 􏼁e
2π ϱba( ), fba( 􏼁e

2π ρba( )􏼒 􏼓

� λ1 + λ2( 􏼁5ba.

(11)

Mathematical Problems in Engineering 5



Similarly, we can clarify (5) and (6). □
Definition 6 (see [34]). Let 5ba � (cb

a, tbaei2πζba , qbaei2πϱba ,

fbaei2πρba )(a � 1, 2, . . . , v) be a collection of CSFNSfNs,

then complex spherical fuzzy N-soft weighted average
(CSFNSfWA) operator is defined as follows:

CSFNSfWA 5b1, 5b2, . . . , 5bv( 􏼁 � ⊕
v

a�1
λa5ba􏼠 􏼡

�

maxv
a�1 c

b
a􏼐 􏼑,

����������������

1 − 􏽙

v

a�1
1 − t

2
ba􏼐 􏼑

λa⎡⎣ ⎤⎦

􏽶
􏽴

e
i2π

��������������

1− 􏽙
v

a�1
1− ζ2ba( )

λa􏽨 􏽩

􏽱

,

􏽙

v

a�1
qba( 􏼁

λa⎡⎣ ⎤⎦e
i2π 􏽙

v

a�1
ϱba( )

λa􏽨 􏽩
, 􏽙

v

a�1
fba( 􏼁

λa⎡⎣ ⎤⎦e
i2π 􏽙

v

a�1
ρba( )

λa􏽨 􏽩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(12)

where λa � (λ1, λ1, . . . , λv)T is a weighted vector of 5ba with
the property that λa > 0 and 􏽐

v
a�1 λa � 1, for all

(b � 1, 2, . . . , m).

Theorem 1. Let 5ba � (cb
a, tbaei2πζba , qbaei2πϱba , fbaei2πρba )

(a � 1, 2, . . . , v) be a collection of CSFNSfNs and
λ � (λ1, λ2, . . . , λv)T be the weight vector then the aggregated
value by applying the CSFNSfWA operator is also a
CSFNSfN formulated as follows:

CSFNSfWA 5b1, 5b2, . . . , 5bv( 􏼁 � ⊕
v

a�1
λa5ba􏼠 􏼡

�

maxv
a�1 c

b
a􏼐 􏼑,

����������������

1 − 􏽙
v

a�1
1 − t

2
ba􏼐 􏼑

λa⎡⎣ ⎤⎦

􏽶
􏽴

e
i2π

��������������

1− 􏽙
v

a�1
1− ζ2ba( )

λa􏽨 􏽩

􏽱

,

􏽙

v

a�1
qba( 􏼁

λa⎡⎣ ⎤⎦e
i2π 􏽙

v

a�1
ϱba( )

λa􏽨 􏽩
, 􏽙

v

a�1
fba( 􏼁

λa⎡⎣ ⎤⎦e
i2π 􏽙

v

a�1
ρba( )

λa􏽨 􏽩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(13)

Proof. &e proof is followed by mathematical induction. □

Case 1. When a � 1, the CSFNSfWA operator gives the
following equation:

CSFNSfWA 5b1, 5b2, . . . , 5bv( 􏼁 � λ15b1

� 5b1,
(14)

where (λ1 � 1), and equation (13) becomes

� c
b
1􏼐 􏼑,

������������

1 − 1 − t
2
b1􏼐 􏼑􏽨 􏽩

􏽱

e
i2π

���������
1− 1− ζ2b1( )[ ]

􏽰

, qb1( 􏼁􏼂 􏼃e
i2π ϱba( )[ ], fba( 􏼁􏼂 􏼃e

i2π ρba( )[ ]􏼒 􏼓

� c
b
a, tbae

i2πζba , qbae
i2πϱba , fbae

i2πρba􏼐 􏼑.

(15)

&e result is true for a � 1, as equation (15) is a
CSFNSfN.

Case 2. Suppose that the result hold for a � n, n is a natural
number, and therefore, equation (13) becomes

CSFNSfWA 5b1, 5b2, . . . , 5bn( 􏼁 � ⊕
n

a�1
λa5ba􏼠 􏼡

�

maxn
a�1 c

b
a􏼐 􏼑,

����������������

1 − 􏽙
n

a�1
1 − t

2
ba􏼐 􏼑

λa⎡⎣ ⎤⎦

􏽶
􏽴

e
i2π

��������������

1− 􏽙
n

a�1
1− ζ2ba( )

λa􏽨 􏽩

􏽱

,

􏽙

n

a�1
qba( 􏼁

λa⎡⎣ ⎤⎦e
i2π 􏽙

n

a�1
ϱba( )

λa􏽨 􏽩
, 􏽙

n

a�1
fba( 􏼁

λa⎡⎣ ⎤⎦e
i2π 􏽙

n

a�1
ρba( )

λa􏽨 􏽩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(16)
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Now we prove for a � n + 1. Consider

CSFNSfWA 5b1, 5b2, . . . , 5b(n+1)􏼐 􏼑 � ⊕
n+1

a�1
λa5ba􏼠 􏼡

�

maxn
a�1 c

b
a􏼐 􏼑,

����������������

1 − 􏽙
n

a�1
1 − t

2
ba􏼐 􏼑

λa⎡⎣ ⎤⎦

􏽶
􏽴

e
i2π

��������������

1− 􏽙
n

a�1
1− ζ2ba( )

λa􏽨 􏽩

􏽱

,

􏽙

n

a�1
qba( 􏼁

λa⎡⎣ ⎤⎦e
i2π 􏽙

n

a�1
ϱba( )

λa􏽨 􏽩
, 􏽙

n

a�1
fba( 􏼁

λa⎡⎣ ⎤⎦e
i2π 􏽙

n

a�1
ρba( )

λa􏽨 􏽩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊕ c
b
n + 1,

���������������

1 − 1 − t
2
b(n+1)􏼐 􏼑􏽨 􏽩

􏽱

e
i2π

����������
1− 1− ζ2b(n+1)( )[ ]

􏽰

, qb(n+1)􏼐 􏼑􏽨 􏽩e
i2π ϱb(n+1)( )[ ],􏼒

fb(n+1)􏼐 􏼑􏽨 􏽩e
i2π ρb(n+1)( )[ ]􏼓

�

maxn+1
a�1 c

b
a􏼐 􏼑,

����������������

1 − 􏽙
n+1

a�1
1 − t

2
ba􏼐 􏼑

λa⎡⎣ ⎤⎦

􏽶
􏽴

e
i2π

���������������

1− 􏽙
n+1

a�1
1− ζ2ba( )

λa􏼔 􏼕

􏽲

,

􏽙

n+1

a�1
qba( 􏼁

λa⎡⎣ ⎤⎦e
i2π 􏽙

n+1

a�1
ϱba( )

λa􏼔 􏼕
, 􏽙

n+1

a�1
fba( 􏼁

λa⎡⎣ ⎤⎦e
i2π 􏽙

n+1

a�1
ρba( )

λa􏼔 􏼕

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(17)

Result holds for n + 1; hence, it is held for all natural
numbers.

