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Single-snapshot direction-of-arrival (DOA) estimation plays an important role in dynamic target detection and tracking
applications. Because a single-snapshot signal provides few information for statistics calculation, recently compressed sensing
(CS) theory is applied to solve single-snapshot DOA estimation, instead of the traditional DOA methods based on statistics.
However, when the unknown sources are closely located, the spatial signals are highly correlated, and its overcomplete
dictionary is made up of dense grids, which leads to a serious decrease in the estimation accuracy of the CS-based algorithm. In
order to solve this problem, this paper proposed a two-step compressed sensing-based algorithm for the single-snapshot DOA
estimation of closely spaced signals. 'e overcomplete dictionaries with coarse and refined grids are used in the two steps,
respectively. 'e measurement matrix is constructed by using a very sparse projection scheme based on chaotic sequences
because chaotic sequences have determinism and pseudo-randomness property. Such measurement matrix is mainly proposed
for compressing the overcomplete dictionary in preestimation step, while it is well designed by choosing the steering vectors of
true DOA in the accurate estimation step, in which the neighborhood information around the true DOAs partly solved in the
previous step will be used. Monte Carlo simulation results demonstrate that the proposed algorithm can perform better than
other existing single-snapshot DOA estimation methods. Especially, it can work well to solve the issues caused by closely
spaced signals and single snapshot.

1. Introduction

Direction-of-arrival (DOA) estimation plays an important
role for target/source localization, which is widely used in
many fields including radar, sonar, speech, communication,
and medical diagnosis [1–4]. Traditional high-resolution
DOA estimation algorithms use the statistics of observed
signals to improve the performance efficiency, such as
multiple signal classification (MUSIC) algorithm and esti-
mation method of signal parameters via rotational invariance
techniques (ESPRIT) [5, 6]. 'ese algorithms require to re-
ceive the signals observed in a period of time. However, in
dynamic target detection and tracking systems, only single
snapshot or a small number of snapshots are available for
DOA estimation. In this case, the statistics information is not
accurate, and thus traditional algorithms degrade dramati-
cally. 'erefore, single-snapshot DOA estimation attracts

much attention, which is an active topic widely used in au-
tomotive radar/sonar applications like driver assistance sys-
tems [7]. Moreover, Häcker and Yang [7] also investigated the
performance of traditional DOA estimators using a single
snapshot, such as Bartlett beamformer, MUSIC, deterministic
maximum likelihood, stochastic maximum likelihood, and
weighted subspace fitting. It was shown that these algorithms
cannot work at all or cannot show a superior performance as
expected, especially for multitarget complex scenarios in-
cluding correlated targets under low SNR situation.

In order to improve the accuracy of single-snapshot DOA
estimation, the latest research studies on this topic mainly
used the compressed sensing theory [8, 9] because in CS-
based algorithms, the signals can be reconstructed in spatial
by an overcomplete dictionary, whose sampling interval could
be smaller than the Nyquist limit [10]. However, considering
that the unknown angles are closely spaced, an overcomplete
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dictionary is composed of a uniform sampling grid, so that the
on-grid points should be densely distributed to cover all the
exactly steering vectors to reduce the gap between the real
DOA and its nearest grid points. 'at means vectors in-
volving true DOAs in the overcomplete dictionary will be
high dimensional, and computational cost will be high in
sequence. Furthermore, the columns in the matrix with high
correlation will inevitably degrade the estimation perfor-
mance. 'erefore, the design of overcomplete dictionary
becomes the key step in the CS-based single-snapshot DOA
estimation algorithms for closely spaced signals, which is also
the main content of this paper.

Many researchers focus on the design of overcomplete
dictionary to improve the accuracy of CS-based estimators.
Some existing CS-based estimators have designed iterative
schemes to obtain the optimal overcomplete dictionary [11–13].
Some researchers designed the approach based on off-grid
model which can achieve a smaller MSE than those methods
based on on-grid model. Among them, some off-grid methods
require the covariance matrix of multiple observed samples,
such as the sparse asymptotic minimum variance (SAMV)
method in [14]. However, in some dynamic applications, the
statistics of multiple previous snapshots are inconsistent with
the characteristics of the current single snapshot. Some
methods have been developed based on Bayesian compressed
sensing framework to model the off-grids in the overcomplete
dictionary, such as the off-grid sparse Bayesian inference
(OGSBI) method in [15, 16]. Some DOA estimation methods
use the total least-squares to reduce the error of the over-
complete dictionary, such as [17]. One drawback of these
methods is its slow speed in the case of a dense sampling grid.
When the estimated DOA is densely distributed, the iterative
algorithms based on the probabilistic model need to spend a
large amount of computational load to maintain the estimation
accuracy.

