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)is paper examines the optimal annuitization, investment, and consumption strategies of an individual facing a time-dependent
mortality rate in the tax-deferred annuity model and considers both the case when the rate of buying annuities is unrestricted and
the case when it is restricted. At the beginning, by using the dynamic programming principle, we obtain the corresponding HJB
equation. Since the existence of the tax and the time-dependence of the value function make the corresponding HJB equation hard
to solve, firstly, we analyze the problem in a simpler case and use some numerical methods to get the solution and some of its useful
properties. )en, by using the obtained properties and Kuhn–Tucker conditions, we discuss the problem in general cases and get
the value functions and the optimal annuitization strategies, respectively.

1. Introduction

Referring to [1], we know that, with the aging population,
the basic endowment insurance has been unable to meet
people’s insurance needs. In order to guarantee the sus-
tainable operation of the old age insurance system, many
governments begin to adopt preferential tax policies and
attract people to buy tax-deferred annuities. In the United
States, tax-deferred annuities have benefited more than
60% of families and become the main source of continuous
growth of pension assets in the past 30 years. Tax-deferred
annuities also reduce the pension burden in many coun-
tries such as Germany and France. However, in some
countries, the pilot of tax extension type endowment in-
surance is not successful. Since tax-deferred annuities can
not only play a positive role in improving the three pillar
endowment insurance system, but can also alleviate social
problems caused by the aging population, prosper the
commercial endowment insurance market, and provide
investment funds for the securities market, the promotion
of tax-deferred annuities is extremely essential and urgent
in the whole world.

In order to attract more and more people to buy tax-
deferred annuities, the government should know how to
adopt tax preferential policies, and insurance companies

should know how to design and publicize products. In this
paper, by using stochastic optimal methods and the
Kuhn–Tucker conditions, we get the public’s strategies on
how to buy tax-deferred annuities. )en, we can give some
suggestions for the government and insurance companies to
promote tax-deferred annuities.

Up till now, there have been a lot of papers investigating
individuals’ optimal annuitization strategies in a taxable
annuity model. Reference [2] investigates the optimal
annuitization strategy for an infinitely lived individual who
faces a choice between voluntary annuitization and dis-
cretionary management of assets with systematic withdrawal
for consumption purposes. Reference [3] examines the
optimal annuitization, investment, and consumption
strategies of a utility-maximizing retiree facing a stochastic
time of death under an all-or-nothing arrangement and an
open-market structure arrangement, respectively. Reference
[4] solves a problem of finding the optimal time of
annuitization for a retiree having the possibility of choosing
her investment and consumption strategy. Reference [5]
aims at maximizing the expected utility of consumption with
commutable life annuities and finds that the optimal
annuitization strategy depends on the size of proportional
surrender charge. For a future reference, we can refer
to [6–9].
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However, there are only a few articles that investigate the
tax-deferred annuities. Reference [10] gives some compar-
isons of different tax regimes applied to private pensions.
Reference [11] identifies four potential risks associated with
tax-deferred. Reference [12] concerns with the risk of
fluctuating tax rates and changing tax brackets; it also ex-
amines how the saver’s tax credit changes optimal tax-de-
ferral choices of individuals. )ese papers are all analyzed by
using the data processing method, and they are focusing on
comparing the tax-deferred annuity and an ordinary one.
)is paper investigates the optimal annuitization, invest-
ment, and consumption strategies for an individual under
EET tax payment mode (in which individuals deposit the
premium into an independent account, and the insurance
company invests it in the financial market and returns the
income to the individual in the form of annuities on re-
tirement. Both the taxes of premiums and investment in-
comes are deferred until receiving annuities) by using
stochastic optimal control theory. We consider both the case
when the rate of buying annuities is unrestricted and the case
when it is restricted. We get the value functions and the
optimal annuitization strategies, respectively.

)is paper is organized as follows. In Section 2, the
mathematical formulation of the problem is presented. In
Section 3, we investigate the optimal investment, con-
sumption, and annuitization strategies when the rate of
buying annuities is unrestricted. In Section 4, the same
problem is considered when the rate of buying annuities is
restricted. Finally, the numerical method is provided in
Appendix.

2. Problem Formulation

Let us consider the financial market first. Suppose that there
are a risk-free asset and a risky asset in the financial market.
)eir prices per share B(t) and R(t) follow the following
equations:

dB(t) � rB(t)dt,

dR(t) � R(t)[μdt + σdW(t)].
(1)

Here, r> 0 represents the risk-free rate of return, μ> r is
the drift coefficient of the risk asset, σ > 0 is the volatility
coefficient of the risk asset, W(t) is a standard Brownian
motion on a complete probability space (Ω,F, P), andFt is
the natural filtration generated by W(t).