Theorem 2 (idempotency property). Let 5ba � (cb
a,

tbaei2πζba , qbaei2πϱba , fbaei2πρba )(a � 1, 2, . . . , v) be a collection
of CSFNSfNs and λ � (λ1, λ2, . . . , λv)T be the weight vector
of 5ba, if 5ba � 511 for all b, a; then

CSFNSfWA 5b1, 5b2, . . . , 5bv( 􏼁 � ⊕ v
a�1 λa5ba( 􏼁

� 511( 􏼁.
(18)

Theorem 3 (boundedness property). Let 5ba � (cb
a,

tbaei2πζba , qbaei2πϱba , fbaei2πρba ) be a collection of CSFNSfNs

and for all b, a; then

5
− ≤CSFNSfWA≤ 5

+
, (19)

where, 5+ � (maxacb
a,maxa[tba]ei2πmaxa[ζba],mina[qba]

ei2πmina[ϱba], mina[fba] ei2πmina[ρba]) and 5− � (minacb
a, mina

[tba]ei2πmina[ζba], maxa[qba]ei2πmaxa[ϱba], maxa[fba]

ei2πmaxa[ρba]).

Theorem 4 (monotonicity property). Consider 5ba � (cb
a,

tbaei2πζba , qbaei2πϱba , fbaei2πρba ) and 5ba � (cb
a, tba ei2πζba ,

qbaei2πϱba , fbaei2πρba ) are two collections of CSFNSfNs along
with cb

a ≤ cb
a, tba ≤ tba, ζba ≤ ζba, qba ≥ qba, ϱba ≥ ϱba, fba ≥fba,

and ρba ≥ ρba; then

CSFNSfWA 5b1, 5b2, . . . , 5bv( 􏼁≤CSFNSfWA 5b1, 5b2, . . . , 5bv( 􏼁. (20)

3. Complex Spherical Fuzzy N-Soft-
VIKOR Method

&is section delineates the VIKOR method to resolve the
MAGDM problems employing the domain of CSFNSfSs,
which is appropriate to deal with two-dimensional data. &e
proposed method works out to compromise a solution in
which an agreement is accomplished bymutual conductance
that possesses maximum group utility and minimum in-
dividual regret.

Let J � J1, J2, J3, . . . , Jm􏼈 􏼉 be the set of m possible
choices whose expertise, possibility, and utility are figured
out by k decision-experts Y 1, Y 2,Y 3, . . . ,Y k, with the help of

v crucial elements X1,X2,X3, . . . ,Xv, treated as attributes,
and let l1, l2, l3, . . . , lv be considered as the normalized
weight vectors of the attributes in accordance with related
MAGDM problem. Let λs ∈ [0, 1] be the weight of the s-th
decision-expert Y s; therefore, the normalized weight vector
for the experts is λ � (λ1, λ2, λ3, . . . , λk)T. &e strategy for
complex spherical fuzzy N-soft-VIKOR (CSFNSf-VIKOR)
method is described as follows.

3.1. Complex Spherical Fuzzy N-Soft Performance Matrix.
&e alternatives are analyzed by decision-experts on the
basis of the selected attributes and initially admeasured by
numerical labels representing linguistic information relative
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to the MAGDM, such as 5 for “best,” 4 for “good,” 3 for
“bad,” and so. &ese numerical labels are further epitomized
by CSFNSfNs with constraints of grading criteria, which
moves us towards the k CSFNSfSs classified by k decision-

experts. Furthermore, the k CSFNSfSs regarding k deci-
sion-experts are systemized in the form of complex spherical
fuzzy N-soft performance matrices CSFNSfPMsZs �

(Z
(s)
ba )m×v as follows:

Z
s

�

c
1(s)
1 , ϕ(s)

11 ,ψ(s)
11 , χ(s)

11􏼐 􏼑 c
1(s)
2 , ϕ(s)

12 ,ψ(s)
12 , χ(s)

12􏼐 􏼑 . . . c
1(s)
v , ϕ(s)

1v ,ψ(s)
1v , χ(s)

1v􏼐 􏼑

c
2(s)
1 , ϕ(s)

21 ,ψ(s)
21 , χ(s)

21􏼐 􏼑 c
2(s)
2 , ϕ(s)

22 ,ψ(s)
22 , χ(s)

22􏼐 􏼑 . . . c
2(s)
v , ϕ(s)

2v ,ψ(s)
2v , χ(s)

2v􏼐 􏼑

⋮ ⋮ ⋱ ⋮

c
m(s)
1 ,ϕ(s)

m1,ψ
(s)
m1, χ

(s)
m1􏼐 􏼑 c

m(s)
2 , ϕ(s)

m2,ψ
(s)
m2, χ

(s)
m2􏼐 􏼑 . . . c

m(s)
v ,ϕ(s)

mv,ψ(s)
mv, χ(s)

mv􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (21)

where Z(s)
ba � ((cb

a)(s),ϕ(s)
ba ,ψ(s)

ba , χ(s)
ba ) � ((cb

a)(s), t
(s)
ba

ei2πζ(s)

ba , q
(s)
ba ei2πϱ(s)

ba , f
(s)
ba ei2πρ(s)

ba ), and b � 1, 2, 3, . . . , m{ }, a �

1, 2, 3, . . . , v{ }, and s � 1, 2, 3, . . . , k{ } stand for the alterna-
tives Jb, attributesXa, and decision-expertsYs, respectively.

3.2. Aggregated Complex Spherical Fuzzy N-Soft Performance
Matrix. All decision-experts are adequate to manipulate the
individual opinion using CSFNSfWA operator and
resulting matrix known as aggregated complex spherical
fuzzy N-soft performance matrix is (ACSFNSfPM)

evaluated as follows:

Zba � CSFNSfAλ Z
(1)
ba ,Z

(2)
ba , . . . ,Z

(k)
ba􏼐 􏼑

� λ1Z
(1)
ba ⊕ λ2Z

(2)
ba ⊕ · · · ⊕ λsZ

(k)
ba

� maxk
s�1 c

b
a􏼐 􏼑

(s)
,

������

1 − 􏽙
k

s�1

􏽶
􏽴

1 − t
(s)
ba􏼐 􏼑

2
􏼒 􏼓

λs

e
i2π

���������������

1− 􏽙
k

s�1
1− ζ(s)

ba
( 􏼁

2
􏼐 􏼑

λs

􏽱

, 􏽙
k

s�1
q

(s)
ba

⎛⎝ ⎞⎠e
i2π􏽙

k

s�1
ϱ(s)

ba , 􏽙
k

s�1
f

(s)
ba e

i2π􏽙
k

s�1
ρ(s)

ba
⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠

� c
b
a, tbae

i2πζba , qbae
i2πϱba , fbae

i2πρba􏼐 􏼑.

