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The paper deals with the matrix equation AXB+ CXD = E over the generalized quaternions. By the tools of the real repre-
sentation of a generalized quaternion matrix, Kronecker product as well as vec-operator, the paper derives the necessary and
sufficient conditions for the existence of a Hermitian solution and gives the explicit general expression of the solution when it is
solvable and provides a numerical example to test our results. The paper proposes a unificated algebraic technique for finding
Hermitian solutions to the mentioned matrix equation over the generalized quaternions, which includes many important

quaternion algebras, such as the Hamilton quaternions and the split quaternions.

1. Introduction

In 1843, Irish Mathematician William Rowan Hamilton
introduced the Hamilton quaternions. It is a great event in
the history of mathematics. The set of Hamilton quaternions
can form a skew field [1, 2]. In 1849, James Cockle intro-
duced the split quaternions. It can be used to express
Lorentzian rotations, which is used in geometry and physics
(see [3-5]). In this paper, we consider a more generalized
case, that is, the generalized quaternions, which is in the
form of [6]

q=q + @i+ qsj+9:k 91,9, 93,94 € R (1)

where i? = u, j* =v,k? = ijk = —uv,ij = —ji =k, jk = —kj =
—vi,ik = —ki = uj. In the paper, we only focus on the cases of
0#u,v € R. We call the set Qg by the generalized quater-
nions. Obviously, Qg is a noncommutative 4-dimensional
Clifford algebra. Specially, Qg is the Hamilton quaternion
ring Q if u =v = -1, Qg is the split quaternion ring Q, if
u=-1,v=1, Qg is the nectarine ring Q, if u =1,v=-1,
Qg is the conectarine ring Q. if u=v = 1.

Throughout this paper, let R"™", C"™", QZ*", SR™", and
ASR™" denote the set of all 1 x n real matrices, the set of all
m xn complex matrices, the set of all m xn generalized
quaternion matrices, the set of all 7 x »n real symmetric ma-
trices, and the set of all nxn real antisymmetric matrices,
respectively. The identity matrix of order  is denoted by I,,.
The zero matrix with suitable size is denoted by 0. We define
the conjugate of q € Qg as §=q, — qyi — q3j — q4k. For
A= (a;) € QF*"; we use A = (a_ij), AT to denote the con-
jugate matrix, the transpose matrix of A, respectively. AH =
AT — ATi — ATj — ATk is the conjugate transpose of A. We call
amatrix A € QX" is Hermitian if A¥ = A, which we denote it
by A € HQE®, where HQEF™ is the set of all Hermitian
generalized quaternion matrices with the size of n x n.

In recent decades, different kinds of matrix equations
over some quaternion algebras had been studied, such as the
APX + XA =B, AX =B, AXB=C, AXB+CY D =E, and
AXB+CX D=E, AX* -XB=CY+D, and X - AX*B =
CY™ + D over the real/complex fields or some quaternion
algebras (see [7-29] and references cited therein). For now,
only few papers explored some fundamental properties and
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matrix equation over the generalized quaternions, which one
may refer to [9, 17, 30, 31].

Hermitian matrix has attracted lots of attentions because
of its great importance. There are some results about Her-
mitian solutions of matrix equations over several kinds of
quaternion algebras (see [6, 26, 28, 32]). For example, Yu
et al. [6] studied Hermitian solutions to the generalized
quaternion matrix equation AXB + CX*D = E by the real
representation method; Yuan et al. [32] discussed Hermitian
solutions to the split quaternion matrix equation AXB +
CX D = E by using the complex representation method.
Based on the work mentioned above, and inspired by the
methods in ([28, 32]), we discuss the following problem:

Problem I: given A e Q" Be QX
C e QF",D e QF¥, and E € Q¥, find the solution set

Hp ={X|X e HQZ",AXB+CX D = E}. (2)

2. Properties of the Generalized
Quaternion Matrices

For any A=A +Ai+A5j+Ake QX with
AL A, Ay Ay € R™ we define
O, =[A, A, A5 Ayl (3)