Let b1,t be the wealth of the individual invested in the
risky asset, and pt the rate of buying tax-deferred annuities.
Setting aside taxes, we can get that the individual’s wealth
process under these policies denoted by x

b1 ,p
t satisfies

dx
b1 ,p
t � rx

b1 ,p
t + b1,t(μ − r) − pt dt + σb1,tdW(t). (2)

Like a general tax policy, we suppose that there is a
threshold b> 0; if the income rate is less that b, nothing will
be taxed; otherwise, the part above b will be taxed with a tax
rate k. Here, we also assume that the income rate is greater
than b since, otherwise, there is no tax preference to buy tax-
deferred annuities for the individual. )en, the taxed wealth
dX

b1 ,p
t satisfies

dX
b1 ,p
t � rX

b1,p
t + b1,t(μ − r) − pt dt + σb1,tdW(t)

− k rX
b1 ,p
t + b1,t(μ − r) − pt − b dt + σb1,tdW(t) 

� rX
b1,p
t + b1,t(μ − r) − pt dt + σb1,tdW(t) + kbdt.

(3)

Here,

r � (1 − k)r,

μ � (1 − k)μ,

σ � (1 − k)σ,

pt � (1 − k)pt.

(4)

Taking consumptions into consideration, we have

dX
b1 ,p,c
t � rX

b1 ,p,c
t + b1,t(μ − r) − pt dt

+ σb1,tdW(t) + kb − ct( dt,
(5)

where ct is the consumption rate of the individual at time t.
In the pension market, we assume that the insurance

company evaluates the residual lifetime using exponentially
distributed random variables. Denote the hazard rate eval-
uated by the individual at time t by λs

t and the hazard rate
evaluated by the insurance company at time t by λo

t , re-
spectively.)ewealth in the pension fundwill also be invested
in the financial market. )e difference is that the income will
not be taxed until the retirement time T. So, the income
process in the pension fund under investment policy b2,t is

dY
b2
t � rY

b2
t + b2,t(μ − r) + pt dt + σb2,tdW(t). (6)

Suppose that the individual has to pay taxes at a tax rate
k2 before he receives annuities. Since the insurance company
assumes that the hazard rate of the individual is λo

t , we can
get that the annuity received by the individual is

c0 �
1 − k2( YT

A
, (7)

where YT is the total pension fund at the retirement time T,
A � 

∞
T

e− (λo
u+r)du. )en, the individual’s expected cumu-

lative discounted pension is

g YT(  � 
∞

T
e

− λs
u+r( )c0du �

B 1 − k2( YT

A
, (8)

where B � 
∞
T

e− (λs
u+r)du.

In this paper, we assume that the short selling is allowed,
and then, bi,t, i � 1, 2 can be negative. Now, let us give the
definition of admissible controls. If π � (bπ1,t, bπ2,t, pπ

t , cπt )

satisfies

(i) bπi,t, i � 1, 2 areFt predictable control processes, and
pπ

t , cπt are nonnegative Ft predictable control
processes.

(ii) 
∞
0 cπt dt<∞, 

∞
0 (bπi,t)

2dt<∞, i � 1, 2, 
∞
0 pπ

t dt

<∞.

)en, we say that π is admissible. Denote all the ad-
missible strategies by Π.
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Next, let us focus on this question: What are the optimal
consumption/investment strategies and the best annuitiza-
tion strategy for the individual to maximize the sum of his
expected accumulated discounted consumption before re-
tirement and the expected discounted wealth at retirement?

Suppose that the individual’s wealth at time t is x and his
money in his pension account at time t is y. Denote the
objective function under policy π by Jπ(t, x, y), and then, we
have

J
π
(t, x, y) � E 

T

t
Γ(t, s)c

π
s ds + Γ(t, T) X

π
T + g Y

π
T( ( |X

π
t � x, Y

π
t � y , (9)

where Γ(t, s) � e
− 

s

t
(r+λs

u)du. )us, the value function
V(t, x, y) is

V(t, x, y) � sup
π∈Π

J
π
(t, x, y). (10)

In the following, we give some initial condition
assumptions.

(i) Assumption 1

Vx(t, 0, y)> 1,

Vx(t, 0, y)≥
Vy(t, 0, y)

1 − k
, ∀y≥ 0.