(22)

&e ACSFNSfPM is as follows:

P �

c
1
1,ϕ11,ψ11, χ11􏼐 􏼑 c

1
2, ϕ12,ψ12, χ12􏼐 􏼑 . . . c

1
a,ϕ1v,ψ1v, χ1v􏼐 􏼑

c
2
1,ϕ21,ψ21, χ21􏼐 􏼑 c

2
2, ϕ22,ψ22, χ22􏼐 􏼑 . . . c

2
a,ϕ2v,ψ2v, χ2v􏼐 􏼑

⋮ ⋮ ⋱ ⋮

c
m
1 , ϕm1,ψm1, χm1( 􏼁 c

m
2 ,ϕm2,ψm2, χm2( 􏼁 . . . c

m
v , ϕmv,ψmv, χmv( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (23)

3.3. Selection of CSFNSf Best Value and CSFNSf Worst
Value. &e CSFNSf best value is assessed by the following
formula denoted by 􏽢Za:

􏽢Za �

max
b

Zba, if Xa ∈ ΩB,

min
b

Zba, if Xa ∈ ΩC,

⎧⎪⎨

⎪⎩
(24)

where 􏽢Za � (􏽢cb
a,􏽢tbaei2π􏽢ζba , 􏽢qbaei2π􏽢ϱba , 􏽢fbaei2π􏽢ρba ).

&e CSFNSf worst value is assessed by the following
formula denoted by �Za:

�Za �

max
b

Zba, if Xa ∈ ΩC,

min
b

Zba, if Xa ∈ ΩB,

⎧⎪⎨

⎪⎩
(25)

where �Za � (�cb
a,�tbaei2π�ζba , �qbaei2π�ϱba , �fbaei2π�ρba ).

&e score value S(Zba) and accuracy value A(Zba) are
utilized to compare the CSFNSfNs in ACSFNSfPM.

3.4. Evaluating Sb and Rb. &e normalized Euclidean dis-
tance is utilized to evaluate the group utility measure Sb and
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individual regret measure Rb with the provision of nor-
malized weights of attributes as follows:

Sb � 􏽘
v

a�1
la

d 􏽢Za,Zba􏼐 􏼑

d �Za,Zba􏼐 􏼑
, (26)

Rb � max
1<a<v

la
d 􏽢Za,Zba􏼐 􏼑

d �Za,Zba􏼐 􏼑
. (27)

&e normalized Euclidean distance d( 􏽢Za,Zba) and
d( �Za,Zba) are calculated as follows:

d 􏽢Za,Zba􏼐 􏼑 �
1
4

􏽢cb
a

N − 1
􏼠 􏼡

2

−
cb

a

N − 1
􏼠 􏼡

2
⎛⎝ ⎞⎠

2

+ 􏽢t
2
ba − t

2
ba􏼐 􏼑

2
+ 􏽢q

2
ba − q

2
ba􏼐 􏼑

2
+ 􏽢f

2
ba − f

2
ba􏼒 􏼓

2
⎡⎢⎢⎢⎢⎣⎛⎝

+ 􏽢ζ
2
ba − ζ2ba􏼒 􏼓

2
+ 􏽢ϱ2ba − ϱ2ba􏼐 􏼑

2
+ 􏽢ρ2ba − ρ2ba􏼐 􏼑

2
􏼣􏼡

1/2

,

(28)

d �Za,Zba􏼐 􏼑 �
1
4

�cb
a

N − 1
􏼠 􏼡

2

−
cb

a

N − 1
􏼠 􏼡

2
⎛⎝ ⎞⎠

2

+ �t
2
ba − t

2
ba􏼐 􏼑

2
+ �q

2
ba − q

2
ba􏼐 􏼑

2
+ �f

2
ba − f

2
ba􏼒 􏼓

2
⎡⎢⎢⎢⎢⎣⎛⎝

+ �ζ
2
ba − ζ2ba􏼒 􏼓

2
+ �ϱ2ba − ϱ2ba􏼐 􏼑

2
+ �ρ2ba − ρ2ba􏼐 􏼑

2
􏼣􏼡

1/2

.

(29)

&e optimal values of Sb and Rb are as follows:
􏽢S � minbSb,

�S � maxbSb,

􏽢R � minbRb,

�R � maxbRb.

(30)

&e 􏽢S and 􏽢R correspond to a maximum majority rule
index and a minimum regret of opponent strategy,
respectively.

3.5. Compromise Measure Qb. &e configurations of utility
measure and regret measure of feasible choice Jb link up for
the compromise measure Qb as follows:

Q � ξ
Sb − 􏽢Sb

�Sb − 􏽢Sb

􏼠 􏼡 +(1 − ξ)
Rb − 􏽢Rb

�Rb − 􏽢Rb

􏼠 􏼡, (31)

where ξ ∈ [0, 1] is the coefficient strategy of the majority of
the attributes and in most cases taken as 0.5, usually for the
sake of equal weightage of both the configurations, ξ � 0.5.
Moreover, ξ � 1, representing that the compromise solution
is biased towards the maximum group utility. On the other
hand, ξ � 0 shows the biasness towards minimum individual
regret.

3.6. Ranking of Alternatives. &e values of ranking measures
Sb, Rb, and Qb, corresponding to each alternative, are
arranged in ascending order so that we get three ranking lists
that further play an important role in finding a compromise

solution. Moreover, the alternative with minimum value
regarding three ranking lists is considered as the best feasible
option.

3.7. Compromise Solution. For compromise solution con-
sisting of alternative J(1) with a minimum value of ranking
measure Q, the following conditions should hold, which are
described as follows:

C1: acceptable advantage:

Q J
(2)

􏼐 􏼑 − Q J
(1)

􏼐 􏼑≥
1

m − 1
, (32)

where J(1) and J(2) are the alternatives with the initial
and subsequent position in the ranking list and m

representing the number of alternatives.
C2: acceptable stability: J(1) should be ranked first with
respect to S or R. &e compromise solution within the
proposed method can be assumed stable in all possible
situations of “voting by majority rule (ξ > 0.5),” “by
consensus (ξ � 0.5),” or “by veto (ξ < 0.5).”

Moreover, if the condition C1 is not satisfied, the
compromise solution set contains the alternatives satisfying
the following inequality:

Q J
(b)

􏼐 􏼑 − Q J
(1)

􏼐 􏼑<
1

m − 1
, ∀1≤ b≤m. (33)

But, if condition C2 is not fulfilled, both alternatives J(1)

and J(2) are known as compromise solutions of the
MAGDM problem.
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&e flowchart of the proposed CSFNSf-VIKOR
method is given in Figure 1.

4. Application to Group Decision-Making

In this section, the proposed CSFNSf-VIKOR method is
carried out for the MAGDM problem in the domain of
business administration. Precisely, the proposed
CSFNSf-VIKOR method is implemented for the selection
of firms for the Saudi oil refinery project in Pakistan.

