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Icing disasters on power grid transmission lines can easily lead to major accidents, such as wire breakage and tower overturning,
that endanger the safe operation of the power grid. Short-term prediction of transmission line icing relies to a large extent on
accurate prediction of daily minimum temperature.+is study therefore proposes a LightGBM low-temperature predictionmodel
based on LassoCV feature selection. A data set comprising four meteorological variables was established, and time series au-
tocorrelation coefficients were first used to determine the hysteresis characteristics in relation to the daily minimum temperature.
Subsequently, the LassoCV feature selection method was used to select the meteorological elements that are highly related to
minimum temperature, with their lag characteristics, as input variables, to eliminate noise in the original meteorological data set
and reduce the complexity of the model. On this basis, the LightGBM low-temperature predictionmodel is established.+emodel
was optimized through grid search and crossvalidation and validated using daily minimum surface temperature data from
Yongshan County (station number 56489), Zhaotong City, Yunnan Province.+e root mean square error, MAE, andMAPE of the
model minimum temperature prediction after feature selection are shown to be 1.305, 0.999, and 0.112, respectively. +ese results
indicate that the LightGBM prediction model is effective at predicting low temperatures and can be used to support short-term
icing prediction.

1. Introduction

Evidence from power grid operation shows that wire breaks
and tower toppling accidents, caused by transmission line
icing, lead to great damage to the transmission lines
themselves and also adversely affect the safe and stable
operation of the power grid system more generally [1]. Most
transmission line icing accidents occur in areas with high
small-scale weather variability, which are strongly affected
by factors such as temperature, humidity, cold and warm air
convection, circulation, and wind [2]. Low temperature is an
important cause of transmission line icing. +erefore, ac-
curate prediction of minimum temperature can provide a
good basis for short-term transmission line icing prediction.
Minimum temperature data are generally based on time

series, and most traditional prediction methods use uni-
variate time series modeling [3]. However, changes in
temperature are affected by various meteorological factors,
and those that correlate highly with temperature include
wind direction, wind speed, and relative humidity [4].
Traditional time series temperature prediction models
mainly include multiple linear regression, autoregressive
integrated moving average (ARIMA) [3], and gray predic-
tion methods. Accounting for dynamic changes in tem-
perature is difficult because of the prediction effects of the
aforementioned methods, and the prediction results gen-
erally tend towards average values. Tao et al. [4] proposed a
temperature prediction method using a long short-term
memory network based on a random forest approach. Niu
and others proposed the use of principal component
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analysis, a back propagation (BP) neural network, and a
radial basis function (RBF) neural network, to establish a
temperature prediction model [5]. Although this method
considers the influence of multiple meteorological variables
on temperature, it does not consider the time series char-
acteristics of those meteorological variables. Jiang [6] pro-
posed an application of a particle swarm-optimized RBF
artificial neural network to temperature prediction. Al-
though the structural parameters of the RBF model are
optimized by the particle swarm optimization algorithm,
problems associated with univariate time series prediction
are still encountered, so the prediction accuracy is not high.

Aiming to address the difficulty of traditional prediction
methods to learn from large amounts of data, and their
inability to fully consider the impact of multiple meteoro-
logical variables and their own time correlations on tem-
perature changes, this paper proposes a LightGBM low-
temperature prediction model based on LassoCV feature
selection. Daily minimum surface temperature data from
Yongshan County, Zhaotong City, Yunnan Province (sta-
tion number 56489) from 2015 to 2019 were selected as the
experimental data for prediction. +e model first uses au-
tocorrelation to establish hysteresis characteristics. Subse-
quently, LassoCV is used to measure the importance of the
individual variable features, and those that are highly related
to minimum temperature are selected as input variables to
LightGBM to model the minimum temperature time series
data. +e experimental prediction results show that this
method has stronger learning ability and higher prediction
accuracy than traditional methods and long short-term
memory (LSTM) networks. Especially when trained on
large-scale multivariable meteorological time series data, this
model shows high accuracy and a fast training speed, which
are beneficial to practical industrial applications. +e ac-
curate prediction of low temperature is a prerequisite to
accurately predicting icing on power grid transmission lines.
+e use of this method can improve the accuracy and speed
of prediction and provides a sound basis for supporting the
production of icing prediction data.