(11)

(ii) Assumption 2

Vy(t, 0, 0)

1 − k
> 1. (12)

3. The Optimal Strategies when pt

Is Unrestricted

In this section, we investigate the optimal strategy of an
individual when pt is unrestricted. According to 3.4.2 in
[13], we can get the following theorem.

Theorem 1. V(t, x, y) satisfies

min r + λs
t( V(t, x, y) − sup

b1≥0,b2≥0
rx +(μ − r)b1 + kb( Vx(t, x, y) +

σ2b21
2

Vxx(t, x, y)
⎧⎨

⎩

+ σσb1b2Vxy + ry + b2(μ − r)( Vy(t, x, y) +
σ2b22
2

Vyy(t, x, y) − Vt(t, x, y),

Vx(t, x, y) − 1, (1 − k)Vx(t, x, y) − Vy(t, x, y) � 0, t<T,

(13)

V(T, x, y) � x + g(y),

(14)

V(t, 0, 0) � 0, t≥ 0.

(15)

By taking derivatives with respect to b1, b2 in (13), we can
get the maximum point:

b
∗
1(t, x, y) �

(μ − r) Vyy(t, x, y)Vx(t, x, y) − Vy(t, x, y)Vxy(t, x, y) 

σ2 V
2
xy(t, x, y) − Vxx(t, x, y)Vyy(t, x, y) 

, (16)

b
∗
2(t, x, y) �

(μ − r) Vxx(t, x, y)Vy(t, x, y) − Vx(t, x, y)Vxy(t, x, y) 

σ2 V
2
xy(t, x, y) − Vxx(t, x, y)Vyy(t, x, y) 

. (17)
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)e following theorem gives us the solution of (13) in the
case when Vx(t, x, y)> 1, and Vy(t, x, y)< (1 − k)Vx

(t, x, y), and it is essential in solving (13).

Theorem 2. For Vx(t, x, y)> 1, Vy(t, x, y)< (1 − k)

Vx(t, x, y), we have

V(t, x, y) � V1(t, x) + V2(t, y), 0≤ t≤T, (18)

where V1(t, x) satisfies (23) and (20), and V2(t, y) satisfies
(24) and (21).

Proof. Denote the optimal rate of buying tax-deferred
annuities by p∗t and the optimal consumption rate by c∗t . For
Vx(t, x, y)> 1, Vy(t, x, y)< (1 − k)Vx(t, x, y), we can de-
duce that c∗t � 0, p∗t � 0. )e individual will never buy an-
nuities in this situation, and there is no interaction between
x and y. )is implies that

V(t, x, y) � V1(t, x) + V2(t, y), (19)

where V1(t, x) are the benefits obtained in the financial
market, and V2(t, y) are the benefits obtained from the
annuity fund. )en, we can obtain that

V1(t, 0) � 0, t≥ 0,

V1(T, x) � x, x≥ 0,
(20)

V2(t, 0) � 0, t≥ 0,

V2(T, y) � g(y), y≥ 0.
(21)

Taking (16) and (17) into (13), we can get

r + λs
t( V(t, x, y) − Vt(t, x, y) � rxVx(t, x, y) + ryVy

(t, x, y) + kbVx(t, x, y) −
R
2

2
V

2
x(t, x, y)

Vxx(t, x, y)
+

V
2
y(t, x, y)

Vyy(t, x, y)
⎛⎝ ⎞⎠,

(22)

where R � ((μ − r)/σ). )en, the following two differential
equations are satisfied immediately:

− r + λs
t( V1(t, x) + V1t(t, x) + rxV1x(t, x) + kbV1x(t, x)

−
R
2
V

2
1x(t, x)

2V1xx(t, x)
� 0,

(23)

− r + λs
t( V2(t, y) + V2t(t, y) + ryV2y(t, y) −

R
2
V

2
2y(t, y)

2V2yy(t, y)
� 0.

(24)

According to [14], we know that (23) and (20) or (24)
and (21) may be solved by using dual methods. However, the
items (r + λs

t)V1(t, x), (r + λs
t)V2(t, y) in (23) and (24)

combined with the time dependence of λs
t make those partial

differential equations hard to solve. In this paper, we use the
finite difference method to get V1(t, x) and V2(t, y) in

Appendix A. Considering Figures 1 and 2, we get the fol-
lowing theorem. □

Theorem 3. V1(t, x) is a concave increasing positive func-
tion with respect to x, V2(t, y) is a concave increasing positive
function with respect to y. /e growth rates of V1(t, x) and
V2(t, y) are increasing with respect to t.