4.1. Selection of Firm for the Saudi Oil Refinery Project in
Pakistan. China-Pakistan Economic Corridor (CPEC) is a
prudent economic project that upgrades the financial ac-
tivities in Pakistan and China, serving as a gateway for the
Middle East, Europe, and Africa. Specifically, there are
advantageous aspects for the people of Gwadar as this
project has industrious and everlasting benefits. In a sign of
its enormous appliances, Saudi Arabia made a decision to
establish a mega oil city in Pakistan at the spot of Gwadar
and get involved in business and investment under the
flagship of CPEC. A firm or company will be hired for the
formation of the mega oil city, as the oil will be imported
fromGulf and will be stored at the proposed Gwadar oil city,
within the time period of one year. For this purpose, a team
of three decision-makers Y 1, Y 2, and Y 3 are chosen, and the
selected concise list of five firms is as follows:

J1: Rabigh Refining and Petrochemical firm
J2: Petromin Company
J3: Saudi Aramco Total Refining and Petrochemical
firm
J4: Alkhorayef Lubricants Company
J5: Yanbu Aramco Sinopec Refining Company (YAS-
REF) Ltd.

According to the proficiency and expertise of the
MAGDM problem, weights for the decision-makers Y 1, Y 2,
and Y 3 are 0.34, 0.31, and 0.35, respectively.

Decision-makers thoroughly study the five firms
according to the requirements of the project and captured
data from the websites http://www.dnb.com (Dun and
Bradstreet Data Cloud) and http://www.investopedia.com,
on the basis of precise characteristics or parameters dis-
cussed in Table 1.

Decision-makers assigned weight vector
(0.26, 0.24, 0.05, 0.15, 0.30)T to the attributes taking into
account the excellence and type of the attributes. For the
selection of the best firm, we adopt the CSFNSf-VIKOR
method as follows:

Step 1: decision-makers modeled six-soft set, arranged
in Table 2, related to attributes of the MAGDM
problem, where five asterisks mean “excellent perfor-
mance,” four asterisks mean “great performance,” three
asterisks mean “good performance,” two asterisks mean
“average performance,” one asterisk means “bad per-
formance,” and big dot means “very bad performance.”

&e criteria for the association of the CSFNs to 6-soft
sets of decision-makers is given in Table 3, so that the
opinions of the decision-makers in the form of
CSFNSfPMsZ1,Z2, andZ3 are arranged in Tables 4,
5, and 6, simultaneously.
Step 2: the judgments of all performance matrices of
decision-makers amalgamated into ACSFNSfPM

using CSFNSfAλ operator are summarized in Table 7.
Step 3: for the evaluation of the worst and the best
values, the score values of the entries of ACSFNSfPM

are calculated, keeping in view the benefit and cost type
criteria where all the attributes are benefit type except
X3. &e worst and best values are calculated from
equations (24) and (25) that are shown in Table 8.
Step 4: the normalized Euclidean distance is formulated
by equations (28) and (29), which is utilized to measure
the separation of best value from each entry of
CSFNSfPM and also from worst value simulta-
neously, organized in Table 9. &ese distances are
further employed in equations (26) and (27) to in-
vestigate the group utility measure S and individual
regret measure R, calculated in Table 10.
Step 5: the compromise measure Qb related to each
alternative or firm, with ξ � 0.50, is estimated through
equation (31) and pinned up in Table 10.
Step 6: furthermore, the alternatives are ranked on the
basis of the group utility, regret measure, and com-
promise measure that is illuminated in Table 11.

&e firm J3 has rank order 1 on the basis of the com-
promise measure Q, and also, the remaining two conditions
of CSFNSf-VIKOR method are satisfied and calculated as
follows:

(1) Q(J4) −Q(J3) � 0.5559−0� 0.5559≥(1/6−1) � 0.2
(2) J3 is the best firm regarding S and R, and ranking

orders are J3 ≻ J4 ≻ J5 ≻ J1 ≻ J2

&us, the firm J3 is best for the establishment of the Saudi
oil refinery project in Pakistan.

5. Sensitivity Test

In the sensitivity test, the role of coefficient strategy ξ playing
as the weight of group utility measure and 1 − ξ as the weight
of individual regret measure is investigated to demonstrate
the ability of the proposed CSFNSf-VIKOR model and the
stability of the solution, which is evaluated by applying the
presented methodology.

ξ is assigned different values from the unit interval [0, 1],
and then we analyze the strength and potency of the
computed decisions from the proposed methodology. In this
case, it is assumed that the variation in the coefficient
strategy weight occurs because the MAGDM panel can
prioritize both (group utility or individual regret) measures,
according to the future necessities of the proposed case
study. However, ξ ∈ [0.6, 1] illustrates that the compromise
solution is subjective to maximum group utility, and
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ξ ∈ [0, 0.4] represents the biasness towards minimum in-
dividual regret.

Figure 2 illustrate that the variation in ξ from 0 to 1
affects the value of the compromise measure Q of alterna-
tives, but the ranking order of the alternatives and the best
solution (i.e., J3) are static in all cases.

6. Comparative Analysis

&is section elaborates the superiority and caliber of the
proposed CSFNSf-VIKOR method by solving the pro-
posed MAGDM problem “Selection of firm for Saudi oil

refinery project in Pakistan” by complex spherical fuzzy-
VIKOR (CSF-VIKOR) method, proposed by Akram et al.
[33]. For the selection of the best firm, we adopt the
CSF-VIKOR method as follows:

Step 1: the initial judgments of the decision-makers
are in the form of grade level as shown in Table 2 that
further transformed into CSFNs, following the
grading criteria defined in Table 3. &e personal as-
sessment of the decision-makers related to the pa-
rameters are denoted by CSFNSfPMs (Z1, Z2, and
Z3) and arranged in Tables 12, 13, and 14 respectively.

Choose decision-experts and weights regarding
the MAGDM problem

Determine feasible options and appropriate
attributes

Construct the CSFNSf PMs related
to each expert Ys

CSFNSf PM
~Z (1)

CSFNSf PM
~Z (k)

Evaluate the aggregated complex sphe-
-rical fuzzy N-soft performnace matrix

Evaluate S, R and Q

Arrange alternatives in ascending order
related to S, R and Q

If
Q (J (2)) − Q (J (1)) ≥ 1/m−1

then

else

else
If J (1)

is also best according to
S or R

The compromise solution contains
all J (b) satisfying condition
Q (J (b)) − Q (J (1)) < 1/m−1

Propose J (1) and J (2)

as best solution

Problem
Identification

Aggregation
of

decision-matrices

VIKOR
methodology

Propose the alternative J (1) as
best solution

Figure 1: Flowchart of the CSFNSf-VIKOR method.
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Table 1: Study of attributes for the MAGDM problem.

X1
Strong risk
Management It is imperative to select a business firm that is financially strong and fully endorsed. Benefit

type

X2 Modern technology: It includes the latest apparatus and machinery, up-to-date software, and other high-tech
innovations.

Benefit
type

X3 Cost price &is attribute includes initial cost, maintenance cost, and production cost. &e firm with the
lowest cost is preferable. Cost type

X4 Plan and vision It is necessary to choose a firm whose strategy related to the project is impactful and profitable. Benefit
type

X5 Experience It includes business-related experience, knowledge, and expertise with fluctuating track record
and success.

Benefit
type

Table 2: Decision-makers opinions regarding attributes.