2. Principles of the LightGBM

LightGBM is derived from Reference [7] and related open
source tools. +e light gradient boosting (LGB) model is an
efficient implementation of the classic gradient boosting
decision tree (GBDT) model. +e LGB model handles the
classification, regression, and ranking problems in machine
learning. GBDT obtains the final answer by combining
multiple decision trees and by adding up the results of all the
decision trees. +is process has been improved to obtain
extreme gradient boosting (XGB). +e difference between
XGB and GBDT is in the way the tree is split and the way the
value of the leaf node is determined. +e core idea is to
conduct a second-order Taylor expansion of the loss
function to be fitted by GBDT and to introduce the regular
term of the tree intelligently, so that the formula of the
second-order Taylor expansion can be simplified and solved
analytically. +us, a new tree splitting method and leaf node
value determination method are derived. LGB is further

optimized on the basis of XGB’s improvement of GBDT
formula. Figure 1 presents a flow chart of the transition from
the gradient boosting method to the LGB model.

2.1. GBDTModel. +e forward addition model is written as

f(x) � 􏽘
M

i�1
βih x; θi( 􏼁 , (1)

where x represents the sample and h(x; θi) represents the ith
basemodel.+us, the entire basemodel is a weighted sum ofM
models, so this model is called the forward additionmodel.+e
temperature prediction model solves the regression problem.
+e trained model f minimizes the loss function L:

min􏽘
N

j�1
L f xj􏼐 􏼑, yj􏼐 􏼑 � min􏽘

N

j�1
L 􏽘

M

i�1
βih xj; θi􏼐 􏼑, yj

⎛⎝ ⎞⎠,

(2)

where (xj, yj)􏽮 􏽯
N

j�1 is the training sample and
􏽐

M−1
i�1 βih(x; θi) is assumed to be known during training.

βMh(x; θM) minimizes equation (2); the idea is to let
βMh(xj; θM), yj fit the negative gradient gj through the
gradient descent algorithm, where the negative gradient gj is

gj � −
zL fM−1 xj􏼐 􏼑, yj􏼐 􏼑

zfM−1 xj􏼐 􏼑
, (3)

and gj exists for every sample. +us, the way a new sample
fits {(xj, gj)} is converted into a regression problem:

θM, βM � argmin
θ,β

􏽘

N

j�1
gj − βh xj; θ􏼐 􏼑

�����

�����
2
. (4)

After fitting the negative gradient, the final step size must
be determined.

ρm � argmin
ρ

􏽘

N

j�1
L fM−1 xj􏼐 􏼑 + ρh xj􏼐 􏼑, yj􏼐 􏼑. (5)

+us, the final model is

f(x) � fM−1 + ρMβMh x; θM( 􏼁. (6)

When the base learner h is determined as the cart de-
cision tree, this becomes the GBDT method.

2.2. FromGBDTto XGB. +e lowest-level XGB model is still
a forward addition model, but the difference is that it is not
optimized by simple gradient descent, but the regular term
of the tree and the second-order Taylor expansion are in-
troduced in a way that simplifies the splitting of GBDT and
leaf nodes in a single tree value determination. GBDT re-
quires the gradient that corresponds to each sample
(xj, gj)􏽮 􏽯

N

j�1, and XGB requires the gradient and Hess value

(two steps) that correspond to each sample (xj, gj, hj)􏽮 􏽯
N

j�1.
+e splitting of the XGB tree and the determination of the
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value of the leaf nodes are related to (gj, hj), which are
expressed as follows:

Gain �
1
2

G
2
L

HL + λ
+

G
2
R

HR + λ
−

GL + GR( 􏼁
2

HL + HR + λ
􏼢 􏼣 − c,

Wj � −
Gj

Hj + λ
,

(7)

where c and λ are two hyperparameters used to measure the
complexity of the tree by adjusting the number of leaf nodes
and the weight of the sum of the squares of leaf node values,
respectively.

