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Outlier detection is a challenging task especially when outliers are defined by rare combinations of multiple variables. In this
paper, we develop and evaluate a newmethod for the detection of outliers in multivariate data that relies on Principal Components
Analysis (PCA) and three-sigma limits. *e proposed approach employs PCA to effectively perform dimension reduction by
regenerating variables, i.e., fitted points from the original observations. *e observations lying outside the three-sigma limits are
identified as the outliers. *is proposed method has been successfully employed to two real life and several artificially generated
datasets. *e performance of the proposed method is compared with some of the existing methods using different performance
evaluation criteria including the percentage of correct classification, precision, recall, and F-measure. *e supremacy of the
proposed method is confirmed by abovementioned criteria and datasets. *e F-measure for the first real life dataset is the highest,
i.e., 0.6667 for the proposed method and 0.3333 and 0.4000 for the two existing approaches. Similarly, for the second real dataset,
this measure is 0.8000 for the proposed approach and 0.5263 and 0.6315 for the two existing approaches. It is also observed by the
simulation experiments that the performance of the proposed approach got better with increasing sample size.

1. Introduction

In most real-life datasets, there exist data observations that
do not conform to general model and/or behavior of the
data. Such observations that are significantly inconsistent
with the majority of the observations in the dataset are
known as outliers. Outlier detection problem needs to be
addressed in a wide range of applications in fraud detection
(e.g., suspicious use of credit cards or other kinds of financial
transactions), health data analysis (e.g., detecting unusual
responses to treatment plans among patients), fault detec-
tion in production processes, and network intrusion de-
tection, etc. Moreover, several data analysis tasks are
influenced due to the presence of outliers and require
minimizing the effect of outlier observations or eliminating
them all together. *e problem of detecting outliers in

multivariate data is a nontrivial task that becomes even more
problematic in case of high dimensional datasets.

Existing techniques for the general outlier detection
problem can be broadly categorized in four key approaches
including statistical distribution-based approaches, dis-
tance-based approaches, density-based approaches, and the
subspace-learning based approaches [1–4].

*e statistical distribution-based approaches consider a
distribution or probability model (such as normal distri-
bution or Poisson distribution) for the given dataset to find
any outlier observations with reference to the selected model
by employing a “discordance test” with respect to some
known parameters of the dataset, e.g., the mean, variance,
and/or an assumed data distribution [3]. Most approaches in
this category are designed for univariate datasets, i.e., having
a single attribute; however, several problems involve outlier
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detection in multidimensional datasets. Zhao et al. [5]
presented COPOD outlier detection method that was mo-
tivated from statistical methods to model multivariate data
distribution. COPOD first builds the empirical copula and
then makes use of the fitted model for the prediction of tail
probabilities of each data observation to classify it as a
regular or outlier observation. A key concern with ap-
proaches relying on the statistical distribution of the dataset
is that the statistical distribution and related parameters
regarding the dataset model may not always be known a
priori. Moreover, the statistical parameters of the dataset can
also influence the outlier detection to the masking or
swamping effect.

Distance-based approaches rely on the distances between
observations to detect outliers. Data observations that do not
have enough neighboring observations within a distance
threshold are considered outliers [3, 6]. *e first effort to-
wards outlier detection in multivariate functional data using
graphical tools was the Functional Outlier Map (FOM)
approach [7, 8]. *ese methods utilize statistical depth
functions and distance measures derived from them for
outlier detection. Prykhodko et al. addressed outlier de-
tection in multivariate nonnormal data based upon uni-
variate and multivariate normalizing transformations [9].
*ey used squared Mahalanobis distance and a quantile of
the Chi-Square distribution for the purpose. In a recent
work, Caberoa et al. presented an outlier detection method
[10] that performs archetype analysis to combine projections
into relevant subspaces with a nearest-neighbor algorithm.
In addition to their reliance on statistical characteristics of
the dataset (e.g., mean values), a key concern with distance-
based approaches is due to their reliance on the global in-
formation of the dataset as their performance depends on
the neighborhood size of observations.

Density-based approaches [11] rely on the local outlier
factors of data points computed by considering the local
density of their neighborhoods. While approaches in this
category achieve good accuracy without making any as-
sumptions about the dataset distribution, these approaches
have high computational complexity especially for high-
dimensional large datasets.