In order to improve the estimation accuracy, this paper
proposed a two-step method to construct the overcomplete
dictionary. In the first step, the search space with coarse grids
will be used, which is useful to determine a narrow optimal
range of the second step with a reduced computational cost.
'us, high correlation of the vectors will be reduced to a low
level, and the key neighborhood information around the true
DOAs lies in the preconceived results [15]. In the following
step, the previous result will be used to reconstruct the
overcomplete dictionary with a smaller size, which is useful to
reduce the memory cost. 'en, an updated search space with
refined grids will be used, so that a more accurate DOAs es-
timation can be expected with high probability in the final step.

Besides, in order to obtain the sparse angles from a
single-snapshot signal, a measurement matrix is required to
sample the observed signals without loss of information [18].
'e measurement matrix has to meet the restricted isometry
property (RIP) to ensure the completeness of useful infor-
mation [19–22]. Generally, Gaussian random matrix and
Bernoulli matrix are used to construct the measurement
matrix because it is found [23, 24] that they can perform
better with small measurement number than other matrices.
However, their randomness and high memory cost are two
issues in application. In order to solve this issue, some

alternate minimization methods were proposed to design
the optimal measurement matrix in terms of reducing the
coherence between the atoms of such matrix [25–29]. 'e
optimization target is to minimize the difference between the
Gram matrix of the equivalent dictionary and the identity
matrix [30]. 'e equivalent dictionary is defined as the
product of the measurement matrix and the overcomplete
dictionary. 'us, in this paper, a new double-structure
measurement matrix is constructed by combining a part of
the unit matrix and the chaotic measurement matrix because
the chaotic measurement matrix has been proved to satisfy
the RIP [22, 31, 32] and has better properties than Gaussian
matrix [33]. In addition, the very sparse random projection
(VSRP)method is used to thin the chaotic matrix, in order to
reduce the memory cost, especially when the measurement
number is large.

'e main contribution of this paper is to develop a novel
approach for single-snapshot DOA estimation of closely
spaced signals. Its contributions are twofold.

We proposed a two-step compressed sensing approach
to improve the estimation accuracy by decreasing high
correlation in the overcomplete dictionary. In the first
step, the search space with coarse grids is defined, so
that high correlation of the vectors will be reduced to a
low level and high computation cost will be avoided. In
the second step, an updated search space with refined
grids is designed, which is adaptively determined by the
solution obtained from the first step. Subsequently, a
smaller dictionary set defined around the true DOAs
lies in the preconceived results, which can improve the
single-snapshot DOA estimation efficiency.

'e proposed CS-based method used a double-structure
measurement matrix for closely spaced DOA estimation.
In order to minimize the difference between its Gram
matrix and the identity matrix, a part of the unit matrix
and a chaotic-based measurement matrix are combined
to construct this double-structure measurement matrix.
'e chaotic-based measurement matrix is built by lo-
gistic mapping chaotic sequence and very sparse random
projection method, where very sparse projection scheme
is used to thin the chaotic matrix. Experimental results
show that it significantly improves the estimation ac-
curacy of CS-based method and outperforms those
obtained using the general Gaussian random matrix.

'e remainder of the paper is organized as follows.
Section 2 describes a single-snapshot DOA estimation
model using CS theory. Section 3 presents the proposed
double-structure measurement matrix designed by cha-
otic sequence and very sparse random projection method.
'e proposed two-step CS-based method for DOA esti-
mation is then presented in Section 4 by using the pro-
posed measurement matrix. In Section 5, some numerical
experiments are given by using dense spatial source sig-
nals, and the results are analyzed from the perspective of
different measurement numbers, SNRs, and sparse de-
grees. Conclusions and future works are provided in
Section 6.
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2. One-Step DOA Estimation of a
Single Snapshot

Consider K narrow-band signals from the unknown di-
rections θi(i � 1, 2, . . . , K) incidenting to uniform linear
array (ULA) composed of N sensors with interelement
spacing d; then, the observed output at a single snapshot
x ∈ CN×1 is expressed as [34]

x � As + w, (1)

where s ∈ CK×1 is the signal vector, w ∈ CN×1 is the additive
Gaussian white noise, and A ∈ CN×K is the array manifold
matrix, which is given as [35, 36]

A � a θ1( 􏼁, a θ2( 􏼁, . . . , a θK( 􏼁􏼂 􏼃, (2)

where a(θi) � 1 e− j(2π/λ)d sin θi . . . e− j(2π/λ)(N− 1)d sin θi􏽨 􏽩
T

with i � 1, 2, . . . , K is the steering vector and λ is the
wavelength.