Obviously, the map @, is an isomorphism of A, we
denote by ®, = A. Next, we propose a real matrix repre-

mxn,

sentation for the generalized quaternion matrix A € Q¢
A, uA, vA; —uvAy
A, A vA, —VvA,
Ay —uA, A, uA,
A, Ay A, A

AR — € R4m><4n' (4)

For A = (a;)) € Q"B e ngq, the Kronecker product
of A and B is defined as A®B = (aijB) € lepan. For the
generalized quaternion matrices A,B,C,D,E,F,G, and H
with suitable sizes and the real number k, we have

(kA)®C = A® (kC)

=k(A®C),
[A,B,C]®D =[A®D,B®D,C®D], (5)
[E G] E®K GoK
®K = .
F H F®K H®K
For the matrix A= (a;) € Q5 let

a; = (alj,azj,... .,n, we denote the

vector vec (A) by

»ap;) with j=1,2,..

,a,)". (6)

Throughout the paper, we denote

vec(A) = (a,a,,. ..

Mathematical Problems in Engineering

I, 0 0 0 7
0 ul, 0 O
Nn: >
0 0 vI, 0
L0 0 0 -uvl, ]
r0 I, 0 0]
I, 0 0 0
an 1 >
00 0 .,
0 0 11 0
L Vn -
(7)
0 0 I, 0 7
1
0.0 01,
L,= ,
I, 0 0 0
0 11 0 0
L un -
"0 0 0 I,
00 -I, 0
S, =
01, 0 0
(1, 0 0 0]

The following are some properties of generalized qua-
ternion matrices.

Proposition 1. Let g€ Q; A€ QF”, BeQX, and
C e QF™". Then,

(i) q9=0 does not hold in general

(ii) (AB)T +BT AT in general

(iii) (AB)+ AB in general

(iv) (AR + (AN in general

(v) (C)' # (C) in general

i) (CT)Y (€N in general

Proof. When u=v=-1and u=-1,v=1, Qg is the qua-
ternion ring and the split quaternion ring, we can refer to
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[26, 32]), and the other cases can be easily obtained by direct
calculation.

Some important properties of A® and ®, are as
follows. O

Proposition 2. Let k€ R, A,Be Q¥ CeQX,
D € QF™. Then,

(i) A= B if and only if AR = BR, A = B if and only if

and

(DA = q)B
(i) (A+B)" = AR+ B, (kA)® = kAR, @ =04+
(DB’ chA = k(DA

(iii) Do = D4N,CENTY, (AC)R = ARCR
(iv) If D is invertible, then (D™")} = (DR)™!
) IR =1,

Proof. Since the proofs of (i), (ii), (iv), and (v) are easy, we
only prove (iii). By direct calculation, we have

AC = (A} + Aji+ Asj+ AK)(Cy + Ci + Csj + C k)
=(A,C, +uA,C, + vA;Cy —uvA,C))
+(A,C, + A,C, —vA,C, + vACy)i

+(A;C;5 +uA,C, + AC, —uA,C))j (®)
+(A,C, + A,Cy - AC, + AC) K
=Z,+2,i+Zij+ Z,k
Thus,
AC=0, =2, Z, Z3 Z,], 9)
where
Z, = A C; +uA,C, + vA;C5 —uvA,Cy,
Z,=A,C, + A,C, —vA,Cy +vA,Cy, (10)

Zy = A,C; + UA,C, + AsCy — uA,C,,
Z, = AC, + ACy - A,C, + AC,.

Now, it is easy to

verify AC=®,. =
[z, 2z, Zy Z,] = ®,N,CRN; . O

3. The Structure of vec(AXB)

In the section, we investigate the structure of vec (AXB). For
AcC™" BeC™,and C € C™, it is well known that

vec (ABC) :(CT®A)Vec(B). (11)

However, (11) cannot hold in the generalized quater-
nions for the noncommutative multiplication of the gen-
eralized quaternions. Thus, we need to study the structure of
vec (D yp0)-

Theorem 1. Let A=A +Ai+Ajj+Ake QP
B =B, +B,i+B;j+BkeQ5¥, and C=C, +C,i+Cij+
Ck € QX, where A, e R™", B, e R™, and C,eR™
(i=1,2,3,4). Then,

vec (450 = [(NSCRN;I)T ®A, +(N.C'Q,) o4,

+(N,C'L) 0 Ay +(N.CRs,)" ®A4]Vec (®y).