Among subspace-learning based approaches [11, 12] for
outlier detection, Zhao et al. proposed LOMA [12], a local
outlier detection approach for massive high-dimensional
datasets. LOMA performs data reduction by employing
attribute relevance analysis. Further, it employs particle
swarm optimization for efficient searching of sparse sub-
space, where the data density, i.e., the number of observa-
tions in the dataset, is very small. Our proposed method is
somewhat similar as it also performs subspace-learning;
however, unlike attribute relevance analysis, we employ
principal component analysis for dimension reduction.

Most of the existing outlier detection methods are either
designed for univariate datasets or require a large number of
data points to perform effectively. For example, in case of
distance-based methods, it is difficult to identify outliers
simply by computing distances from the few available data
points to mean value. Moreover, existing approaches con-
sidering the entire variable set are computationally

expensive when considered for high dimensional datasets.
However, multivariate datasets with high dimensionality
with varying sizes in terms of their number of instances are
often encountered in real life data analytics situations.

We employ PCA with three-sigma limits for the identi-
fication of outliers. PCA is one of the most prevalent linear
dimension reduction techniques. It reduces the dimension-
ality of high-dimension multivariate datasets, with minimum
loss of information. It works by producing new uncorrelated
variables that successively maximize variance. *e new var-
iables are the linear combinations of all the original variables.
*e methods based upon graphs are useful tools for identi-
fying outliers in multivariate data, especially when we are
working on PCs, but theymay not be effective for applications
of real time detections.*e validity of the existing formal tests
is based upon some assumptions like the dataset having a
multivariate normal distribution. If these assumptions are not
satisfied, the application of these methods is not possible. We
propose an innovative outlier detection approach based upon
the PCs and three-sigma limits. *e proposed approach can
be employed in real time and does not require any assumption
or restriction related to the dataset.

*e rest of the paper is organized as follows. Section 2
describes the multivariate outlier detection problem and
introduces important notation. Section 3 presents our
proposed outlier detection method. Section 4 explains the
datasets and presents the performance evaluation results of
our proposed method. Section 5 provides a discussion of
evaluation results and finally concludes the paper.

2. Multivariate Outlier Detection Problem

Most datasets contain one or more unusual observations that
are considered as the outlying observation, i.e., dissimilar
from the majority of the observations in the dataset, or are
doubtful under the expected probability model of the dataset.
In a dataset consisting of single feature, either very large or
very small observations as compared to the others are unusual
observations. If the distribution of the dataset is assumed to be
normal, then an observation whose standardized value is
greater than the absolute value is usually considered as an
outlying observation. *e situation becomes complex for a
dataset having numerous features. In high dimensional
datasets, there can be outliers that cannot be identified when
each dimension is independently considered and, hence,
cannot be identified by using the univariate criterion.
*erefore a multivariate approach is required, and all the
dimensions should be considered together.

Let y1, y2, . . . , yn be a random sample of size n from a
multivariate distribution, and we have m variables (n≥m).
Each yj � (yj1, yj2, . . . , yjm)T is defined as a vector of
observations, where j � 1, 2, . . . , n.

Most commonly used approaches to identify outliers in
multivariate data are based upon the measuring distances of
observations from the central point of dataset. If
y1, y2, . . . , yn follow the multivariate normal distribution,
then, for any forthcoming observation from the same
multivariate normal distribution, a statistic T2 that relies
upon the Mahalanobis distance is defined as
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T2 is distributed as ((n − 1)m/(n − m))Fm, n−m. Y and S are,
respectively, the sample mean vector (Y) and sample co-
variance matrix (S), defined as follows:
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Fm, n−m follows an F-distribution with m and n − m degrees
of freedom [3]. A higher value of T2 is an indication of a
larger distance of the observations from the canter of the
data. Other distance measures such as Euclidean distance or
Canberra metric can also be used in place of Mahalanobis
distance. An observation, which has a greater difference than
a threshold value, is identified as an outlying observation.
*e threshold value is usually based upon the distribution of
distance measure. *e distribution of these distances is not
easy to derive, even having the assumption of normality.