GL: sum of gj of all samples divided on the left
HL: sum of hj of all samples divided on the left
GR: sum of gj of all samples divided on the right
HR: sum of hj of all samples divided on the right
Wj: value corresponding to the leaf node
Gj: sum of gj of all samples that are divided in the area
of leaf node j
Hj: sum of Hj of all samples that are divided in the area
of leaf node j

2.3. LGBModel. +e LGB model is further optimized on the
basis of the XGB derivation described above. +ese opti-
mizations are performed to reduce the computational cost,
but they can also play a role in preventing overfitting (be-
cause the original data are noisy, some rough processingmay
increase the generalization ability of the model). +e
computational cost of each leaf node split is

costtime � featurenum × samplenum × point num, (8)

where costtime represents the time (s) consumed by calcu-
lation, featurenum represents the number of features,
samplenum represents the number of samples, and pointnum
indicates the number of candidate points.

Showing that the cost of the tree model is mainly based
on three factors:

(1) Sample size (the cost of calculating hi is closely re-
lated to the sample size)

(2) Number of features (features need to be traversed
when the tree is split)

(3) Number of candidate points (the candidate points
under this feature need to be traversed when the tree
is split)

+erefore, the core of the LGB approach is to minimize
the computational cost for each of these factors. +e cor-
responding three technologies are

(1) Gradient unilateral sampling (GOSS): reduce the
number of samples

(2) Feature binding technology (EFB): reduce the
number of features

(3) Histogram algorithm (Hist): reduce the number of
selected points

3. Establishing the LassoCV-LightGBM Low-
Temperature Prediction Model

3.1. Data Collection. +is study uses meteorological obser-
vation data from Yongshan County (Station No. 56489),
Zhaotong City, Yunnan Province, which comes from an
Institute of Geographic Sciences and Natural Resources
(https://www.resdc.cn/) data set, collected daily from Jan-
uary 1, 2015, to December 31, 2019. Part of the original
meteorological data is shown in Table 1.

Table 1 confirms that the relevant meteorological variables
at Yongshan Station are updated once per day. Data elements
include the collected station number (Station_Id), year (Year),
month (Month), day (Day), and eight meteorological vari-
ables. +ey are as follows: minimum temperature (Min_-
TEM), average relative humidity (Aver_RHU), minimum
relative humidity (Min_RHU), average wind speed (Aver_-
WIN), maximum wind speed (Max_WIN), wind direction of
maximum wind speed (Max_WIN_D), extreme wind speed
(Extreme_WIN), and wind direction of extreme wind speed
(Extreme_WIN_D). +e units and precision of the eight
meteorological elements are as follows, respectively: 0.1°C,
percentage 1%, percentage 1%, 0.1m/s, 0.1m/s, 16 directions
(degrees), 0.1m/s, and 16 directions (degrees).

3.2. Establishing Hysteresis Characteristics. With time series,
the establishment of lag features is a key step in mining the
autocorrelation information of the data. +e autocorrelation
coefficient (ACF) [8] is usually used to measure the cor-
relation between the current moment yt and the k-order lag
yt−k. +e correlation coefficient measures the linear corre-
lation between these two variables as follows:

rk �
􏽐 yt − ymean( 􏼁 yt−k − ymean( 􏼁

􏽐 yt − ymean( 􏼁
2 , (9)

where rk represents the correlation between yt and its k-
order lag, representative autocorrelation coefficient. +e
autocorrelation represents the relationship between the
values of a time series at different points in time.+eACFs of
various meteorological variables used in this study are
shown in Figures 2–7.