Next, Let us consider the solutions of (13) in other
cases. Firstly, the boundlessness of pt and ct tells us that
the individual’s optimal consumption and the optimal
amount of buying annuities are lump-sum payments.
Denote Δ∗1 to be the individual’s optimal consumption at
time t, denote Δ∗2 to be the optimal amount of buying
annuities at time t, and considering the right hand of (13),
we can obtain that

V(t, x, y) � V t, x − Δ∗1 − Δ∗2 , y +
Δ∗2
1 − k

  + Δ∗1 , (25)

Vx t, x − Δ∗1 − Δ∗2 , y +
Δ∗2
1 − k

  � 1, (26)
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Figure 1: V1(t, x)
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Figure 2: V2(t, y)
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Vx t, x − Δ∗1 − Δ∗2 , y +
Δ∗2
1 − k

  � (1 − k)

· Vy t, x − Δ∗1 − Δ∗2 , y +
Δ∗2
1 − k

 .

(27)

Considering (26) and (27) and using )eorem 2, we
know that

V t, x − Δ∗1 − Δ∗2 , y +
Δ2
1 − k

  � V1 t, x − Δ∗1 − Δ∗2(  + V2 t, y +
Δ∗2
1 − k

 . (28)

Combining it with (25), we can get that

V(t, x, y) � V1 t, x − Δ∗1 − Δ∗2(  + V2 t, y +
Δ∗2
1 − k

  + Δ∗1 .

(29)

)is implies that V(t, x, y) is the solution of the fol-
lowing restricted optimal problem:

P: sup
Δ1≥0,Δ2≥0,x− Δ1− Δ2≥0

V1 t, x − Δ1 − Δ2(  + V2 t, y +
Δ2
1 − k

  + Δ1.

(30)

Here,Δ1 is the individual’s consumption strategy, andΔ2
is the wealth of buying annuities. Denote the optimal policy
by (Δ∗1(t, x, y),Δ∗2(t, x, y)).

In order to solve Problem P, we need to do some explicit
case analysis. Firstly, define x0(t), x1(t, y) as

V1x t, x0(t)(  � 1,

(1 − k)V1x t, x1(t, y)(  � V2y(t, y), y≥ 0,
(31)

Let

D1 � 0≤ t≤T, y≥ 0|x1(t, y)<x0(t) ,

D2 � 0≤ t≤T, y≥ 0|x1(t, y)≥x0(t) .
(32)

)en, we can get the following two theorems.

Theorem 4. For (t, y) ∈ D1, we have

Δ∗1(t, x, y) � 0,

Δ∗2(t, x, y) �
0, x≤x1(t, y),

x − x1(t, y), x>x1(t, y).


(33)

Proof. Define

L Δ1,Δ2(  � V1 t, x − Δ1 − Δ2(  + V2 t, y +
Δ2
1 − k

  + Δ1.

(34)

On one hand, we can obtain that

zL Δ1,Δ2( 

zΔ1
� 1 − V1′ t, x − Δ1 − Δ2( ,

zL Δ1,Δ2( 

zΔ2
�

V2′ t, y + Δ2/(1 − k)( ( 

1 − k
− V1′ t, x − Δ1 − Δ2( .

(35)

On the other hand, for (t, y) ∈ D1, we have
x1(t, y)<x0(t). )en, for x≤ x1(t, y)< x0(t), we can get

V1′ t, x − Δ1 − Δ2( >V1′ t, x0(t)(  � 1,

V2′ t, y +
Δ2
1 − k

  � (1 − k)V1′ t, x1(t, y)( ≤ (1 − k)V1′ t, x − Δ1 − Δ2( .

(36)

)at is,

zL Δ1,Δ2( 

zΔ1
< 0,

zL Δ1,Δ2( 

zΔ2
≤ 0.

(37)

Clearly, in this case, we have

Δ∗1(t, x, y) � 0,

Δ∗2(t, x, y) � 0.
(38)

For x> x1(t, y), the signs of (zL(Δ1,Δ2)/
zΔ1) and (zL(Δ1,Δ2)/zΔ2) are uncertain. Since

z
2
L Δ1,Δ2( 

zΔ21
�

z
2
L Δ1,Δ2( 

zΔ22
�

z
2
L Δ1,Δ2( 

zΔ1zΔ2
� V1″ t, x − Δ1 − Δ2( ≤ 0. (39)

We can get that
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z
2
L Δ1,Δ2( 

zΔ21
�

z
2
L Δ1,Δ2( 

zΔ22
≤ 0,

z
2
L Δ1,Δ2( 

zΔ21

z
2
L Δ1,Δ2( 

zΔ22
−

z
2
L Δ1,Δ2( 

zΔ1zΔ2
� 0.