(12)
Proof. By (iii) in Proposition 2,
®45c = D4N, (BO)N;' = ®,N,B*C*N;"
I, 0 0 0 7
0ul, 0 0
=[A; A, A3 A
0 0 v, 0
LO 0 0 -uvl,]
"B, uB, vB; —uvB,]
B, B, vB, -vB;
By —uB, B, uB,
B, -B, B, B, |
I, 0 0 0 7
rC, uC, vC; —uvC,] 1
0 -I, O 0
C, C, vC, —vC, u
8 1
C; —uCy Cp uG, 0 0 -I, O
v
LC, -C; C, C; |
1
00 0 —I,
L uy b

=[y 2 ¥s vals
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where

y1 = A B,C, +uA,B,C, + vA;B;C, — uvA,B,C, + uA,B,C, + uA,B,C, —uvA;B,C,
+uvA,B;C, + vA,B;C; + uvA,B,C; + vA;B,C; — uvA,B,C; — uvA,B,C, — uvA,B;C, + uvA;B,C, —uvA,B,C,,
y, = A B,C, + uA,B,C, + vA;B;C, —uvA,B,C,
+A,B,C, + A,B,C, - vA;B,C,
+vA,B;C, - vA,B,C, —uvA,B,C, — vA;B,C, + uvA,B,C, + vA,B,C; + vA,B;C; — vA;B,C; + vA,B,C;5, (14)
y3 = A;B,C; + uA,B,C; + vA;B;C; — uvA,B,C; + uA,B,C, + uA,B,C, —uvA;B,C,
+uvA,B;C, + A,B;C, +uA,B,C, + A;B,C, —uA,B,C; —uA,;B,C, —uA,B;C, + uA;B,C, — uA,B,C,,
ys = AB,C, +uA,B,C, + vA;B,C, —uvA,B,C, + A B,C; + A,B,C; — vA;B,C;
+vA,B;C; - A B;C, - uA,B,C, - A;B,C, + uA,B,C, + A|B,C, + A,B;C, — A;B,C, + A,B,C,.

It follows from (11) that

vec(y,) = (CIT ® Al)vec (By) + u(ClT ® Az)vec (B,) + v(ClT ® A3)vec (B;) - uv(ClT ® A4)vec (B,)
+ u(Cg ®A, )Vec (B,) + u(CzT ®A, )VCC (By) - uv(CZ ®A,; )VCC (B,) + uv(Cg ® A4)VCC (B;)
+ v(Cg ®A, )vec (B;) + uv(Cg ® Az)vec (By) + V(CZ ® A3)Vec (By) - uv(CZ ® A4)Vec (B,)
- uv(C4T ®A, )Vec (By) — uv(C4T ® AZ)VCC (B;) + uv(C4T ® A3)Vec (B,) - uv(C4T ® A4)Vec (By)s
vec(y,) =(C; ® A, )vec(B,) +u(C; ® A, Jvec(B,) + v(C; ® A; vec (B;) — uv(C, ® A, Jvec (B,)
+(Cl ®A, )vec(B,) +(C| ® A, Jvec(B,) - v(C| ® A; Jvec(B,) + v(C| ® A, )vec(Bs)
- V(C4T ® A, vec(B;) - uv(C4T ® A, )vec(B,) - v(C4T ® A3)V€C (B)) + uv(C4T ® A4)Vec (B,)
+ V(CI ®A )vec (By) + V(C3T ® Az)vec (By) - V(C3T ® A3)vec (B,) + v(Cg ® A4)VCC (B)),
vec(y;) = (C3T ®A, )vec (By) + u(Cg ® AZ)Vec (B,) + V(C3T ® A3)vec (B;) — uv(Cg ® A4)vec (B,)
+ u(C4T ®A, )Vec (B,) + u(CZ ®A, )vec (By) - uv(CZ ® A3)Vec (By) + uv(CZ ® A4)Vec (B;)
+(C] ® A, )vec(B;) + u(C{ ® A, )vec(B,) +(C] ® A; )vec(B,) - u(C| ® A, )vec(B,)
—u(C; ® Ay Jvec(B,) - u(C; ® A, )vec(B;) + u(C; ® Ay )vec(B,) — u(C; ® A, Jvec(B,),
vec(y,) = (CZ ® A, vec(B,) + u(C4T ® Az)vec (By) + v(CZ ® A )vec(B;) - uv(CZ ® A4)vec (B,)
+ (C3T ® Al)vec (B,) + (CZ ® Az)vec (B)) - v(CZ ® A, )VCC (By) + V(CZ ® A4)vec (B;)
- (CZ ®A, )vec (B;) — u(Cg ® Az)vec (By) - (CzT ® A3)VCC (B)) + u(Cg ® A4)V6C (B,)
+ (Cf ®A, )vec (By) + (CIT ® Az)vec (B;) - (ClT ®A, )Vec (B,) + (CIT ® A4)vec (By).