Consider the angular search range of interest Θ in-
volving from θb to θe, which is defined by

Θ � θ1 θ2 . . . θL􏽨 􏽩
T
, (3)

with the candidate angles defined by θj � θb + (j −

1/L) × (θe − θb)(j � 1, 2, . . . , L). L is the number of the
uniform-distributed candidate angles, and it has relation
L≫K. 'us, the overcomplete array manifold matrix
Ψ ∈ CN×L composed of the steering vectors associating with
each angle orientation θj is expressed as

Ψ �
1
��
L

√ a θ1􏼐 􏼑, a θ2􏼐 􏼑, . . . , a θL􏼐 􏼑􏽨 􏽩, (4)

where a(θj) � 1 e− j2π(d sin θj/λ) . . . e− j2π(N− 1)(d sin θj/λ)􏽨 􏽩
T

∈ CN×1 is the steering vector corresponding to each angle
orientation θj. So, equation (1) can be rewritten as [37]

x � Ψy + w, (5)

where y � y1 y2 . . . yL􏼂 􏼃
T ∈ CL×1 denotes the candidate

signal component corresponding to all L possible DOAs.
Because only true(unknown) DOAs have the larger com-
ponents than the other angles, y can be considered a
K-sparse vector. 'at is, y is a sparse vector to be solved,
which has only K larger components and the rest L − K is
close to zero.

Based on CS theory, a measurement matrixΦ ∈ CM×N is
designed to measure the original output x, and a measured
signal z ∈ CM×1 is obtained as [37]

z � Φx � Φ(Ψy + w), (6)

where M is the measurement numbers and M<N.
According to CS theory, as long as the measurement number
M satisfied the following equation, i.e., M≥K × log2(N/K),
the vector y can be obtained accurately with a big probability
[38]. In equation (6), the measurement matrix Φ is com-
monly constructed by random sequences which can let the
columns of the equivalent dictionary have low correlations
with each other, such as Gaussian random matrix. However,

its randomness and high memory cost are two issues that
need to be solved in application. 'us, we proposed a
double-structure measurement matrix in Section 3.

'e sparse characteristic of y shown in equation (6) can
be considered as a constraint condition [39], so that the
vector y in equations (5) and (6) can be solved by a l1 norm
optimization problem as [37]

min ‖􏽢y‖1

s.t. ‖z − ΦΨ􏽢y‖2 < ε,
(7)

where 􏽢y denotes the estimated sparse solution and ε is a small
parameter. 'us, the estimated DOAs of the spatial signals
can be decided by the nonzero position of the sparse vector y
after such vector y is solved according to the measured vector
z. In summary of the above, a one-step CS-based algorithm
for a single snapshot is shown in the following (Algorithm 1).

3. ProposedMeasurementMatrixBasedonVery
Sparse Chaotic Sequences

Considering a chaotic measurement matrix constructed by
logistic chaotic sequences, the mathematical expression of
mapping equation is [24]

xg+1 � μxg 1 − xg􏼐 􏼑, n � 0, 1, 2 . . . , G, (8)

where xg ∈ (0, 1) represents the gth value of chaotic sequence
and g denotes the iteration number. In the case of μ � 4, the
values of xg can traverse the entire area of 0 to 1, and each
point of the sequences has the property of pseudo-randomness
[31, 33]. So, the proposed method defines μ � 4. 'e initial
value is set as x0 � 0.256.