Variables that are highly correlated with temperature
include wind direction, wind speed, and relative humidity
[4]. When the ACF is rk ≥ 0.3, then a medium-strength
correlation between the variables exists [9], and this is used
as the selection criterion for meteorological variables.

XGB

Ensemble

Raw GBDT

Boosting Method Gradient Boosting Method GBDT

LGB

Figure 1: Flow chart of the boosting-LGB relationship.
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3.3. Data Preprocessing and Model Construction. First, the
data are cleaned. +is study uses the Python environment to
process and model the data, using the Pandas fillna function
to replace missing and empty values with the average value.
+e time variables (year, month, and day) are then inte-
grated into a date that can be used as a Pandas index.

Second, the input data are normalized. Table 1 shows
that the input meteorological variables have different
dimensions and units, so they need to be normalized in
order to be able to compare them with each other. +e
normalization method selected in this paper is min-max
scaling, using

x∗i �
xi − min

max − min
, (10)

where xi(i � 1, 2, 3, . . . ,n) is the input value, x∗i (i �

1, 2, 3, . . . ,n) is the normalized value, max is the maximum
value of the variable, and min is the minimum value of the
variable.

Given the many noise problems in established methods
for evaluating lag characteristics of multielement meteo-
rological time series, and the insufficient prediction accuracy
of the traditional ARIMA model, this study proposes a
LightGBM low-temperature prediction model based on
LassoCV feature selection. First, the ACF is used to establish

Table 1: Original meteorological observation data.

Station_Id Year Month Day Min_TEM Aver_RHU Min_RHU Aver_WIN Max_WIN Max_WIN_D Extreme
_WIN

Extreme
_WIN_D

56489 2015 1 1 8.4 59 50 15 27 5 63 5
56489 2015 1 2 7.6 59 46 16 28 5 64 7
56489 2015 1 3 4.2 71 45 8 21 5 52 5
56489 2015 1 4 7.4 72 58 13 32 5 78 5
56489 2015 1 5 7.2 65 53 7 33 6 69 6
56489 2015 1 6 4.3 71 44 9 39 9 76 9
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
56489 2019 12 31 5 68 42 23 54 6 95 5
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Figure 2: ACF of minimum temperature.
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Figure 3: ACF of average wind speed.
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Figure 4: ACF of average relative humidity.
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Figure 5: ACF of maximum wind speed.
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the lag characteristics, and the value of each meteorological
element is normalized, that is, the dimensional differences in
the multivariate time series data are eliminated, and the
processed multivariate data set can be evaluated using a
supervised learning method. LassoCV feature selection is
then used to measure the importance of each lag feature.+e
LGB model is next trained on the training data set, and
finally the model is optimized through grid search and
crossvalidation. Figure 8 presents a flow chart of the model
processes.

3.4. LassoCV Feature Selection. Selecting features is neces-
sary here because there are many variables and a large
amount of noise but some variables have very little effect on
minimum temperature. Feature selection is used to select
variables that are highly correlated with minimum tem-
perature. +e Lasso algorithm performs feature screening to
effectively reduce the dimension of multi-dimensional data.
+e Lasso algorithm [10] is based on linear regression: a
threshold is predetermined for the absolute value of the
model regression coefficient, and the residual square sum of
the model is minimized by adding a normal form function
[11]. +is algorithm compresses and eliminates the variables
whose correlation is less than the threshold by optimizing

the objective function. +e remaining variables are then
output as the characteristic variables. +e results of using
LassoCV to select characteristic variables that are highly
correlated with minimum temperature are shown in
Figure 9.