(15)
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Thus,
vec(y)
vec(y2)
vec (P pc) =
vec(ys)
vec(ys)
G G G Gy
uC Cc, uC, C
= ? ' P ®A, fyec(dy)
vCy, —vC, C, -C,
-uvC, vC; -uC, C,;
ruC, C, uC, C; 1
uC,  uC, uC; uC,
+ 1 ® A, tvec(Dy)
-uvC, vC; -uC, C, (16)
L wvC; —uvCy uC;, -uC,
(r v, -, ¢ -G 17
uvC, -vC; uC, -C
+ 4 ¢ ’ : " @A, tvec(®p)
vC,  vC, vC;  vCy
| L-uvCy —vC) —uvCy —vCy
( r—uvC, vC; -uC, C, g
-uvC; wC, -uC; uC,
+ 1 ® A, rvec(dy)
uvC, vC; uwCy vC;
L -uvC;, —uvC, —uvC; —uvC,
- [(NSCRNt_l)T © A, +(NC'Q,) @A, +(NC'L,) ®4, +(N,CRs,)" ®A4]Vec(<l)3),
T n(n+1)/2
vece (A) =(ay,a,,...,a,_1,a,) € . (17)
which completed our proof. 5(4) = (a4 ) € QG
Yuan et al. [26] studied the vec(®,p-) over Q, while
Theorem 1 extends it to the result over Q;. As we can see . . b i
that Theorem 1 maps the product of generalized quaternion Definition 2. For the matrix B = (b)) € Qz", let
matrices into the product of real matrices by using the real by = (03,0315 -, b)s by = (B3o bz -, bp)s \\ - by g =
representation method, by this way, we can convert a b 11) (12 bun-2)> bt = bu(uo1) We denote
generalized quaternion matrix equation into a real one. vec, (B) = V2(by, by, ..., b, b —1)T c Qg(n—l)/z. (18)
In the following, we introduce some definitions and e
useful lemmas. O
Lemma 1 (see [27]). Suppose X € R™", then
Definition 1. For the matrix A= (a;) € Q" let . n
a, = (a1, VZays .. \Za,), (i) If X € SR™", thenvec(X) = Kgvecg (X), (19)
a, = (a0, V2a5,...,\24,), ., where vecg(X) is represented as (4), and the matrix