In order to improve the stability, after generating
x0, x1, . . . , xG, the first t items are discarded to form a new
sequence xt, xt+1, . . . , xG. 'e chaotic sequence is sampled
by the equal interval of v, that is,

zσ � xt+σv, (9)

where v denotes the sampling rate of the sequence x. 'e
pseudorandom sequence z0, z1, . . . , z(G−t)/v is then obtained.
In our experiments, G is set to 3000 × 3000, v is set to 3, and t
is set to 1000. Because Yu and Barbot et al. [24] have proved
that a matrix constructed by a chaotic sequence column by
column is sufficient to satisfy RIP with high probability, the
first M × M values are selected to generate a chaotic matrix
Γ ∈ RM×M with M being the measurement number:

Γ �

z0 zM . . . zM×(M−1)

z1 zM+1 . . . zM×(M−1)+1

. . . . . . . . . . . .

zM−1 z2M−1 . . . zM×M−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

When the number of measurements M is large, the
memory cost of chaotic matrix Γ shown in equation (10)
would increase greatly. In order to compress Γ without the
loss of useful information, very sparse random projection
(VSRP) method is applied to the chaotic measurement
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matrix [32], and it is also used to reduce the data recorded in
the memory [41] and make the measurement matrix easy to
implement [42].

In fact, very sparse projection is the generalized form of
sparse projection and still satisfies the sparse projection
distribution as

Φ1(i, j) �

�
S

√
, with prob.

1
2S

,

−
�
S

√
, with prob.

1
2S

,

0, with prob.1 −
1
S
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where in the case of 1≤ S≤ 3 every element in Φ1 meets the
sparse distribution, while in the case of S≫ 3 every element
in Φ1 meets the very sparse distribution [43]. Inspired by
this, we propose a very sparse projection scheme Φ2 to
improve the chaotic measurement matrix as follows:

Φ2(i, j) �

��
M

√
,

1
��
M

√ > Γ(i, j)≥ 0,

−
��
M

√
,

2
��
M

√ > Γ(i, j)≥
1
��
M

√ ,

0, 1> Γ(i, j)≥
2
��
M

√ .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

Here,Φ2 ∈ RM×M is the matrix obtained by thinning the
chaotic matrix Γ, and Φ2 has similar characteristics with Φ1.
Since very sparse matrix has been proved to meet the RIP
[32, 43], Φ2 satisfies the RIP theory as well.

According to the CS theory, a measurement matrix
composed of two different structural matrices is superior to a
matrix of one single structure [38]. According to the RIP
condition of very sparse projection matrix, the correlation
between very sparse projection vectors and the unit vectors
can be controlled in a restricted range with high probability.
'us, the combination of the unit matrix and very sparse
projection matrix inherits the property of each single matrix.
Since both the unit diagonal matrix and very sparse pro-
jection matrix satisfy RIP, the combination of these matrices
also satisfies RIP. 'erefore, a new double-structure

measurement matrix Φ ∈ RM×N is designed by combining a
part of unit diagonal matrixΦ3 ∈ RM×(N− M) withΦ2, that is,

Φ � Φ3 Φ2􏼂 􏼃. (13)

In order to verify the advantage of the proposed mea-
surement matrix, the memory storage cost of the proposed
matrix and Gaussian matrix is compared in Table 1. It is seen
that the proposed matrix occupies a much smaller memory
storage than Gaussian matrix of the same scale. Since the
proposed measurement matrix is sparse, its sampling rate is
much lower than the Gaussian matrix under the same
conditions. 'us, it provides convenience for dealing with
high-dimensional signals, saving memory storage and fa-
cilitating hardware storage and implementation. Based on
these, the measurement matrix Φ ∈ RM×N shown in equa-
tion (13) is applied in this paper.

4. Two-Step DOA Estimation of a
Single Snapshot

A novel two-step approach for DOA estimation of single-
snapshot signal will be presented and some notations in the
previous section will be employed in this section.

4.1. %e First Step: DOA Preestimation. In the preestimation
step, the search space of interestΘ is divided into L1 parts by
the interval π/c1, where c1 is a predefined step factor and
L1 <L. 'us, the parameter L1 can be expressed as

L1 � INT
θb − θe

π/c1( 􏼁
􏼠 􏼡 + 1, (14)

where θb − θe denotes the whole angular range in Θ and
INT(F) denotes the largest integer that does not exceed the
value F.