*e PCA-based methods have a long history for the
identification of outliers in multivariate data [13–15]. *e
largest cumulative proportion of the total sample variance is
explained by the leading (first few) PCs that have large var-
iances. *ese leading or major PCs have a tendency of strong
relationship with the dimensions that have larger variances
and covariances. As a consequence, the observations that are
outlying cases with respect to the leading or major compo-
nents typically relate to outlying observations on one or more
of the original variables. In our proposed approach, we employ
PCA with three-sigma limits on the error series to identify
outlier observations as discussed in the following section.

Let ξj � [ξj1ξj2 . . . ξjm] be the principal components score
vector for observation vector yj � [y1j y2j . . . ymj]. *e
number of variables is “m” and “r” is the number of retained
PCs and r≤m. *e sum of squared principal components
scores for jth observation given as
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follows a chi-square distribution [16] having r degrees of
freedom under the assumptions that λ1 > λ2 > . . . λm and all
λi are distinct.

For a specified level of significance α, an observation is
identified as outlier if 

r
j�1 ξ

2
j/λj > χ2r(α).

Here, χ2r(α) is upper α percentage point of the chi-square
distribution having r degrees of freedom. *e value of α
refers to false alarm rate in identifying a normal observation
as an outlying observation.

3. Proposed Method

Our proposed method for outlier detection is based upon
regenerating the variables using the major PCs by following
[17, 18]. *e step-by-step procedural details of the proposed
method are presented below.

Step 1: Estimate the PCs of the original variables. In this
step, we perform PCA by converting the original variables
into a set of orthogonal variables, i.e., the principal com-
ponents. *ese PCs are computed in a way such that the first
PC is a maximum-variance linear combination of original
variables, and the 2nd PC is a linear combination of original
variables, which account for maximum remaining variation
while considering a zero correlation between the 1st and 2nd
PC. *e remaining PCs are computed in a similar manner
such that they all are uncorrelated with each other.

For computing the PCs, we first subtract the mean value
of each variable from the dataset in order to center the original
values in the dataset around the origin and compute pair-wise
correlation among variables in the correlation matrix. Ei-
genvalues and eigenvectors of the correlation matrix are then
computed. Scaled eigenvectors represent the PCs with cor-
responding eigenvalues representing the degree of variance
among data observations in eigenvectors’ direction.

Given the m × n multivariate data matrix Y where “m” is
the number of variables and each of the “n” row values denotes
data observations/values corresponding to these variables,
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Let λ1, . . . , λm denote the eigenvalues of the correlation
matrix of Y such that λ1 > λ2 > . . . λm, and all λi are distinct.
Λ denotes the m × m matrix of eigenvectors corresponding
to eigenvalues λi of the correlation matrix of Y given as
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where li are the eigenvectors.
*e matrix of estimated principal components scores is

then computed, which is as an m × n matrix defined as
ξ � ΛY , (6)
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Let W � Λ−1, and then
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*e matrix of weighted PCs for ith variable is then
computed as
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Step 2: Regenerating the series. *is step involves
regenerating the original series with appropriate reduction
(as suggested by any rule, e.g., scree plot) in dimensions. *e
original variables can be regenerated without any loss if we
make use of all the PCs included in the process. *is,
however, will not contribute towards dimensionality re-
duction. In principle, the number of PCs involved to re-
generate the original variables should essentially be lesser
than original number of variables.

Let “r” be the retention level, i.e., the reduced number of
PCs used for regenerating variables. *en, the initial r el-
ements of the jth column of PC scores are cumulated to
construct cumulative PC’s scores for observation j and
variable i using the retention level r. *us, the jth obser-
vation of the ith variable using the retention level r is
regenerated as

yij � 
r

k�1
wikξkj. (10)

Step 3: Compute the error series for each variable. In the
PCA-based proposed procedure, we model the observa-
tions of original variables as original data points and the
observations of regenerated variables as fitted points. In
this step, we compute their difference as error (denoted by
ei).

Step 4: Employ three-sigma limits to detect outliers.
Once the series of errors are computed by applying the
abovementioned technique, we employ the three-sigma
limits. *ree-sigma limits are typically applied for identi-
fying and/or removing anomalies or outliers in different
datasets. Employing three-sigma limits implies that only a
very small number of possible observations could fall outside
specification limits of the corresponding dataset. Sigma is
essentially a reference to the intervals under a normal or
“Gaussian” curve. Each interval is equal to one standard
deviation or sigma. *ree-sigma limits hence refer to ± 3
sigma from the mean of the data under the curve. In the case
of a normal distribution, 68.26% of the data points are within
± 1 from the mean, 95.46% are within ± 2, and 99.73% are
within ± 3 sigma. A variation exceeding ± 3 sigma indicates
room for improvement.