Attributes Alternatives Y 1 Y 2 Y 3

X1

J1 ∗ � 1 ∗∗ � 2 · � 0
J2 ∗ � 1 · � 0 ∗ � 1
J3 ∗∗ ∗ ∗ ∗ � 5 ∗∗ ∗ ∗ � 4 ∗∗ ∗ ∗ ∗ � 5
J4 ∗∗ ∗ ∗ � 4 ∗∗ ∗ � 3 ∗∗ ∗ ∗ � 4
J5 ∗∗ ∗ � 3 ∗∗ � 2 ∗∗ ∗ � 3

X2

J1 · � 0 ∗ � 1 · � 0
J2 ∗ � 1 ∗ � 1 ∗ � 1
J3 ∗∗ ∗ ∗ � 4 ∗∗ ∗ ∗ ∗ � 5 ∗∗ ∗ ∗ ∗ � 5
J4 ∗∗ ∗ � 3 ∗∗ ∗ ∗ � 4 ∗∗ ∗ ∗ � 4
J5 ∗∗ � 2 ∗∗ ∗ � 3 ∗∗ ∗ � 3

X3

J1 · � 0 · � 0 · � 0
J2 · � 0 ∗ � 1 ∗ � 1
J3 ∗∗ ∗ ∗ � 4 ∗∗ ∗ ∗ ∗ � 5 ∗∗ ∗ ∗ ∗ � 5
J4 ∗∗ ∗ ∗ � 4 ∗∗ ∗ ∗ ∗ � 5 ∗∗ ∗ ∗ � 4
J5 ∗∗ ∗ � 3 ∗∗ ∗ � 3 ∗∗ ∗ � 3

X4

J1 · � 0 · � 0 ∗ � 1
J2 ∗∗ � 2 ∗ � 1 ∗∗ � 2
J3 ∗∗ ∗ ∗ ∗ � 5 ∗∗ ∗ ∗ ∗ � 5 ∗∗ ∗ ∗ � 4
J4 ∗∗ ∗ ∗ � 4 ∗∗ ∗ � 3 ∗∗ ∗ ∗ ∗ � 5
J5 ∗∗ ∗ � 3 ∗∗ ∗ � 3 ∗∗ � 2

X5

J1 ∗ � 1 · � 0 · � 0
J2 ∗ � 1 ∗ � 1 ∗ � 1
J3 ∗∗ ∗ ∗ ∗ � 5 ∗∗ ∗ ∗ ∗ � 5 ∗∗ ∗ ∗ ∗ � 5
J4 ∗∗ ∗ ∗ � 4 ∗∗ ∗ ∗ � 4 ∗∗ ∗ ∗ � 4
J5 ∗∗ ∗ � 3 ∗∗ ∗ � 3 ∗∗ ∗ � 3

Table 3: Grading criteria for CSF6SS.

hw
z /J Degree of yes Neutral membership Degree of no

Grades tba 2πζba qba 2πϱba fba 2πρba

cb
a � 0 [0, 0.30π) [0, 0.0170) [0, 0.0340π) (0.90, 1.00] [1.80π, 2.00π]

cb
a � 1 [0.15, 0.30) [0.30π, 0.60π) [0.0170, 0.0819) [0.0340π, 0.1638π) (0.75, 0.90] [1.50π, 1.80π)

cb
a � 2 [0.30, 0.50) [0.60π, 1.00π) [0, 0.0170) [0, 0.0340π)) (0.50, 0.75] [1.00π, 1.50π)

cb
a � 3 [0.50, 0.75) [1.00π, 1.50π) [0.0170, 0.0819) [0.0340π, 0.1638π) (0.30, 0.50] [0.60π, 1.00π)

cb
a � 4 [0.75, 0.90) [1.50π, 1.80π) [0, 0.0170) [0, 0.0340π)) (0.15, 0.30] [0.30π, 0.60π)

cb
a � 5 [0.90, 1.00] [1.80π, 2.00π] [0.0170, 0.0819) [0.0340π, 0.1638π) [0, 0.15] [0, 0.30π)
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Step 2: the aggregated complex spherical fuzzy per-
formance matrix ACSFPM securing the collective
opinion of the decision-makers through a complex

spherical fuzzy weighted average (CSFWA) operator
is employing as follows:

Zba �

������

1 − 􏽙
k

s�1

􏽶
􏽴

1 − t
(s)
ba􏼐 􏼑

2
􏼒 􏼓

λs

e
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k

s�1 1− ζ(s)

ba
( 􏼁

2
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s�1
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(s)
ba
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i2π􏽑

k

s�1ϱ
(s)

ba , 􏽙
k

s�1
f

(s)
ba e

i2π􏽑
k

s�1ρ
(s)

ba
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠. (34)

&e ACSFPM shown in Table 15.

Step 3: furthermore, for the evaluation of worst and best
attributes in ACSFPM, equations (24) and (25) are
brought into play, despite that the comparison of complex
spherical fuzzy numbers in ACSFPM is computed by
exploiting the score function of each entry as follows:

Sc Zba( 􏼁 � t
2
ba − q

2
ba − f

2
ba􏽨 􏽩 + ζ2ba − ϱ2ba − ρ2ba􏽨 􏽩. (35)

CSF’s best and worst values related to the attributes are
given in Table 16.
Step 4: the group utility measure S and individual
regret measure R of each alternative Jb are valuated
through equations (26) and (27) in the light of

Table 8: CSFNSf best and worst values related to the attributes.

Attribute Best value Worst value
X1 (5, (0.9475ei1.8722π, 0.0296ei0.0678π, 0.0607ei0.1608π)) (1, (0.2114ei0.4130π , 0.0229ei0.0480π , 0.9552ei1.9094π))

X2 (5, (0.9329ei1.8540π, 0.0247ei0.0520π, 0.0901ei0.2064π)) (1, (0.1321ei0.2698π , 0.0168ei0.0340π , 0.9761ei1.9472π))

X3 (0, (0.0784ei0.1376π, 0.0139ei0.0286π, 0.9858ei1.9736π)) (5, (0.9270ei1.8492π , 0.0260ei0.0546π , 0.1049ei0.2274π))

X4 (5, (0.9088ei1.8176π, 0.0178ei0.0356π, 0.0522e1.4160iπ)) (1, (0.1802ei0.3426π , 0.0216ei0.0436π , 0.9786e1.9516iπ))

X5 (5, (0.9494ei1.9044π, 0.0328ei0.0680π, 0.0541e1.3360iπ)) (1, (0.1249ei0.2506π , 0.0166ei0.0352π , 0.9680e1.9444iπ))

Table 9: Normalized Euclidean distance.

Alternative d( 􏽢Z1,Zb1) d( 􏽢Z2,Zb2) d( 􏽢Z3,Zb3) d( 􏽢Z4,Zb4) d( 􏽢Z5,Zb5)

J1 0.9304 0.9660 0.00049 1.0035 1.0316
J2 0.9986 0.9124 0.0497 0.8319 0.9954
J3 0 0 1.0362 0 0
J4 0.5860 0.5596 0.5806 0.5628 0.5957
J5 0.9169 0.7890 0.1785 0.6430 0.8308

Table 10: &e values of Sb, Rb, and Qb.