Set the linear regression model to

Y � X
Tβ + ε, (11)

where X � [x1, x2, . . . , xi, . . . , xn]T, xi � [xi,1, xi,2, . . . ,

xi,m] ∈ R1×m is the low-temperature characteristic data
preprocessed by autocorrelation, Y � [y1, y2, . . . , yn]T

∈ Rn×1 is the response variable, β � [β1, β2, . . . , βm]T

∈ R1×m is the model coefficient, and ε � [ε1, ε2, . . . , εn]T

∈ Rn×1 is the error vector.+e ordinary least squares method
of the linear regression model is estimated to be
min[􏽐

n
i�1 (yi − 􏽐

m
j�1 xi,jβj)

2], 􏽢βols � (XTX)−1XTY, when the
constraint function is added, that is, LASSO, which is
specifically expressed as

argmin
β

􏽘

n

i�1
yi − 􏽘

m

j�1
xi,jβj

⎛⎝ ⎞⎠

2

+ λ􏽘
m

j�1
βj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦. (12)

In the formula, the parameter λ is the penalty coefficient
of parameter estimation, and its size is verified by ten-fold
cross-validation, and the parameter α is determined in the
same way. +is paper uses the minimum regression method
[12] to solve the LASSO regression algorithm.+eminimum
regression method is a variable selection algorithm based on
the forward selection algorithm and the forward gradient
algorithm, which can obtain more accurate eigenvectors,
which are described in detail as follows:

(1) +e calculation process of the forward selection al-
gorithm is as follows: select the independent variable
xi � [xi,1, xi,2, . . . , xi,m] that is closest to the target
variable yk in X � [x1, x2, . . . , xi, . . . , xn]T, and
there are

yk � xkβk. (13)

Among them, the coefficient βk is determined by
using the following equation:

βk �
〈xk, yk〉

xk2
. (14)

+e variable residual is

yres,k � yk − yk. (15)

+e variable residual is defined as a new target
variable, and the set X without xk is used as the new
independent variable set. Repeat the above process
until the residual is less than the set range or the
number of independent variable sets is zero, and the
algorithm terminates.

(2) +e forward gradient algorithm selects a feature
variable xk with the most correlation each time to
approximate the target variable yk. Unlike the for-
ward selection algorithm, the residual is defined as
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Figure 6: ACF of minimum relative humidity.
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Figure 7: ACF of extreme wind speed.
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yres,k � yk − xkβk. (16)

Regard the residual as the new objective function, the
original variable set X � [x1, x2, . . . , xi, . . . , xn]T as the
variable set, and recalculate according to formula (16), until
the residual yres,k less than the set threshold range; the
optimal solution is obtained.

+e specific steps of the Lasso algorithm are as follows:

Step 1 (target variable): According to formulae (13) and
(14), solve the variable xk with the highest correlation
with the objective function, remove it from the variable

set sum, and determine the new target variable
according to formula (16).
Step 2 (related variable): repeat Step 1 until the cor-
relation between the new variable xl and the target
variable yres,k is the same as the correlation between the
variables xk and yres,k.
Step 3 (characteristic variable): on the angular bisector
of xk and xl, use equation (16) to reapproximate the
variable xt, so that the correlation between xt and yres,k
is the same as xk, xl, and yres,k. +e correlation degree is
the same, add the variable xt to the feature set, and use
the common angle bisector of the set as the new ap-
proach direction.
Step 4 (loop): loop the above process until yres,k is small
enough or the variable set is empty, and the final feature
set is the desired feature variable.

+e results of using LassoCV to select characteristic
variables that are highly correlated with low temperature
changes are shown in Figure 9.

Figure 9 shows that, among the meteorological elements
and the established time series features, Low_Tem1,
Low_Tem2, Low_Tem8, Max_Win_Aspect1_3.0, aver_-
Win1, and Low_RHU1 have higher correlation with min-
imum temperature than other features; hence, these six
feature sets are used as the sample data set.