(40)

)en, the Hessian matrix of L(Δ1,Δ2) is seminegative
definite, which implies the concavity of L(Δ1,Δ2). So, the
necessary and sufficient conditions for the global maximum
point are the corresponding Kuhn–Tucker conditions:

zL Δ∗1(t, x, y),Δ∗2(t, x, y)( 

zΔi

≤ 0, Δi ≥ 0,

zL Δ∗1(t, x, y),Δ∗2(t, x, y)( 

zΔi

Δi � 0, i � 1, 2.

(41)

For Δ1 � 0,Δ2 � x − x1(t, y)> 0, we can get

zL Δ1,Δ2( 

zΔ1
< 0,

zL Δ1,Δ2( 

zΔ2
� 0.

(42)

Clearly, the corresponding Kuhn–Tucker conditions are
satisfied at (0, x − x1(t, y)). So, it is the global maximum
point. □

Theorem 5. For (t, y) ∈ D2, we have

Δ∗1(t, x, y) �
0, x≤x0(t),

x − x0(t), x>x0(t),


Δ∗2(t, x, y) � 0.

(43)

Proof. )e proof is similar to the one in )eorem 4. Now,
we omit it. □

Remark 1. It is shown from the above two theorems that

(i) In D1, the individual will not consume. )ere is a
boundary x1(t, y), for x> x1(t, y), putting the
wealth above x1(t, y) to buy annuities is optimal,
and for x≤x1(t, y), putting all the wealth to invest
is optimal.

(ii) In D2, the individual will not buy annuities. )ere is
a boundary x0(t), for x> x0(t), putting the wealth
above x0(t) to consume is optimal, and for
x≤x0(t), putting all the wealth to invest is optimal.

(iii) People of different ages and wealth have different
optimal strategies, so, in order to promote tax-de-
ferred annuities, the government should adopt
different tax preferential policies for different
people, and insurance companies should take dif-
ferent publicity strategies for different people.

Clearly, this is practical, and these theorems give us exact
barriers to make decisions.

Remark 2. For k≥ 1 − V2y(t, y), we have

V2y(t, y)

1 − k
≥ 1. (44)

)e concavity of V1(t, x) implies that x1(t, y)≤x0(t);
thus, the individual will not consume, and he will put all the
wealth above x1(t, y) to buy annuities. )is indicates that
raising tax rates properly can stimulate people to buy tax-
deferred annuities.

Remark 3. According to )eorem 3, we know that as time
goes by, x1(t, y) gets bigger, and the lower bound of pur-
chasing annuities becomes more and more difficult to reach.
So, young people are more likely to buy insurance than old
ones. )us, insurance companies should broaden young
people’s annuity market and design more products for
young people.

Now, let us give the value function.

Theorem 6. For (t, y) ∈ D1, we have

V(t, x, y) �

V1(t, x) + V2(t, y), x≤x1(t, y),

V1 t, x1(  + V2 t, y +
x − x1

1 − k
 , x>x1(t, y),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(45)

and for (t, y) ∈ D2, we have

V(t, x, y) �
V1(t, x) + V2(t, y), x≤x0(t),

V1 t, x0(  + x − x0(t) + V2(t, y), x>x0(t).


(46)

Up till now, we have obtained the expression of the value
function, the optimal investment, consumption, and
annuitization strategies in terms of V1(t, x) and V2(t, y). In
the next section, we will analyze the problem when the rate
of buying tax-deferred annuities is restricted.

4. The Optimal Strategies When pt ≤p

)e above analysis considers the optimal annuitization
strategies under the assumption that buying annuities are
not restricted. In fact, in order to ensure the role of Taxation
and reduce the financial pressure, many countries stipulate
that the number of tax-deferred annuities purchased by a
person shall not exceed some point. In this section, let us
consider the problem under the assumption that pt ≤p for
some constant p> 0. Using the results in )eorem 1, we can
get that the value function satisfies (14) and (15) and
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min r + λs
t( V(t, x, y) − Vt(t, x, y) − sup

b1 ≥ 0,b2 ≥ 0
rx +(μ − r)b1 + kb( Vx(t, x, y)

⎧⎨

⎩

+
σ2b21
2

Vxx(t, x, y) + σσb1b2Vxy + ry + b2(μ − r)( Vy(t, x, y) +
σ2b22
2

Vyy(t, x, y)]

− sup
0≤p≤p

pVy(t, x, y) − pVx(t, x, y) , Vx(t, x, y) − 1
⎫⎬

⎭ � 0, t<T.