a1 = (@0 1)1y V2 Ap(no1))s Gy = Gy We denote

Kg € R™X00DD) e of the following form:
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[\V2e e e, , e 0 0 0 -~ 0 0 0 7
0 e 0 0 V2e, e e, 0 0 0
1 0 0 0 0 0 e 0 0 0 0
Ki=—4 , 20
S \/E ( )
0 0 ee, 0 0 0 -~ 0 V2e,, e, O
L 0 O 0 e 0 0 - e - 0 e,.1 V2e,
where e; is the i-th column of the identity matrix of order n. X € HQE‘X”(:)XIT =X,
(i) If X € ASR™", thenvec(X) = K yvec, (X), (21) xI=-x,
(25)
where vecy (X) is represented as (5), and the matrix Xz =-X;,,
K, € R™Mn=D"2 s of the following form: o x
'ez ey - €, e, 0O --- 0 0o .- 0 7 47 0
Obviously, X, is symmetric, and X,, X5, and X, are
e 0 0 0 e Cn-1 n 0 antisymmetric. By Lemma 1, we have
oL 0 - 0 0 -e 0 0 0 vee (X))
AT >
V2
vec(X,)
vec(@y) =
0 0 - = 0 0 e, 0 e, vec(X;)
Lo 0 -~ 0 — 0 - 0 —e, - —e, L vec(X,)
(22) [ Kgvecg (X))
where e; is the i-th column of 1. Obviously, K{Kg = 1,11y - Kyvee, (X3)
KiK, = L1yn- . K vec, (X;)
By Lemma 1, we have the following. | K vec, (X,) 06)
K¢ 0 0 0 7[vecs(X;)
Theorem 2. For X = X, + X,i + X;j + X,k € HQE™, then
0 Ky 0 0 ||vecy(X,)
vecg (X,) =
0 0 K, 0 ||vecy(X5)
vecy (X5,)
vec(@y) =W , (23) L0 0 0 Kyllvec,(X,)
vec, (X5)
vecg (X,)
vec, (X,)
W vec, (X,)
in which vec, (X5) ‘
K¢ 0 0 O vec, (X,)
0 K, 0 O
W = A . (24) Combining Theorems 1 and 2, we yield the following
0 0 K4 0 result. O
0 0 0 K,
Theorem 3. Let A=A +Aji+Aj+Ake QT

Proof. For any X =X, + X,i+ X;j+ X,k e HQE™, X; €
R™" (i =1,2,3,4), it is easy to see that

X=X, +X,i+ X;j+ X,k e HQE™,
Bij+ Bk € QF°,  where
B, e R (i =1,2,3,4). Then,

and B = B, + B,i+
A € R™" X, e R™,  and
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vec (P ,y5) = [(NnBRNs_l )" ®4, +(N,B"Q,)" ® 4,
+(N,B'L,) @ A; +(N,B"S,) ® A4]
vecg (X5) (27)
vec, (X;5)

vec, (X35) '
vecy (X;)

ol
rvec(E,)

.o vec(E,)
vec(E;) |
Lvec(E,)

We also need the following lemma.

Lemma 2 (see [33]). The matrix equation Ax =b, with
A e R™" and b € R™, has a solution x € R" if and only if

AATL = b, (29)

where A" is the Moore-Penrose inverse of the matrix A. In

this case, it has the general solution
x=A"b+(I,-A"A)y, (30)

where y € R" is an arbitrary vector, and it has the unique

solution x = A*b for the case when rank (A) = n. The solution
of the matrix equation Ax = b with the least norm is x = A*b.

Theorem 4. Let A e QF",Be QF°, CeQF",D e Qr,
and E € Q. Then, Problem I has a solution X € Hy if and

only if
PP'e=ce. (31)

If this condition satisfies, then
Hp ={X|vec(®y) =W[P e+ (5., — P"P)y]}, (32)

where y € R~ is an arbitrary vector.

Furthermore, if (31) holds, then the generalized qua-
ternion matrix equation (2) has a unique solution X € Hp if
and only if

rank (P) = 2n* — . (33)
In this case,

Hp ={X|vec(®y) = WP"el. (34)

4. The Hermitian Solutions

Based on our earlier discussion, we now pay our attention to
Problem I. The following notation is necessary for deriving a
solution to Problem I. Let A = A + A,i + Ajj+ Ak € Q7
B =B, + B,i+ B;j+ Bk € Q%F, C=C, +GCi+Csj+
CkeQl™, D=D +D,i+D;j+DkeQf, and
E=E, +E)i+E;j+ Ek € Q7. In the remaining of the
paper, we set