As discussed, the regenerated variables are based upon
major PCs, which account for maximum of the variation of
data and are essentially the linear combinations of all
original variables. Considering the difference of regenerated
and original series as error, three-sigma limits for each of the
error series are computed, and the observations lying outside
the limits are treated as outliers.

Algorithm 1 summarizes the step-wise details of the
proposed method.

Note that we determine the retention level r by con-
sidering the scree plot.

4. Numerical Evaluation

In this section, we evaluate and compare the performance of
proposed outlier detection method with two most com-
monly used available methods by considering two real world
applications and a simulation study.

4.1. Real Applications. In this section, we present the per-
formance evaluation results of our proposed outlier detec-
tion method using two real life applications.

4.1.1. Silicon Wafer :ickness Data. *e first application is
related to silicon wafer thickness data, and the data source is
given in the data availability section.*e thickness of a single
wafer was measured at nine different locations
(Y1, Y2, . . . , Y9) for 184 consecutive lots. A single wafer
from the tray of wafers was removed always at the same
position for each lot of wafers after the completion of the
chemical vapor decomposition process. All the observations
of the dataset had been approximately cantered and scaled to
disguise the original variables for privacy.

Figure 1 shows the matrix plot of each of nine variables
of silicon wafer thickness dataset. All the variables are
regenerated using the first two PCs, because the first two PCs
account for almost 94% variation of the data.

4.1.2. Solvents Dataset. Second real life application is related
to nine physical properties of 103 chemical solvents. *e
nine physical properties are Melting Point (Y1), Boiling
Point (Y2), Dielectric (Y3), Dipole Moment (Y4), Refractive
Index (Y5), ET(30) (empirical solvent polarity parameter)
(Y6), Density (Y7), logP (partition coefficient of a molecule
between an aqueous and lipophilic phases) (Y8), and Sol-
ubility (Y9). *e data source is given in the data availability
section.

Figure 2 presents the matrix dot-plot of nine variables of
dataset. *e reconstruction of all the nine variables is done
using the first three PCs as suggested by scree plot. *e first
three PCs account for 77% of the total variation.

Table 1 presents the eigenvalues, proportion, and cu-
mulative of variance accounted for by the respective com-
ponents for both datasets. *e elbows in scree plots
presented in Figures 3(a) and 3(b) suggest retaining the first
two PCs for silicon wafer thickness data and first three PCs
for solvents data.

Outlier detection is done with the previously explained
two existingmethods based uponmajor PCs andMahalanobis
distance, and our proposed method. *e error series, i.e.,
differences between the original and regenerated variables, are
computed. *e means of all these error series are approxi-
mately zero.*is is an indication of how good our regenerated
variables are. Table 2 presents the mean of the error series for
both datasets (ei’s are the means of error series).

To gauge the performance of the existing and proposed
methods, we use the confusion matrix [19], which is usually
used for the performance evaluation of outlier detection
methods (Table 3).
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*e performance of outlier detection methods is also
evaluated by its true detection rate.

*ree other metrics, i.e., precision, recall [20], and F-
measure [21], have also been used to evaluate the perfor-
mance of proposed and existing approaches. Recall and
precision are defined as follows:

Precesion �
TP

TP + FP
,

Recall �
TP

TP + FN
.

(11)

F-measure is the combination of precision and recall
measures and defined as

F � 1 + β2 ∗
(precision∗ recall)
(precision + recall)

. (12)

*e value of β is usually taken as 1 [22].
*e analysis of the results for silicon wafer thickness data

revealed that the proposed method detected observations 39,
111, and 155 as outliers. Outliers detected with the method
based upon major PCs are 39, 72, 155, 161, and 174 ob-
servations. Similarly, observations 39, 61, and 145 are de-
tected as outlier with the method based upon Mahalanobis
distance.