Alternative Sb Rb Qb

J1 0.9322 0.2422 0.9014
J2 0.9029 0.2894 0.9833
J3 0.05 0.05 0
J4 0.5769 0.1732 0.5559
J5 0.7810 0.2416 0.7418

Table 11: Ranking of firms.

Alternatives J1 J2 J3 J4 J5

Ranking order of S 5 4 1 2 3
Ranking order of R 5 4 1 2 3
Ranking order of Q 5 4 1 2 3
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normalized distance measures, indicated in the fol-
lowing equations and worthy attributes.
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&e normalized distance in equations (36) and (37) is
symmetric as well as it gives positive values corresponding to
each entry in ACSFPM, listed in Table 17. In addition to
that, the group utility measure S, individual regret measure
R and compromise ranking Q (around with equation (31)
and ξ � 0.50) are calculated in Table 18.

Step 5: following the values of S,R, andQ from Table 1
in ascending order, the priority order of alternatives is
presented in Table 19.
Step 6: the firm J3 has rank order one on the basis of the
compromise measure Q, and also, the remaining two
conditions of the CSF-VIKOR method are satisfied
and calculated as follows:

(1) Q(J4) − Q(J3) � 0.5262 − 0 � 0.5262≥ (1/6 − 1) �

0.2
(2) J3 is best firm regarding S and R

&us, the firm J3 is also the best feasible choice for the
establishment of the Saudi oil refinery project in Pakistan
with respect to CSF-VIKOR method.

6.1. Discussion. &e comparison provides the following
results:

(1) &e compromise solution assessed by the
CSFNSf-VIKOR and CSF-VIKOR methods is the
same exact, as indicated in Table 19, which implies
that J3 is the best firm for the development of the
Saudi oil refinery at the place of Gwadar. Together
with the same results, the rankings of the alternatives
in both methods are unvarying. So, we can claim that
the outcomes of the proposed CSFNSf-VIKOR
method are equivalent to the CSF-VIKOR method.
&e correlation between CSFNSf-VIKOR and
CSF-VIKOR methods is illustrated in Table 20, and
their graphical representations are put forward in
Figure 3.

(2) We also implement the techniques of SF-VIKOR
[27] and fuzzy-VIKOR [8] on the proposed
MAGDM problem. &e transparency and accuracy
in the outcomes improve and glorify the level of trust
and confidence about the proposed method. &e
comparison results are pinned up in Table 21.

(3) &e comparative study of the CSFNSf-VIKOR
method with the existing techniques demonstrates
and certifies the superiority of the proposed method
as fuzzy-VIKOR, SF-VIKOR, and CSF-VIKOR
methods have some imperfections and limitations
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Figure 2: Sensitivity test.
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that they all are impotent to understand the grades
level with parameterized figures of such contem-
porary MAGDM problems.

7. Advantages of Proposed Method

(i) &e principle of the VIKOR method relies on group
utility measure and individual regret measure of
each feasible choice, obtained using the normalized
weighted vector of attributes within the normalized
Euclidean distances, compromise the effects of
grades level along with the two-dimensional frame.

(ii) Decision-making using the VIKOR method pro-
vides compromise solution in close proximity of the
ideal solution in conjunction with a two-dimen-
sional fusion of CSFNSf model that enjoys four
opinions of true, neutral, false, and level of the
alternatives in reference to the soft information.
Moreover, by keeping the level of the alternatives
zero, two-dimensional information of four per-
spectives diversified into the CSF data that can be
readily managed by the presented model.

(iii) &e proposed strategic model even accommodates
one-dimensional MAGDM problems within the
ambit of spherical fuzzy information and picture
fuzzy information by exerting periodic terms and
ordered grades zero and raises the assurance of
the proposed method via the accuracy of the
results.

Table 17: Differences of alternatives from best values of ACSFPM.

Alternative d( 􏽢Z1,Zb1) d( 􏽢Z2,Zb2) d( 􏽢Z3,Zb3) d( 􏽢Z4,Zb4) d( 􏽢Z5,Zb5)

J1 0.9585 0.9680 0.00005 1.0175 1.0544
J2 1.0111 0.8960 0.0526 0.8292 1.0070
J3 0 0 1.0480 0 0
J4 0.5668 0.5302 0.6371 0.5346 0.5803
J5 0.9412 0.7714 0.1844 0.6441 0.8277

Table 18: &e values of Sb, Rb, and Qb.

J1 0.9364 0.2464 0.9152

J2 0.98934 0.2865 0.9757
J3 0.05 0.05 0
J4 0.5515 0.1651 0.5262
J5 0.7725 0.2420 0.81346

Table 19: Ranking of firms with respect to CSF-VIKOR.

Alternatives J1 J2 J3 J4 J5

Ranking order of S 5 4 1 2 3
Ranking order of R 5 4 1 2 3
Ranking order of Q 5 4 1 2 3

0

0.2

0.4

0.6

1.0

0.8

J1 J3 J4 J5J2

CSFNSf -VIKOR (proposed)
CSF-VIKOR

Figure 3: Comparative analysis.

Table 21: Comparison with SF-VIKOR and fuzzy-VIKOR.

Method Ranking of firms Best firm
CSFNSf-VIKOR (proposed) J3 ≻ J4 ≻ J5 ≻ J1 ≻ J2 J3
SF-VIKOR [27] J3 ≻ J4 ≻ J5 ≻ J1 ≻ J2 J3
Fuzzy-VIKOR [8] J3 ≻ J4 ≻ J5 ≻ J1 ≻ J2 J3

Table 16: CSF best and worst values related to the attributes.

Attribute Best value Worst value
X1 (0.9475ei1.8722π, 0.0296ei0.0678π, 0.0607ei0.1608π)) (0.2114ei0.4130π , 0.0229ei0.0480π , 0.9552ei1.9094π))

X2 (0.9329ei1.8540π, 0.0247ei0.0520π, 0.0901ei0.2064π)) (0.1321ei0.2698π , 0.0168ei0.0340π , 0.9761ei1.9472π))

X3 (0.0784ei0.1376π, 0.0139ei0.0286π, 0.9858ei1.9736π)) (0.9270ei1.8492π , 0.0260ei0.0546π , 0.1049ei0.2274π))

X4 (0.9088ei1.8176π, 0.0178ei0.0356π, 0.0522e1.4160iπ)) (0.1802ei0.3426π , 0.0216ei0.0436π , 0.9786e1.9516iπ))

X5 (0.9494ei1.9044π, 0.0328ei0.0680π, 0.0541e1.3360iπ)) (0.1249ei0.2506π , 0.0166ei0.0352π , 0.9680e1.9444iπ))

Table 20: Comparison with CSF-VIKOR.

Method Ranking of firms Best firm
CSFNSf-VIKOR (proposed) J3 ≻ J4 ≻ J5 ≻ J1 ≻ J2 J3
CSF-VIKOR [33] J3 ≻ J4 ≻ J5 ≻ J1 ≻ J2 J3
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(iv) Additionally, the proficiency about the neutral part
elongates the presented model as the abstraction of
the fuzzy N-soft models including intuitionistic
fuzzy N-soft, Pythagorean fuzzy N-soft, and
complex Pythagorean fuzzy N-soft environments.