3.5. LightGBMTrainingandModelTuning. Low temperature
prediction is defined as using a historical meteorological
variable sequence . . . , xt−1, xt􏼈 􏼉 to predict a future minimum
temperature sequence xt+1, xt+2, . . .􏼈 􏼉. +e preprocessed and
feature-selected data sets are input to the LightGBM for
training, and then a grid search combined with ten-folds
crossvalidation is selected to optimize the main model
hyperparameters, including iterations, learning_rate,
max_depth, and criterion, thereby improving the accu-
racy of the low-temperature prediction model. After
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Figure 8: Model construction flow chart.
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optimization, the best hyperparameters of the low-tem-
perature prediction model are as in Table 2.

4. Experimental Results and Analysis

To evaluate the accuracy and practicability of the low-
temperature prediction model based on the proposed Las-
soCV-LightGBM combination described in Section 2, this
work collected meteorological observation data from
Yongshan Station in Zhaotong City, Yunnan Province, to
train and test the model. Here, we select the data from the
first 1790 days as the training set and the data from the last
56 days as the verification set.

4.1. Model Evaluation Indicators. After training the model,
the entire verification set is predicted, and then the
predicted and observed temperature data are denormal-
ized. To evaluate the performance of the model, this study
compares its accuracy with that of the traditional pre-
diction model ARIMA [13] and the LSTM [14], by
comparing observed and predicted minimum tempera-
ture values. +e root mean square error (RMSE), average
absolute error (MAE), and average absolute percentage
error (MAPE) are selected as the model evaluation in-
dicators. +ey are calculated as follows:

RMSE �

������������

1
N

􏽘

N

i�1
yi′ − yi( 􏼁

2

􏽶
􏽴

,

MAE �
1
N

􏽘

N

i�1
yi′ − yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

MAPE �
1
N

􏽘

N

i�1

yi′ − yi
yi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

(17)

where yi′ is the predicted minimum temperature value, yi is
the observed value, and N is the number of data elements.
Smaller values of RMSE, MAE, and MAPE mean a smaller
error in the minimum temperature prediction, and
therefore a better prediction model performance. Table 3
shows the RMSE, MAE, and MAPE values of the three
models.

To further test the superiority and practicability of the
proposed LassoCV-LightGBM model, this study ran-
domly selected data from five other sites in Yunnan
Province for testing. +e verification results are shown in
Table 4.

Table 3 shows that the RMSE, MAE, andMAPE values of
the LassoCV-LightGBM model are all smaller than those of
the LSTM and ARIMAmodels, indicating that the LassoCV-
LightGBM model has higher prediction accuracy and
smaller error between the predicted minimum temperature
value and the actual observed value.

In summary, the use of the LassoCV-LightGBM model
for multivariate time series data with a large amount of data
improves not only the prediction accuracy but also the speed
of the model training.

5. Conclusions

+e LightGBM gradient boosting tree integration model is
suitable for modeling multivariate time series data. Com-
pared with traditional time series forecasting methods, the
unique GOSS, EFB, and Hist of the LightGBM gradient
boosting tree integration model can address the problems of
high dimensionality, nonlinearity, and local minima more
effectively, and it has stronger data learning and general-
ization capabilities. Moreover, LassoCV can analyze the
importance of features and adds regular terms to prevent
overfitting. +is study establishes lag features through ACFs
and then uses LassoCV to select features from multivariate
meteorological time series data, which provide more ef-
fective and accurate data for model construction and reduce
the complexity of the model. Taking minimum temperature
data as a specific example, a prediction model based on
LassoCV-LightGBM was constructed, and meteorological
observation data from the Yongshan site were used for
prediction and analysis. +e experimental results show that
the Lasso-LightGBM model performs better than the
ARIMA and LSTMmodels, with improved low-temperature
prediction accuracy, indicating that the Lasso-LightGBM
model has superior capability in analyzing multisource time
series data. It has particular applicability in predicting low
temperatures and is clearly a useful tool for supporting
power grid icing prediction.
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Table 2: Best hyperparameters of the low-temperature prediction
model.