For the solvents data, the proposed method detected
observations 2, 5, 9, 15, 51, 70, 83, 97, and 101 as outliers.
Outliers detected with method based upon major PCs are 2,
5, 9, 19, 61, 92, 97, and 101 observations. Similarly,

Input: Y : m × n matrix of multivariate data, where m is the number of variables, and each of the n row values denotes data
observations/values corresponding to these variables r: retention level, i.e., the reduced number of PCs to consider
Output: Identification of outlier data observations
Steps:

(1) Λ� computeEigenvectors (Y)/∗ compute the matrix of eigenvectors using equation (5) ∗ /
(2) W � Λ−1

(3) ξ � estimatePCscores (Λ, Y)/∗ Calculate the principal component scores using equation (6) ∗ /
(4) ξw �weightedPCs (W, ξ)/∗ Compute weighted PCs of original variables using equation (9) ∗ /
(5) Y � regenerateSeries (ξw, r)/∗ regenerate data series using equation (10) ∗ //∗Compute the error series by considering the

difference of original variables and regenerated variables as errors ∗ /
(6) for i � 1 to m

(7) ei � difference (yi, yi)

(8) for each error series ei
(9) Xei �Mean (ei)
(10) sei � Standard Deviation (ei)
(11) For each data observations y in Y
(12) Classify y as outlier if it lies outside the three-sigma limits i.e. Xei ± 3sei

ALGORITHM 1: Outlier Detection Algorithm
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Figure 1: Matrix plot for the silicon wafer thickness dataset.

Mathematical Problems in Engineering 5



0

0

0

0

-50
-100
300

150

200

20

1.6

1.4

60

100

10

1.5

2.0

45

1.0

5.0
2.5
0.0

1.5

0 0 1.4 30 1.0150
Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9

Y1
Y2

Y3
Y4

Y5
Y6

Y7
Y8

100 10 1.5 45 1.5 -2.5 0.0300 200 20 1.6 60 0.0 2.5 5.8 5.02.0

Figure 2: Matrix plot for the solvents dataset.

Table 1: Eigenvalues, proportion, and cumulative variance accounted for by the respective components for silicon wafer thickness and
solvents dataset.

Component
Silicon wafer thickness dataset Solvents dataset

Eigen value Proportion Cumulative Eigen value Proportion Cumulative
1 8.1753 0.908 0.908 3.6587 0.407 0.407
2 0.254 0.028 0.937 2.499 0.278 0.684
3 0.2017 0.022 0.959 0.7692 0.085 0.77
4 0.1764 0.02 0.979 0.5893 0.065 0.835
5 0.0692 0.008 0.986 0.5154 0.057 0.892
6 0.0562 0.006 0.993 0.421 0.047 0.939
7 0.0304 0.003 0.996 0.286 0.032 0.971
8 0.0263 0.003 0.999 0.192 0.021 0.992
9 0.0104 0.001 1 0.0694 0.008 1
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Figure 3: (a) Scree plot for silicon wafer thickness data, (b) scree plot for solvent data.
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Table 2: Mean of the error series for real life datasets.

Data e1 e2 e3 e4 e5 e6 e7 e8 e9

Silicon Wafer *ickness Data 0.0000 0.0000 −0.0488 0.0137 0.0071 0.0211 0.0069 0.0137 0.0135
Solvents Data 0.0039 0.0194 0.0000 −0.0116 0.0019 −0.0196 0.0186 −0.0088 0.0098

Table 3: Confusion matrix.

Predicted status
Normal Attack

Actual status Normal True negative (TN) False positive (FP)
Attack False negative (FN) True positive (TP)

Table 4: True positive, false negative, false positive, and true negative in silicon wafer thickness dataset with three methods.

Data Method TP FN FP TN

Silicon Wafer *ickness Data
Proposed 2 1 1 180
Major PCs 1 1 3 179
Mahalanobis 1 1 2 180

Solvents Data
Proposed 8 3 1 92
Major PCs 5 6 3 89
Mahalanobis 6 5 2 90

Table 5: Precision and recall for solvents dataset with three methods.