8. Conclusion

Many real MAGDM problems have a complex pattern. A
hybrid decision-making model has been introduced in this
paper, which is based on the VIKORmethod but allows us to
solve problems posed in the elaborate form of complex
spherical fuzzy N-soft sets. &is model was developed by
Akram et al. [34]. An advantage of decision-making within
the two-dimensional frame of CSFNSfSs is that the experts
are free to use four conjectures of true, neutral, false, and
level of the alternatives in reference to the soft information.
&e proposed CSFNSf-VIKOR method has been in dis-
cussion corresponding to the conflicting criteria under
different methodologies. &e linear normalized weights of
the attributes and normalized Euclidean distances have been
interpolated together, for the sake of twomain features of the
acclaimed VIKORmethodology, known as maximum group
utility and minimum individual regret. Moreover, the co-
efficient of weight strategy pertaining to majority opinions
and minimum regret of opponents have been exhibited for
the compromise measure (ranking function). Furthermore,
by keeping the level of the alternatives at zero, two-di-
mensional information comprising four conjectures be-
comes CSF knowledge that can therefore be embedded in
the proposed model.

&e applicability and adequacy of the proposed method
have been exemplified through a MAGDM problem
whereupon a feasible firm is required for the development of
the Saudi oil refinery project in Pakistan. For the imple-
mentation of the proposed CSFNSf-VIKOR method, ex-
perts’ inputs have been supported in the form of a nonbinary
evaluation system. &e CSFNSfWA operator has been
deployed for the construction of ACSFNSfPM, and score
degree has been established for the comparison of two
complex entities inACSFNSfPM. In the end, a comparison
has been executed, which strengthens the presented method
through the results’ transparency. &e one-dimensional
MAGDM problems under the auspices of spherical fuzzy
information and picture fuzzy information can be concili-
ated with this structure by setting phase terms and ordered
grades at zero.&is speaks for the strength and validity of the
presented approach. &e proposed model, in accordance
with neutral information, constitutes a generalization of
fuzzy N-soft knowledge including intuitionistic fuzzy
N-soft, Pythagorean fuzzy N-soft, and complex Pythago-
rean fuzzy N-soft data.

For future direction, the CSFNSf-VIKOR method can
be employed for selections in other types of MAGDM
problems, including solar panel selection, sites for hotel
business selection, in the field of medical and sustainable
suppliers. Moreover, the limitations of the proposed model
invite us to formulate new paradigms. For instance, the
CSFNSf-VIKOR method is deficient to settle conditions in

which the sum of squares of truth membership, neutral
membership, and falsity membership of amplitude terms (or
phase terms) exceeds 1. &erefore, we can work for estab-
lishing a complex T-spherical fuzzy N-soft-VIKOR meth-
odology to extend the current boundary constraints.
Moreover, a computer program can be created to handle the
difficulties that appear in the presence of large numbers of
alternatives and attributes.

Data Availability

No data were used to support this study.

Conflicts of Interest

&e authors declare that they have no conflicts of interest.

Acknowledgments

&is project was funded by the Deanship of Scientific Re-
search (DSR), King Abdulaziz University, Jeddah, under
grant no. D1442-325-130. &e authors, therefore, gratefully
acknowledge DSR technical and financial support.

References

[1] S. Opricovic, Multicriteria optimization of civil engineering
systems, vol. 2, no. 1, , pp. 5–21, Faculty Civil Engineering,
Belgrade, Serbia, 1998, Ph.D. thesis.

[2] S. Opricovic and G.-H. Tzeng, “Compromise solution by
MCDM methods: a comparative analysis of VIKOR and
TOPSIS,” European Journal of Operational Research, vol. 156,
no. 2, pp. 445–455, 2004.

[3] A. Yazdani-Chamzini, M. M. Fouladgar, E. K. Zavadskas, and
S. H. H. Moini, “Selecting the optimal renewable energy using
multi criteria decision making,” Journal of Business Economics
and Management, vol. 14, no. 5, pp. 957–978, 2013.

[4] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8,
no. 3, pp. 338–353, 1965.

[5] Y. Suh, Y. Park, and D. Kang, “Evaluating mobile services
using integrated weighting approach and fuzzy VIKOR,” PLoS
One, vol. 14, no. 6, Article ID e0217786, 2019.

[6] G. Lee, K. S. Jun, and E.-S. Chung, “Group decision-making
approach for flood vulnerability identification using the fuzzy
VIKORmethod,”Natural Hazards and Earth System Sciences,
vol. 15, no. 4, pp. 863–874, 2015.

[7] Y. Li and Y. Liu, “Extended VIKOR-QUALIFLEX method
based on trapezoidal fuzzy two-dimensional linguistic In-
formation for multiple attribute decision-making with un-
known attribute weight,” Mathematics, vol. 9, no. 1, p. 37,
2021.

[8] T.-H. Chang, “Fuzzy VIKOR method: a case study of the
hospital service evaluation in Taiwan,” Information Sciences,
vol. 271, pp. 196–212, 2014.

[9] T. C. Wang and T. H. Chang, “Fuzzy VIKOR as a resolution
for multicriteria group decision-making,” in Proceedings of
the 11th International Conference on Industrial Engineering
and Engineering Management, pp. 352–356, Singapore, 2005.

[10] Z. Wu, J. Ahmad, and J. Xu, “A group decision making
framework based on fuzzy VIKOR approach for machine tool
selection with linguistic information,” Applied Soft Comput-
ing, vol. 42, pp. 314–324, 2016.

24 Mathematical Problems in Engineering



[11] K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and
Systems, vol. 20, no. 1, pp. 87–96, 1986.

[12] R. Roostaee, M. Izadikhah, F. H. Lotfi, and M. Rostamy-
Malkhalifeh, “A multi-criteria intuitionistic fuzzy group de-
cision making method for supplier selection with VIKOR
Method,” International Journal of Fuzzy System Applications,
vol. 2, no. 1, pp. 1–17, 2012.

[13] P. Gupta, M. K. Mehlawat, and N. Grover, “Intuitionistic
fuzzy multi-attribute group decision-making with an appli-
cation to plant location selection based on a new extended
VIKOR method,” Information Sciences, vol. 370, pp. 184–203,
2016.

[14] R. Krishankumar, J. Premaladha, K. S. Ravichandran,
K. R. Sekar, R. Manikandan, and X. Z. Gao, “A novel ex-
tension to VIKOR method under intuitionistic fuzzy context
for solving personnel selection problem,” Soft Computing,
vol. 24, no. 2, pp. 1063–1081, 2020.

[15] R. R. Yager, “Pythagorean membership grades in multicriteria
decision making,” IEEE Transactions on Fuzzy Systems,
vol. 22, no. 4, pp. 958–965, 2013.

[16] M. Gul, M. F. Ak, and A. F. Guneri, “Pythagorean fuzzy
VIKOR-based approach for safety risk assessment in mine
industry,” Journal of Safety Research, vol. 69, pp. 135–153,
2019.