(47)

)us, in this case, the optimal investment strategies are
still determined by (16) and (17).

It follows from (47) that for
(1 − k)Vx(t, x, y)≥Vy(t, x, y), we have

r + λs
t( V(t, x, y)≥ sup

b1≥0,b2≥0
rx +(μ − r)b1 + kb( Vx(t, x, y) +

σ2b21
2

Vxx(t, x, y) + σσb1b2Vxy

+ ry + b2(μ − r)( Vy(t, x, y) +
σ2b22
2

Vyy(t, x, y) + sup
c≥0

c 1 − Vx(t, x, y)(   + Vt(t, x, y),

Vx(t, x, y)≥ 1,

(48)

with at least one strict equal sign. For
(1 − k)Vx(t, x, y)<Vy(t, x, y), we have

r + λs
t( V(t, x, y)≥ sup

b1≥0,b2≥0
rx +(μ − r)b1 + kb( Vx(t, x, y) +

σ2b21
2

Vxx(t, x, y) + σσb1b2Vxy

+ ry + b2(μ − r)( Vy(t, x, y) +
σ2b22
2

Vyy(t, x, y) + sup
c≥0

c 1 − Vx(t, x, y)(  

+ pVy(t, x, y) − (1 − k)pVx(t, x, y) + Vt(t, x, y),

Vx(t, x, y)≥ 1,

(49)

with at least one strict equal sign. Let U1(t, x) satisfy

− r + λs
t( U1(t, x) + U1t(t, x) + rxU1x(t, x) +(kb − (1 − k)p)U1x(t, x) −

R
2
U

2
1x(t, x)

2U1xx(t, x)
� 0, (50)

U1(T, x) � x, (51)

U1(t, 0) � 0. (52)

Let U2(t, y) satisfy
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− r + λs
t( U2(t, y) + U2t(t, y) +(ry + p)U2y(t, y) −

R
2
U

2
2y(t, y)

2U2yy(t, y)
� 0, (53)

U2(T, y) � g(y), y≥ 0, (54)

U2(t, 0) � V1 t, x1(t, y)(  − U1 t, x1(t, y)( , t≥ 0. (55)

Define x0(t) by

U1x t, x0(t)(  � 1. (56)

Appendix B gives us numerical solutions of U1(t, x) and
U2(t, y). Figures 3 and 4 give us the following theorem.

Theorem 7. U1(t, x) is a concave increasing positive func-
tion with respect to x, and U1x(t, x) is increasing with respect
to t and

U1x(t, x)>V1x(t, x), x≥ 0. (57)

According to )eorem 7, we can obtain that

V1′ t, x0( <U1′ t, x0(  � 1 � V1′ t, x0(t)( , (58)

)en, we can get

x0(t)>x0(t), ∀t≥ 0. (59)

Next, we consider the form of the value function in D1
and D2, respectively.

For t ∈ D1, define

w(t, x, y) �

V1(t, x) + V2(t, y), x≤ x1(t, y),

U1(t, x) + U2(t, y), x1(t, y)<x< x0(t),

U1 t, x0(t)(  + x − x0(t) + U2(t, y), x≥ x0(t),

⎧⎪⎪⎨

⎪⎪⎩

Δ∗1(t, x, y) �
0, x≤ x0(t),

x − x0(t), x> x0(t),


p
∗
(t, x, y) �

0, x≤ x1(t, y),

p, x> x1(t, y).


(60)

For t ∈ D2, define

w(t, x, y) �
V1(t, x) + V2(t, y), x≤x0(t),

V1 t, x0(t)(  + x − x0(t) + V2(t, y), x>x0(t),


Δ∗1(t, x, y) �
0, x≤ x0(t),

x − x0(t), x> x0(t),


p
∗
(t, x, y) � 0.

(61)

)en, we have the following corollary.

Lemma 1. w(t, x, y) defined above satisfies (14), (15),
and (47).

Proof. According to (20), (21), (51), (52), (54), and (55), we
can get that w(t, x, y) satisfies (14) and (15).

For t ∈ D1, x≤x1(t, y), we have that

(1 − k)wx(t, x, y) � (1 − k)V1′(t, x)≥ (1 − k)V1′ t, x1(t, y)(  � V2′(t, y) � wy(t, x, y),

wx(t, x, y) � V1′(t, x)> 1.
(62)

)us, we can get that
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c
∗
t � 0,

p
∗
t � 0.