Data Method Precision Recall F-measure

Silicon Wafer *ickness Data
Proposed 0.6667 0.6667 0.6667
Major PCs 0.2500 0.5000 0.3333
Mahalanobis 0.3333 0.5000 0.4000

Solvents Data
Proposed 0.8889 0.7273 0.8000
Major PCs 0.6250 0.4545 0.5263
Mahalanobis 0.7500 0.5454 0.6315

Table 6: Mean of the error series for simulated datasets.

n ρ Contamination (%) e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

200

0.90
2 −0.0242 0.0145 0.0560 −0.0137 0.0000 −0.0139 −0.0212 −0.0144 0.0000 0.0405
5 −0.0508 0.0587 −0.0129 −0.0050 −0.0336 0.0072 0.0112 0.0000 0.0081 0.0050
10 0.0572 0.0723 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 −0.0315 0.0000

0.95
2 −0.0800 0.0541 0.1001 0.0601 0.1143 −0.0834 −0.0445 −0.0230 0.1142 −0.0381
5 −0.0481 0.0275 0.0247 −0.0164 −0.0083 −0.0513 −0.0132 0.0000 0.0220 −0.1398
10 −0.0324 −0.0055 −0.0055 −0.0501 −0.0213 −0.0036 −0.0428 −0.0513 0.0260 0.0365

0.975
2 −0.0309 0.0226 −0.0226 0.0296 0.0000 0.0011 −0.0512 0.0003 −0.0029 0.0231
5 −0.0507 0.0121 0.0172 −0.0511 −0.0509 −0.0506 −0.0509 −0.0269 0.0285 0.0347
10 0.0000 0.0000 0.0000 0.0000 0.0000 −0.0588 0.0000 −0.0843 0.0000 0.0000

500

0.90
2 −0.0503 0.0244 0.0065 −0.0065 0.0065 −0.0445 −0.0046 −0.0491 0.0446 −0.0139
5 −0.0510 0.0000 0.0125 0.0000 −0.0066 0.0000 0.0000 0.0000 0.0000 0.0000
10 0.0000 0.0000 −0.0296 0.0071 0.0163 0.0000 0.0000 0.0000 −0.0676 0.0000

0.95
2 −0.0426 0.0162 0.0138 −0.0192 −0.0081 −0.0027 −0.0292 −0.0152 0.0335 −0.0279
5 −0.0348 0.0359 −0.0118 −0.0048 −0.0205 −0.0260 −0.0383 −0.0237 0.0392 0.0241
10 −0.0526 0.0178 0.0000 0.0070 −0.0285 −0.0519 −0.0192 −0.0117 0.0194 −0.0077

0.975
2 −0.0647 0.0895 0.0122 −0.0091 −0.0123 −0.0637 −0.0506 −0.0497 0.0937 −0.0235
5 0.0000 0.0000 0.0000 −0.0289 −0.0339 0.0000 0.0706 0.0000 −0.0234 −0.0513
10 −0.0507 0.0362 −0.0233 −0.0032 0.0420 −0.0431 0.0054 0.0190 0.0228 −0.0103

1000

0.90
2 −0.0499 −0.0027 0.0000 0.0526 0.0000 0.0000 −0.0635 −0.0447 0.0000 0.0000
5 −0.0504 0.0089 0.0709 −0.0231 −0.0434 −0.0500 −0.0502 0.0098 0.0497 −0.0116
10 0.0000 0.0000 −0.0082 0.0000 −0.0066 −0.0185 −0.0171 0.0000 0.0000 0.0000

0.95
2 −0.0485 0.0000 0.0272 0.0000 0.0000 0.0000 0.0000 0.0000 −0.0507 0.0290
5 −0.0091 −0.0595 0.0223 0.0000 0.0094 −0.0157 0.0189 −0.0031 0.0308 −0.0214
10 −0.0510 −0.0073 0.0066 −0.0303 −0.0103 −0.0509 0.0015 −0.0513 0.0367 −0.0513

0.975
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.0183 −0.0953 0.0583 0.1324 −0.0167 −0.1252 −0.0096 −0.0905 0.1096 0.0000
10 0.0000 0.0000 0.0000 0.0000 0.0000 −0.0019 −0.0513 0.0000 0.0000 0.0439
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Table 7: Percentage of true positive, false negative, false positive, and true negative in simulated datasets.