'en, the overcomplete orthogonal dictionary with a
rough division is used to construct the sparse transform
matrix Ψ1 ∈ CN×L1 , that is,

Ψ1 �

1 . . . 1

e
− j2π(d/λ)sin φ1 . . . e

− j2π(d/λ)sinφL1

. . . . . . . . .

e
− j(N− 1)2π(d/λ)sinφ1 . . . e

− j(N− 1)2π(d/λ)sin φL1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(15)

Input:
'e observed single-snapshot signal x ∈ CN×1;
'e measurement matrix Φ ∈ CM×N;

Output:
'e DOA estimator, [ϕ1, ϕ2, . . . , ϕK];

(1) Divide the initial search space Θ into L parts to construct the overcomplete dictionary matrix Ψ ∈ CN×L.
(2) Generate the measured signal z � Φx and the sensing matrix T � ΦΨ.
(3) Calculate the DOA estimator [ϕ1,ϕ2, . . . , ϕK] using the OMP method in [40].
(4) return [ϕ1,ϕ2, . . . ,ϕK].

ALGORITHM 1: 'e one-step CS-based algorithm.
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'us, the signal can be expressed as

x � Ψ1y1 + w, (16)

where y1 ∈ CL1×1 denotes the sparse representation of the
estimated angle in a rough manner and φj � θb+

(j − 1/L1) × (θe − θb)(j � 1, 2, . . . L1) denotes the jth angle
in the search space Θ.

Finally, the observed signals s1 ∈ CM1×1 are obtained by
projecting the signal x into the double-structure measure-
ment matrix ΦI, that is,

s1 � ΦIx � ΦI Ψ1y1 + w( 􏼁, (17)

where ΦI ∈ RM1×N is constructed by using equation (13).
Here, M1 denotes the measurement number in the first step.

After the sparse representation of spatial signal, the
rough DOA estimator [φ1,φ2, . . . ,φK] is obtained using the
OMP method. Here, φk is the kth angle solution in the first
step and K is the sparse degree. In general, the sparse degree
is the same as the number of actual angles.

4.2. %e Second Step: Accurate DOA Estimation. In the
second step, the search space of interest is narrowed as 􏽢Θ,
which is generated adaptively according to the rough esti-
mator [φ1,φ2, . . . ,φK], which is

􏽢Θ � 􏽢Θ1, 􏽢Θ2, . . . , 􏽢ΘK􏽨 􏽩, (18)

with
􏽢Θi � φi − Δφi,φi + Δφi( 􏼁, i � 1, 2, . . . , K, (19)

where 􏽢Θi is a neighborhood area with the center φi and
radius Δφi.

Similar to the first step, the search space of interest 􏽢Θ is
divided into L2 parts by the interval π/c2, where c2 is a
predefined step factor. 'us, the parameter L2 can be
expressed as

L2 � INT
span( 􏽢Θ)

π/c2
􏼠 􏼡 + 1. (20)

Here, span means the difference between the maximum
and minimum of the search space of interest. Note that the
predefined step factor is larger than that in the first step, i.e.,
c2 > c1, because the divided parts of the second step are
smaller than those of the first step.

'en, the search space 􏽢Θ is subdivided into L2 parts to
construct overcomplete matrix Ψ2 ∈ RN×L2 , that is,

Ψ2 �

1 . . . 1

e
− j2π(d/λ)sin ϕ1 . . . e

− j2π(d/λ)sinϕL2

. . . . . . . . .

e
− j(N− 1)2π(d/λ)sinϕ1 . . . e

− j(N− 1)2π(d/λ)sin ϕL2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(21)

Next, the signal can be expressed based on the new sparse
base matrix as

x � Ψ2y2 + w, (22)

where y2 ∈ CL2×1 denotes the sparse representation of the
accurate estimated angle and ϕj � min(Θ) + (j − 1/L2) ×

span(Θ)(j � 1, 2, . . . L2) denotes the jth angle in the search
space 􏽢Θ.

Finally, the observed signals s2 ∈ CM2×1 are obtained by
projecting the signal x into the double-structure measure-
ment matrix ΦII, that is,

s2 � ΦIIx � ΦII Ψ2y2 + w( 􏼁, (23)

where ΦII ∈ RM2×N is constructed by equation (13). Here,
M2 denotes the measurement number in the second step.
Based on the new sparse representation of spatial signal, the
accurate DOA estimator [ϕ1,ϕ2, . . . ,ϕK] is obtained using
the OMP method, where ϕk is the kth accurate solution.

'e flowchart of the proposed two-step DOA estimation
algorithm is shown in Algorithm 2.