(63)
Since V1(t, x) satisfies (23), and V2(t, y) satisfies (24), it

follows immediately that w(t, x, y) satisfies (47).
For t ∈ D1, x1(t, y)<x< x0(t), we have

wx(t, x, y) � U1′(t, x)> 1,

(1 − k)wx(t, x, y) � (1 − k)U1′(t, x)≤ (1 − k)V1′(t, x)≤ (1 − k)V1′ t, x1(t, y)( ,

(1 − k)V1′ t, x1(t, y)(  � V2′(t, y) � U2′(t, y) � wy(t, x, y).

(64)
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It implies that

c
∗
t � 0,

p
∗
t � p.

(65)

Since U1(t, x) satisfies (50), and U2(t, y) satisfies (53), it
follows immediately that w(t, x, y) satisfies (47).

For t ∈ D1, x≥ x0(t), we have

(1 − k)wx(t, x, y) � (1 − k)U1′ t, x0(t)(  � (1 − k)V1′ t, x0(t)( <(1 − k)V1′ t, x1(t, y)( ,

(1 − k)V1′ t, x1(t, y)(  � V2′(t, y) � U2′(t, y) � wy(t, x, y),

wx(t, x, y) � 1.

(66)

)us, we can get p∗t � p. Clearly, w(t, x, y) is the so-
lution of (47).

)e cases for (t, y) ∈ D2 can be proved with a similar
analysis, and we can obtain that w(t, x, y) satisfies (47)
finally.

)e concavity of V1(t, x), U1(t, x), V2(t, y), and
U2(t, y) indicates that w(t, x, y) satisfies the polynomial
growth condition. So, using )eorem 3.5.2 in [13], we can
immediately get that w(t, x, y) � V(t, x, y). □

Remark 4. Obviously, the boundary of buying annuities in
this section is the same as the one in Section 3. So, the
suggestions proposed in Section 3 can also apply when the
rate of buying annuities is restricted.

Remark 5. )e form of p∗ indicates that properly raising the
upper bound p can increase the rate of buying annuities.

Appendix

Owing to the existence of tax and the time dependence of the
value function, we cannot get explicit solutions of the dif-
ferential equations satisfied by V1(t, x), V2(t, y) and
U1(t, x), U2(t, y). So, numerical methods should be applied.
One of the generally used numerical methods is called the

standard finite difference method. )e steps of the method
are as follows:

(i) Gridding the domain of the unknown function.
(ii) Replacing derivative functions in the differential

equation with difference functions expressed by the
function values of the grid points.

(ii) Using the boundary conditions and solving the
difference equations to deduce the function values of
the grid points.

According to [15], we know that as long as the solution of
the differential equation is growing linearly, the method is
stable. )us, we use this method to get the value function of
our problem.

In this paper, we suppose that the investor is 22 years old
at time 0, and by using the life table data of China Life
Insurance and doing regression analysis, we can approxi-
mate the hazard rate of the individual at time t with
λs

t � 0.001 + 0.0006t2.

A. The solutions of V1(t, x) and V2(t, y)

In order to get V1(t, x), let us discuss the numerical solution
of the partial differential equation

r + λs
t( V1(t, x) − rxV1x(t, x) − kbV1x(t, x) +

R
2
V

2
1x(t, x)

2V1xx(t, x)
� V1t(t, x),

V1(t, 0) � 0.

(A.1)

Clearly, the definition domain of V1(t, x) is
[0, T] × R+ ∪ 0. Fixing h> 0, denoting aij � V1((i − 1)h,

(j − 1)h), and letting m − 1 � T/h, n ∈ Z+, we construct an
m × n matrix A:

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

. . . . .

. . . . .

. . . . .

am1 am2 am3 · · · amn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.2)

Obviously, the matrix is the numerical solution of
V1(t, x) when h⟶ 0.

Since V1(t, 0) � 0, we can get the first column of A. )at
is,

ai1 � 0, i � 1, 2, . . . , m. (A.3)

Furthermore, for an initial wealth x � 0, we know that
the investment strategy is b1 � 0, that is,

V
2
1x(t, 0)

V1xx(t, 0)
� 0. (A.4)

)en, for h⟶ 0, we have
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V
2
1x(t, h)

V1xx(t, h)
� 0. (A.5)

It means that

r + λs
t( V1(t, h) − rxV1x(t, h) − kbV1x(t, h)

� V1t(t, h), h⟶ 0.
(A.6)

Using the finite difference method, we can substitute
V1x(t, h) with ((V1(t, h) − V1(t, 0))/h) and get the fol-
lowing differential equation with respect to t

r + λs
t( V1(t, h) � V1t +(rh + kb)

V1(t, h) − V1(t, 0)

h
.