(N, BN @A, +(N,B'Q,) @A, +(N,BL,) @4, +(N,B'S,) @ A4]W

+ [(NnDRN;1 )" ®C, +(N,D*Q,) ®C, +(N,D"L,)" ®C; +(N,D"s,) c4]w,

(28)

Proof. By (ii) in Proposition 2 and Theorem 3, we have
AXB+CXD =E&= O x5+ DPcxp
= Op & vec (@ x) + vec(Pcxp)
vecs(X1)
vec, (X,)
vee, (X)) |
vec, (X,)

(35)

= vec(Pp) &P

By Lemma 2, Problem I has a solution X € Hy if and
only if (31) holds. If this condition satisfies, then

vecg (X,)
vec, (X
X)) Pe+(Iyp , - P'P)y. (36)
vec, (X3)
vec, (Xy)
Also by (23),
vecs (X))
vec, (X
vec(@y) =W 4(%2)
vecy (X5) (37)
vec, (X,)
=WI[P'e+ (I, - P'P)y],

where y € R*"™ is an arbitrary vector. We can draw the
conclusion (32). Furthermore, if (31) holds, Problem I has a
unique solution X € Hp if and only if

P'P=1I,,_, (38)

That is, (33) holds. In the case, we obtain (34). O



5. Example

In this section, we give two examples to illustrate our results.

Example 1. Consider the Hamilton quaternion matrix
equation AXB + CXD = E, where

il+j],

=1
[f;i]
[

k 1+] (39)

ol 2}
1-2i+j

E=1+2i+3j-k.

Obviously, the Hamilton quaternions mean u = v = —1.
By (4) and (28), we easily get

(-2 -1 0 07
0 -1 2
-2 0 0

o~}
]
I
© = O O = O

0

0
(40)

1

0

0
3
0
0
1
0 0
1 2
3 0
0 1

-1 -2

P=[(N,B*N,) @4, +(N,B*Q,) ® 4,

+(N,BRL)) @ A, +(N,BRS,) ® A4]W
+ [(NZDRNII)T 8C, +(N,0"Q,) ®C,
{N,D*L,)" o C, +(N2DRSI)T®C4]W

1

By Theorem 4 and MATLAB, calculating the formula
vec(Dy) = WP*e gives a solution

Mathematical Problems in Engineering

-0.3899 0.1907 -0.5091 0

0 -0.3180 0 0.2478
+ j+ k.
0.3180 0 —-0.2478 0

Example 2. Consider the generalized quaternion matrix
equation AXB + CXD = E with u = 2,v = 3, where

[ -0.0778 -0.3899 ] [ 0 0.5091 ] )

(41)

-k 1-k+2j], (42)

E=1-2i+j-3k
By (4) and (28), we easily get

-1 -2 0 0 ]
=12

(43)

P= ( BNT) @4, +(N,B'Q,) @4,

1) ® A, +(N,B" S) ]W

N,
+(N2B

+[ N,D*NT') ®C, +(N,DFQ,) o,
(N,D*L,) ®Cy + (NZDRSI)T®C4]W
1
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By Theorem 4 and MATLAB, calculating the formula
vec(Dy) = WP*e gives a solution

0.8970 -0.1826 0 0.2769 ] .
= + i
—-0.1826 -0.2064 -0.2769 0
(44)
0 -0.3228] . 0 -0.0111
+ j+ k.
0.3228 0 0.0111 0

6. Conclusion

In this paper, we provide a direct method to find Hermitian
solutions of the generalized quaternion matrix equation
AXB + CXD = E by using the real representation of gen-
eralized quaternion matrices, Kronecker product and vec-
operator. We give the necessary and sufficient conditions for
the existence of a Hermitian solution and also derive the
general solution when the matrix equation is consistent. The
paper proposes an algebraic technique for finding the
Hermitian solutions to the above matrix equation over the
generalized quaternions. The generalized quaternions in-
clude many important quaternion algebras, for instance, Q,
Q,, Q,, and Q,, thus the paper actually proposes a unified
technique to solve the Hermitian solution problems over the
several quaternion algebras.
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