5. Experiment Simulations and Discussion

In the simulation experiments, we investigate the feasibility
and accuracy of the proposed method for the single-snapshot
DOA estimation, in terms of differentmeasurement numbers,
SNRs, and sparse degrees, respectively. 'e proposed method
is compared with the general CS-based single-snapshot DOA
estimation method, which is called the single-step Gaussian
matrix method. In order to verify the effectiveness of the
measurement matrix we used, it is also compared with the
general Gaussian measurement matrix in the two-step
scheme, which is called the two-step Gaussianmatrixmethod.
'e Monte Carlo method is adopted to evaluate the esti-
mation performance. Root mean square error (RMSE) is used
to evaluate the accuracy of DOA estimation, which is de-
scribed as below.

RMSE �
1
K

􏽘

K

k�1

�������������������

1
CNT

􏽘

CNT

cnt�1
ϕk,cnt − θk􏼐 􏼑

2

􏽶
􏽴

, (24)

where CNT is the number of Monte Carlo loops, K is the
sparse degree, ϕk,cnt is the estimated value of kth angle in the
cntth Monte Carlo loop, and θk is the actual value of the kth

angle. 'us, the RMSE value is measured by degree.
'e parameters are defined as follows: the number of

array antenna N � 40, d � λ/2, the sparse degree K � 4,
and SNR � 15. Note that though the parameter K is as-
sumed to be known, it is not required to be exactly the
same as the number of sources in practice. 'e parameters

Table 1: Memory cost of the proposedmatrix and Gaussianmatrix.

M N Proposed matrix (bytes) Gaussian matrix (bytes)
10 40 1128 3200
20 40 3000 6400
30 40 4520 9600
40 40 6600 12800
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in the two-step CS-based method are defined as follows:
the search space of interest Θ is [−90°, 90°], the step factor
for preestimation c1 � 30, and the step factor for accurate
estimation. c2 � 100 'e 100 Monte Carlo loops are re-
alized. As we found, two closely spaced DOAs, i.e., 1° and
2°, are generally estimated by mistake as one DOA by
MUSIC algorithm due to high correlation between two
closely spaced sources, as shown in Figure 1. Here, the
correlation coefficient between two closely spaced DOAs is
0.9407. To verify the reliability of the proposed method in
solving such estimation problem of highly correlated
signals between each pair of sources, the actual angle
values used in this experiment are randomly generated as
θ � −20° 1° 2° 35°􏼂 􏼃. 'e radius Δφi is chosen as 5°.

In Figure 2, the relationship between measurement
number M2 and RMSE is presented when M1 � 21
(Figure 2(a)) and when M1 � 25 (Figure 2(b)). It is seen that
RMSE in Figure 2(b) is lower than that in Figure 2(a) because
when M1 increased, estimation accuracy of the first step was
improved, which enhanced the accuracy of the final accurate
estimation. When the measurement numbers M1 and M2
are increased, the RMSE of the proposed method is reduced.
Such error mainly comes from the estimation process of 1°
and 2°. 'us, for the dense spatial signal estimation in a
linear array system, the proposed algorithm can use a limited
number of measurements to accurately estimate spatial
signals that are spaced closer than the general resolution.

Figure 3 shows the RMSE performance with different
SNRs. Here, the parameters ofN andK are defined the same as
the experiment mentioned above. 'e parameters of different
CS-based methods are defined as follows. 'e measurement
number in each step is defined as 21. 'e search space of
interest Θ is [−90°, 90°]. In the two-step CS-based methods,
the step factor for preestimation c1 � 30 and the step factor for
accurate estimation c2 � 100. In the one-step CS-based
method, the step factor is defined as 100. It is seen that the
proposed method asymptotically follows CRB and performs
better than other methods. Even when the SNR is lower than
0dB, the proposed method can obtain a lower RMSE.

Table 2 shows the average estimation results of 100
Monte Carlo trials when the sparse degrees are set as
k � 3, 4, 5, 6, respectively. Here, the measurement numbers

are defined asM1 � 21, M2 � 35. It is seen that the estimated
DOAs of the proposed method can distinguish the dense
signals emitted from 1° and 2° with a higher accuracy. In
order to evaluate the estimation accuracy more clearly,
Figure 4 indicates the relationship between M2 and RMSE
under different sparse degree conditions. In Figure 4(a),
K � 4, the actual angle values θ � −20° 1° 2° 35°􏼂 􏼃. In
Figure 4(b), K � 5, the actual angle values
θ � −40° −20° 1° 2° 35°􏼂 􏼃. It is shown that the proposed
two-stepmethod performs better than others under different
degrees of sparsity.