Method n Contamination (%)
ρ � 0.90 ρ � 0.95 ρ � 0.975

TP FN FP TN TP FN FP TN TP FN FP TN
Proposed

200

2
75 25 1.0204 98.9796 75 25 1.5306 98.4694 75 25 1.5306 98.4694

Major PCs 50 50 2.0408 97.9592 50 50 2.0408 97.9592 50 50 2.0408 97.9592
Mahalanobis 50 50 2.0408 97.9592 50 50 2.0408 97.9592 50 50 2.5510 97.4490
Proposed

5
90 10 1.0526 98.9474 90 10 0.5263 99.4737 90 10 0.5263 99.4737

Major PCs 80 20 1.5789 98.4211 70 30 1.5789 98.4211 70 30 1.5789 98.4211
Mahalanobis 80 20 2.1053 97.8947 80 20 2.1053 97.8947 70 30 1.5789 98.4211
Proposed

10
90 10 2.7778 97.2222 95 5 2.2222 97.7778 95 5 1.1111 98.8889

Major PCs 80 20 3.8889 96.1111 85 15 4.4444 95.5556 90 10 2.7778 97.2222
Mahalanobis 85 15 4.4444 95.5556 85 15 4.4444 95.5556 90 10 2.7778 97.2222
Proposed

500

2
80 20 0.4082 99.5918 90 10 0.4082 99.5918 90 10 0.2041 99.7959

Major PCs 70 30 0.8163 99.1837 80 20 0.8163 99.1837 70 30 0.6122 99.3878
Mahalanobis 70 30 1.2245 98.7755 70 30 0.6122 99.3878 70 30 0.6122 99.3878
Proposed

5
92 8 0.4211 99.5789 96 4 0.4211 99.5789 96 4 0.2105 99.7895

Major PCs 84 16 1.4737 98.5263 84 16 1.0526 98.9474 88 12 0.8421 99.1579
Mahalanobis 84 16 1.2632 98.7368 84 16 1.0526 98.9474 84 16 0.6316 99.3684
Proposed

10
94 6 0.4444 99.5556 96 4 0.4444 99.5556 98 2 0.2222 99.7778

Major PCs 90 10 1.5556 98.4444 92 8 1.5556 98.4444 90 10 1.5556 98.4444
Mahalanobis 86 14 0.8889 99.1111 92 8 0.8889 99.1111 92 8 0.8889 99.1111
Proposed

1000

2
85 15 0.4082 99.5918 85 15 0.4082 99.5918 100 0 0.3061 99.6939

Major PCs 75 25 0.4082 99.5918 80 20 0.3061 99.6939 85 15 0.3061 99.6939
Mahalanobis 70 30 0.4082 99.5918 80 20 0.3061 99.6939 90 10 0.2041 99.7959
Proposed

5
94 6 0.5263 99.4737 96 4 0.7368 99.2632 100 0 0.6316 99.3684

Major PCs 90 10 0.6316 99.3684 90 10 0.6316 99.3684 92 8 0.6316 99.3684
Mahalanobis 86 14 0.7368 99.2632 84 16 0.8421 99.1579 86 14 0.7368 99.2632
Proposed

10
96 4 0.5556 99.4444 98 2 0.4444 99.5556 100 0 0.2222 99.7778

Major PCs 89 11 1.2222 98.7778 90 10 0.3333 99.6667 93 7 0.4444 99.5556
Mahalanobis 88 12 1.1111 98.8889 90 10 0.3333 99.6667 93 7 0.5556 99.4444

Table 8: Precision and recall in simulated datasets.

Method n Contamination
ρ � 0.90 ρ � 0.95 ρ � 0.975

Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure
Proposed

200

2
0.6000 0.7500 0.6667 0.5000 0.7500 0.6000 0.5000 0.7500 0.60000

Major PCs 0.3333 0.5000 0.4000 0.3333 0.5000 0.4000 0.3333 0.5000 0.39998
Mahalanobis 0.3333 0.5000 0.4000 0.3333 0.5000 0.4000 0.2857 0.5000 0.36362
Proposed

5
0.8182 0.9000 0.8572 0.9000 0.9000 0.9000 0.9000 0.9000 0.90000

Major PCs 0.7273 0.8000 0.7619 0.7000 0.7000 0.7000 0.7000 0.7000 0.70000
Mahalanobis 0.6667 0.8000 0.7273 0.6667 0.8000 0.7273 0.7000 0.7000 0.70000
Proposed