(A.7)

By doing some simple calculations, we can obtain that

V1(t, h) � V1(0, h)e


t

0
L(s)ds

, (A.8)

where L(s) � λs
s + r − r − (kb/h).

According to (20), we know that V1(T, h) � h. Com-
bining with (A.8), we can get that

V1(0, h) � he
− 

T

0
L(s)ds

. (A.9)

)en, we obtain the second column of A.
In order to get the first two rows of A, we consider the

pair (a13, a23) first. Substituting V1x(0, 2h), V1t and (V2
1x

(0, 2h)/V1xx(0, 2h)) with ((a13 − a12)/h), ((a23− a13)/h) and
((a13 − a12)

2/(a13 + a11 − 2a12)), respectively, we can get

r + λs
0( a13 �

a23 − a13

h
+(rh + kb)

a13 − a12

h
−

R
2

a13 − a12( 
2

2 a13 + a11 − 2a12( 
.

(A.10)

Similarly, we can also get

r + λs
h( a23 �

a23 − a13

h
+(rh + kb)

a23 − a22

h
−

R
2

a23 − a22( 
2

2 a23 + a21 − 2a22( 
.

(A.11)

Combining with the two equations, we can get a13
and a23.

With the same method, we can also get
a14, a24, a15, a25, . . .. )en, the first two rows of A are ob-
tained. At last, we can deduce the left elements from left to
right, from top to bottom by solving the corresponding
difference equations.

Next, let us consider V2(t, y). We have to find the
numerical solution of the partial differential equation

r + λs
t( V2(t, y) − ryV2y(t, y) +

R
2
V

2
1y(t, y)

2V2yy(t, y)
� V2t(t, y),

V2(t, y) � 0,

V2(T, y) � g(y).

(A.12)

Similarly, we construct an m × n matrix B:

b11 b12 b13 · · · b1n

b21 b22 b23 · · · b2n

. . . . .

. . . . .

. . . . .

bm1 bm2 bm3 · · · bmn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.13)

where bij � V2((i − 1)h, (j − 1)h) and m − 1 � (T/h), n

∈ Z+. Using the boundary conditions, we can get the first
column and the last row of B. )at is,

bi1 � 0, i � 1, 2, . . . , m,

bmj � g((j − 1)h), j � 1, 2, . . . , n.
(A.14)

What is more, for h⟶ 0, we have

V
2
2y(t, h)

V2yy(t, h)
� 0. (A.15)

)us, we can get

r + λs
t( V2(t, h) − ryV2y(t, h) � V2t(t, h), h⟶ 0.

(A.16)

Using the finite difference method, we can substitute
V2y(t, h) with ((V2(t, h) − V2(t, 0))/h) and get the fol-
lowing differential equation with respect to t:

r + λs
t( V2(t, h) � V2t + rh

V2(t, h) − V2(t, 0)

h
. (A.17)

By doing some simple calculations, we can obtain that

V2(t, h) � V2(T, h)e
− 

T

t
λs

sds
. (A.18)

)en, we get the second column of B. Since the first two
columns and the last row of B are obtained, left to right,
bottom to top, we can get the elements left.

)e R program of solvingV1(t, x) andV2(t, y) and the R
program of plotting Figures 1 and 2 are given in the file A.R
in the attachment. Clearly, the image of V1(t, x) with respect
to x for different t illustrates that V1(t, x) is a concave
increasing positive function with respect to x. Similarly,
V2(t, y) is a concave increasing positive function with re-
spect to y.

B. The solutions of U1(t, x), U2(t, y) and a
comparison of U1(t, x) and V1(t, x)

Since U1(t, x), U2(t, y) satisfy the same forms of differential
equations as V1(t, x), V2(t, y), respectively, the processes of
solving U1(t, x), U2(t, y) are the same as the processes of
solving V1(t, x), V2(t, y). )e R program of solving
U1(t, x), U2(t, y) and the R program of plotting Figures 3–5
are presented in the file B.R in the attachment.
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It is shown from Figure 3 that U1(t, x) is a concave
increasing positive function with respect to x. What is more,
Figure 4 tells us that

U1(t, x)≤V1(t, x),

U1x(t, x)≤V1x(t, x).
(B.1)
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