5.1. Comparison between One-Step and Two-Step DOA
Estimation. Among the above experiments, the single-step
CS approach and two-step CS approach are compared to
analyze the effectiveness of two-step scheme. According to
Figure 2, it is observed that the RMSE results obtained by
two-step estimation methods are smaller than those of
single-step estimation method under the same measurement

Input:
'e observed single-snapshot signal x ∈ CN×1;
A new double-structure measurement matrix for preestimation, ΦI ∈ RM1×N;
A new double-structure measurement matrix for the second step, ΦII ∈ RM2×N;

Output:
'e DOA estimator, [ϕ1, ϕ2, . . . , ϕK];

(1) Divide the initial search space Θ into L1 (L1 < L) parts to construct the overcomplete dictionary matrix Ψ1 ∈ CN×L1 .
(2) Generate the measured signal z1 � ΦIx and the sensing matrix T1 � ΦIΨ1.
(3) Calculate the DOA rough estimator [φ1,φ2, . . . ,φK] using the OMP method [40].
(4) Narrow the search space as 􏽢Θ � [ 􏽢Θ1, 􏽢Θ2, . . . , 􏽢ΘK] based on the rough estimator, where 􏽢Θi � (φi − Δφi,φi + Δφi)i � 1, 2, . . . , K.
(5) Divide the search space 􏽢Θ into L2 parts to construct the overcomplete dictionary matrix Ψ2 ∈ C

N×L2 .
(6) Generate the measured signal z2 � ΦIIx and the sensing matrix T2 � ΦIIΨ2.
(7) Calculate the DOA accurate estimator [ϕ1, ϕ2, . . . ,ϕK] using the OMP method in [40].
(8) return [ϕ1,ϕ2, . . . ,ϕK].

ALGORITHM 2: 'e proposed two-step CS-based algorithm.
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Figure 1: DOA estimation results using MUSIC algorithm.
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number condition. Figure 3 shows that under the same SNR
condition, the two-step estimation methods are superior to
the single-step estimation method. For the cases with dif-
ferent degrees of sparsity, Table 2 and Figure 4 indicate that
compared with the single-step method, the two-step esti-
mation methods can reduce the estimated error caused by
the dense signals emitted from 1° and 2°.

5.2. Discussion about Measurement Matrix Construction.
Additionally, Figures 2–4 present the comparison results of
the two-step CS approaches with different measurement
matrices. It is found that estimation accuracy of the

proposed double-structure matrix is better than that of
Gaussian matrix, which verifies the reliability of the pro-
posed double-structure measurement matrix. Considering
that the estimation results of the first step determined the
search space of the second step in the CS-based approach,
different measurement matrices in the first step would affect
the final estimation results. 'us, we investigate the per-
formance of different measurement matrices in the first step
for dense DOA estimation. In the experiment, two closely
spaced DOAs are considered for estimation, i.e.,
θ � 1° 2°􏼂 􏼃. 'e proposed measurement matrix and
Gaussian matrix are used in the first step, respectively, and
the same second step is used as in the proposed algorithm.
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Figure 2: Relationship between RMSE and M2 when (a) M1 � 21 and (b) M1 � 25.

–1 2 5 8 11 14 17 20 23 26 29
0

5

10

15

20

25

SNR (dB)

RM
SE

 (d
eg

)

Single-step Gaussian matrix
Two-step Gaussian matrix

Proposed two-step
approach
CRLB

Figure 3: Relationship between RMSE and SNR.
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'e comparison results are plotted in Figure 5. It is found
that the proposed algorithm can obtain a better RMSE than
Gaussian matrix for dense DOA estimation. 'e reason is
that in the first CS-based procedure, the proposed mea-
surement matrix can obtain a better preestimator with
higher accuracy than Gaussian matrix. 'e better pre-
estimator is helpful to construct a better search range 􏽢Θ for
the second step and then generate a better accurate esti-
mator. 'erefore, it is efficient to apply the double-structure
measurement matrix to two-step CS-based approach to
improve the estimation accuracy.