Iterations Learning_rate Max_depth Criterion
780 0.003 9 Gini

Table 3: Comparison of the test errors of ARIMA, LSTM, and
LassoCV-LightGBM low-temperature prediction models.

Low-temperature prediction model RMSE MAE MAPE
ARIMA 2.132 1.564 0.258
LSTM 1.913 1.452 0.223
LassoCV-LightGBM 1.305 0.999 0.112

Table 4: Comparison of test errors of LassoCV-LightGBM low-
temperature prediction models at other sites.

Station_Id RMSE MAE MAPE
56959 1.614 1.211 0.117
56952 1.538 1.404 0.134
56836 1.651 1.507 0.152
56641 1.443 1.101 0.124
56483 1.476 1.156 0.125

Mathematical Problems in Engineering 7



References

[1] L. Qing-Feng, Z. Fan, Q. Wu, J. Gao, Z. Y. Su, andW. J. Zhou,
“Investigation of ice-covered transmission lines and analysis
on transmission line failures caused by ice-coating in China,”
Power System Technology, vol. 32, no. 9, pp. 33–36, 2008.

[2] S. Huang and X.-C. Guo, “Research and prospect in micro-
meteorological area of transmission lines,” Electric Power
Survey & Design, vol. 38, pp. 1671–9913, 2019.

[3] C. Narendra Babu and B. E. Reddy, “Predictive data mining on
average global temperature using variants of ARIMAmodels,”
in Proceedings of the IEEE-International Conference on Ad-
vances in Engineering, Science and Management (ICAESM-
2012), pp. 75–80, IEEE, Nagapattinam, India, March 2012.

[4] T. Ye and J. L. Du, “Temperature prediction using long short-
term memory network based on random forest,” Computer
Engineering and Design, vol. 151, pp. 1000–7024, 2019.

[5] Z. Niu and H. Hu, “Prediction model of monthly mean air
temperature based on principal component analysis and BP
neural network,” High School Science Journal, vol. 35, no. 11,
pp. 6–8, 2015, in Chinese.

[6] G. Jiang, “+e application of PSO-RBF-ANN in temperature
prediction,” China Computer & Communication, vol. 36,
pp. 1003–9767, 2020.

[7] K. Guolin, M. Qi, T. Finley et al., “LightGBM: a highly efficient
gradient boosting decision tree,” in Proceedings of the Ad-
vances in Neural Information Processing Systems, Long Beach,
CA, USA, December 2017.

[8] H. G. Sun and H. Deng, “Study on the sample autocorrelation
coefficient and partial autocorrelation coefficient,” Journal of
Bengbu University, vol. 49, 2016.

[9] D. Wang, Z. Cao, and B. Chen, “Multivariate time series local
support vector regression forecast methods for daily tem-
perature,” Journal of System Simulation, vol. 1004-731X, 2016.

[10] L. Yu-Qiang, P. Tian-Hong, and L. Hao-Ran, “NIR spectral
feature selection using lasso method and its application in the
classification analysis,” Spectroscopy and Spectral Analysis,
vol. 1000-0593, 2019.

[11] X. Wu, B. Wu, and J. Sun, “Addition of the Chubak extract
and egg white on biophysical properties of grape juice during
evaporation process,” Journal of Food Process Engineering,
vol. 40, no. 2, p. 23, 2017.

[12] A. F. Frank, C. Hlutkowsky, and L. Bemis, “Effect of ultra-
sound and storage time on quality attributes of strawberry
juice,” NeuroImage, vol. 184, p. 68, 2019.

[13] L. Sha and H. Lin, “Spatio-temporal modelling and prediction
combined with MLR and ARIMA model,” Computer Engi-
neering and Applications, vol. 183, pp. 1002–8331, 2004.

[14] M. Zhao, D. Wang, and J. Fang, “Prediction of subway station
temperature based on LSTM neural network,” Journal of
Beijing Jiaotong University, vol. 33, 2019.

8 Mathematical Problems in Engineering