[17] P. Rani, A. R. Mishra, K. R. Pardasani, A. Mardani, H. Liao,
and D. Streimikiene, “A novel VIKOR approach based on
entropy and divergence measures of Pythagorean fuzzy sets to
evaluate renewable energy technologies in India,” Journal of
Cleaner Production, vol. 238, p. 117936, 2019.

[18] X. Ma, M. Akram, K. Zahid, and J. C. R. Alcantud, “Group
decision-making framework using complex Pythagorean
fuzzy information,” Neural Computing & Applications,
vol. 33, no. 6, pp. 2085–2105, 2021.

[19] B. C. Cuong, Picture Fuzzy Sets-First Results, Neuro-Fuzzy
Systems with Applications, Institute of Mathematics, Hanoi,
Vietnam, 2013.

[20] P. Meksavang, H. Shi, S.-M. Lin, and H.-C. Liu, “An Extended
picture fuzzy VIKOR approach for sustainable supplier
management and its application in the beef industry,” Sym-
metry, vol. 11, no. 4, p. 468, 2019.

[21] H. C. Liu and X. Y. You, Green Supplier Evaluation and
Selection: Models, Methods and Applications, Springer Nature,
Basingstoke, UK, 2021.

[22] F. K. Gündogdu and C. Kahraman, “Spherical fuzzy sets and
spherical fuzzy TOPSIS method,” Journal of Intelligent and
Fuzzy Systems, vol. 36, no. 1, pp. 337–352, 2019.

[23] F. K. Gündogdu and C. Kahraman, “Spherical fuzzy sets and
decision making applications,” in INFUS 2021: International
Conference on Intelligent and Fuzzy Systems, pp. 979–987,
Springer, Cham, Switzerland, 2020.

[24] F. K. Gündogdu and C. Kahraman, Decision Making with
Spherical Fuzzy Sets: Keory and Applications, Vol. 392,
Springer Nature, Basingstoke, UK, 2020.

[25] C. Kahraman, F. K. Gündogdu, S. C. Onar, and B. Oztaysi,
“Hospital location selection using spherical fuzzy TOPSIS
method,” in Proceedings of the 2019 Conference of the Inter-
national Fuzzy Systems Association and the European Society
for Fuzzy Logic and Technology (EUSFLAT2019), Atlantis
Press, Prague, Czech Republic, September 2019.

[26] T. Mahmood, K. Ullah, Q. Khan, and N. Jan, “An approach
toward decision-making and medical diagnosis problems
using the concept of spherical fuzzy sets,” Neural Computing
& Applications, vol. 31, no. 11, pp. 7041–7053, 2019.

[27] F. K. Gündogdu and C. Kahraman, “A novel VIKOR method
using spherical fuzzy sets and its application to warehouse site
selection,” Journal of Intelligent and Fuzzy Systems, vol. 37,
no. 1, pp. 1197–1211, 2019.

[28] F. K. Gündogdu, C. Kahraman, and A. Karasan, “Spherical
fuzzy VIKOR method and its application to waste manage-
ment,” in Proceedings of the International Conference on
Intelligent and Fuzzy Systems, pp. 997–1005, Springer,
Istanbul, Turkey, July 2019.

[29] D. Ramot, R. Milo, M. Friedman, and A. Kandel, “Complex
fuzzy sets,” IEEE Transactions on Fuzzy Systems, vol. 10, no. 2,
pp. 171–186, 2002.

[30] M. Akram and A. Bashir, “Complex fuzzy ordered weighted
quadratic averaging operators,” Granular Computing, vol. 6,
no. 3, pp. 523–538, 2020.

[31] A. S. Alkouri and A. R. Salleh, “Complex intuitionistic fuzzy
sets,” AIP Conference Proceedings, vol. 1482, no. 1,
pp. 464–470, 2012.

[32] K. Ullah, T. Mahmood, Z. Ali, and N. Jan, “On some distance
measures of complex Pythagorean fuzzy sets and their ap-
plications in pattern recognition,” Complex & Intelligent
Systems, vol. 6, no. 1, pp. 15–27, 2020.

[33] M. Akram, C. Kahraman, and K. Zahid, “Group decision-
making based on complex spherical fuzzy VIKOR approach,”
Knowledge-Based Systems, vol. 216, p. 106793, 2021.

[34] M. Akram, M. Shabir, A. N. Al-Kenani, and J. C. R. Alcantud,
“Hybrid decision-making frameworks under complex
spherical fuzzyN -soft sets,” Journal ofMathematics, vol. 2021,
Article ID 5563215, 46 pages, 2021.

[35] F. Fatimah, D. Rosadi, R. B. F. Hakim, and J. C. R. Alcantud,
“N-soft sets and their decision making algorithms,” Soft
Computing, vol. 22, no. 12, pp. 3829–3842, 2018.

[36] D. A. Molodtsov, “Soft set theory-first results,”Computers and
Mathematics with Applications, vol. 37, no. 4-5, pp. 19–31,
1999.

[37] M. Akram, A. Adeel, and J. C. R. Alcantud, “FuzzyN-soft sets:
a novel model with applications,” Journal of Intelligent and
Fuzzy Systems, vol. 35, no. 4, pp. 4757–4771, 2018.

[38] H. Zhang, D. Jia-Hua, and C. Yan, “Multi-attribute group
decision-making methods based on Pythagorean fuzzy N-soft
sets,” IEEE Access, vol. 8, pp. 62298–62309, 2020.

[39] A. Adeel, M. Akram, N. Yaqoob, and W. Chammam, “De-
tection and severity of tumor cells by graded decision-making
methods under fuzzy N-soft model,” Journal of Intelligent and
Fuzzy Systems, vol. 39, no. 1, pp. 1303–1318, 2020.

[40] M. Akram, A. Adeel, and J. C. R. Alcantud, “Hesitant fuzzyN-
soft sets: a new model with applications in decision-making,”
Journal of Intelligent and Fuzzy Systems, vol. 36, no. 6,
pp. 6113–6127, 2019.

[41] M. Akram, A. Adeel, A. N. Al-Kenani, and J. C. R. Alcantud,
“Hesitant fuzzy N-soft ELECTRE-II model: a new framework
for decision-making,” Neural Computing & Applications,
vol. 33, no. 13, pp. 7505–7520, 2021.

[42] M. Akram, G. Ali, and J. C. R. Alcantud, “New decision-
making hybrid model: intuitionistic fuzzy N-soft rough sets,”
Soft Computing, vol. 23, no. 20, pp. 9853–9868, 2019.

[43] M. Akram, A. N. F Al-Kenani, and A. N. Al-Kenan, “A hybrid
decision-making approach under complex Pythagorean fuzzy
N-soft sets,” International Journal of Computational Intelli-
gence Systems, vol. 14, no. 1, pp. 1263–1291, 2021.

[44] M. Akram, M. Shabir, and A. Ashraf, “Complex neutrosophic
N-soft sets: a new model with applications,” Neutrosophic Sets
and Systems, vol. 42, pp. 278–301, 2021.

Mathematical Problems in Engineering 25