5.3. Comparison with Other Single-Snapshot DOA Estimation
Methods for Dense DOA Estimation. Finally, the proposed
method is compared with other existing single-snapshot
DOA estimation methods. Considering that the latest
single-snapshot DOA estimation methods are mainly
designed based on the CS theory, especially some off-grid
CS-based methods might solve the problem of dense pa-
rameter estimation. So, we compared the proposed method
with two off-grid CS-based approaches, that is, the OGSBI
method [15] and the SAMV method [14]. In this experi-
ment, N � 40, a single-snapshot signal is observed from

Table 2: Comparison of average DOA estimation results using various methods.

Sparsity True angles
Estimated angles

Proposed 2-step Gaussian 1-step

k� 3
1° 0.6° 0.5910° −1.7°
2° 2.4° 2.544° 12.4°
35° 34.8° 34.935° 36.6°

k� 4

−20° −21° −20.478° −22.347°
1° 0° −12.501° −1.287°
2° 1.8° 2.295° 10.674°
35° 34.8° 34.854° 35.514°

k� 5

−40° −39° −38.82° −42.228°
−20° −19.2° −22.422° −22.896°
1° 0° −13.113° −2.799°
2° 1.8° 2.928° 11.16°
35° 34.8° 34.89° 36.423°

k� 6

−40° −39° −38.91° 35.514°
−20° −19.2° −22.395° −22.797°
1° 0° −12.591° −2.628°
2° 1.8° 3.102° 11.583°
35° 34.8° 34.899° 37.449°
70° 70.8° 69.999° 70.299°

Single-step Gaussian matrix
Two-step Gaussian matrix
Proposed two-step approach
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Figure 4: Relationship between RMSE and M2 when (a) k � 4 and (b) k � 5.
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four angles θ � −20° 1° 2° 35°􏼂 􏼃. In order to make the
comparative experiment fair, the grid spacing of OGSBI
and SAMV is chosen as 2°. 'e number of Monte Carlo
loops is 50. Figure 6 shows one simulation trail of the
Monte Carlo experiments to compare the estimated DOAs
of three methods. It is seen that OGSBI and SAMV fail to
distinguish two peaks when estimating two dense DOAs.
In other words, in this experiment, the proposed method
can successfully estimate four DOAs, but the OGSBI and
SAMV methods can only obtain three DOAs because two
dense DOAs are misunderstood as a single DOA. In brief,
there is usually a problem of high computational com-
plexity while existing estimation approaches achieve
higher accuracy for dense DOA estimation. In our cal-
culations, the average time costs using the same Monte

Carlo loop but three different methods in the same ex-
ample are recorded. 'e results show that the average
execution times are around 3 seconds, 0.01 seconds, and
0.3 seconds when using OGSBI, SAMV, and the proposed
methods, respectively. 'ough SAMV could achieve the
solution with a lower time cost, its estimation accuracy is
poor. Both the OGSBI method and the proposed method
require a certain time cost to deal with grid updating
process. However, compared to OGSBI, the proposed
method costs less time.

6. Conclusion

In this paper, a two-step algorithm based on CS theory is
proposed to solve the single-snapshot dense DOA estima-
tion problem. 'e features of the proposed method include
the following: (1) the search spaces with coarse and refined
grids are used in the two estimations, respectively, so that the
size of the overcomplete matrices is reduced to a low level;
(2) a new double-structure measurement matrix is firstly
presented using very sparse projection scheme and chaotic
sequence matrix; and (3) the performance of the proposed
algorithm is quite good demonstrated by numerical
examples.

It is shown that the proposed double-structure mea-
surement matrix costs less memory than pure chaotic
matrix, which performs better than single-step and two-step
Gaussian method, and it can work well with smaller mea-
surement numbers and lower SNR. It is also shown that the
proposed method performs better for single-snapshot DOA
estimation of high correlation signals, when compared with
some existing off-grid DOA estimation methods (OGSBI
and SAMV). It should be noted that the number of array
elements N should be not smaller than the measurement
number M and the value of M should meet the requirement
of the CS theory, i.e., M≥K × log2(N/K) in our proposed
method.

In our future work, we will further analyze the perfor-
mance of the combined methods of SVD and the proposed
two-step CS algorithm for the low-altitude target dynamic
detection, which is the key to automotive assistance driver
system and so on.
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