10
0.7826 0.9000 0.8372 0.8261 0.9500 0.8837 0.9048 0.9500 0.92685

Major PCs 0.6957 0.8000 0.7442 0.6800 0.8500 0.7556 0.7826 0.9000 0.83720
Mahalanobis 0.6800 0.8500 0.7556 0.6800 0.8500 0.7556 0.7826 0.9000 0.83720
Proposed

500

2
0.8000 0.8000 0.8000 0.8182 0.9000 0.8572 0.9000 0.9000 0.90000

Major PCs 0.6364 0.7000 0.6667 0.6667 0.8000 0.7273 0.7000 0.7000 0.70000
Mahalanobis 0.5385 0.7000 0.6087 0.7000 0.7000 0.7000 0.7000 0.7000 0.70000
Proposed

5
0.9200 0.9200 0.9200 0.9231 0.9600 0.9412 0.9600 0.9600 0.96000

Major PCs 0.7500 0.8400 0.7925 0.8077 0.8400 0.8235 0.8462 0.8800 0.86277
Mahalanobis 0.7778 0.8400 0.8077 0.8077 0.8400 0.8235 0.8750 0.8400 0.85714
Proposed

10
0.9592 0.9400 0.9495 0.9600 0.9600 0.9600 0.9800 0.9800 0.98000

Major PCs 0.8654 0.9000 0.8824 0.8679 0.9200 0.8932 0.8654 0.9000 0.88236
Mahalanobis 0.9149 0.8600 0.8866 0.9200 0.9200 0.9200 0.9200 0.9200 0.92000
Proposed

1000

2
0.8095 0.8500 0.8293 0.8095 0.8500 0.8293 0.8696 1.0000 0.93025

Major PCs 0.7895 0.7500 0.7692 0.8421 0.8000 0.8205 0.8500 0.8500 0.85000
Mahalanobis 0.7778 0.7000 0.7369 0.8421 0.8000 0.8205 0.9000 0.9000 0.90000
Proposed

5
0.9038 0.9400 0.9215 0.8727 0.9600 0.9143 0.8929 1.0000 0.94342

Major PCs 0.8824 0.9000 0.8911 0.8824 0.9000 0.8911 0.8846 0.9200 0.90195
Mahalanobis 0.8600 0.8600 0.8600 0.8400 0.8400 0.8400 0.8600 0.8600 0.86000
Proposed

10
0.9505 0.9600 0.9552 0.9608 0.9800 0.9703 0.9804 1.0000 0.99010

Major PCs 0.8900 0.8900 0.8900 0.9677 0.9000 0.9326 0.9588 0.9300 0.94418
Mahalanobis 0.8980 0.8800 0.8889 0.9677 0.9000 0.9326 0.9490 0.9300 0.93940
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Figure 4: Continued.
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observations 2, 5, 9, 15, 34, 83, 97, and 102 are detected as
outlier with the method based upon Mahalanobis distance.

Table 4 presents the True Positive, False Negative,
False Positive, and True Negative detected in both datasets
with proposed and existing methods. *e precision and
recall computed using all three approaches are given in
Table 4.

*e results presented in Tables 4 and 5 indicate the
supremacy of the proposed method. All the three evalua-
tion criteria, i.e., precision, recall, and F-measure, are
higher for the proposed method. *e same results can be
observed for solvents dataset. TPs and TNs are highest, and
FNs and FPs are lowest with the proposed method for

Solvents dataset. Precision, recall, and F-measure are found
to be 0.8889, 0.7273, and 0.8000, respectively, (highest) for
the proposed method.

4.2. Simulated Datasets. In this subsection, we present the
comparative performance evaluation results of the proposed
and two existing methods with the help of simulated
datasets. For this purpose, ten variables are generated from a
multivariate standard normal distribution with three dif-
ferent levels of correlation, i.e., 0.90, 0.95, and 0.975. *ree
different sample sizes are used, i.e., 200, 500, and 1000
observations for each of the three sets of variables. *ree
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Figure 4: (a) Sample size versus true detection rate (ρ � 0.9) with the proposed (Black), major PCs (green), and Mahalanobis (red)
methods. (b): Sample size versus true detection rate (ρ � 0.95) with the proposed (black), major PCs (green), and Mahalanobis (red)
methods. (c): Sample size versus true detection rate (ρ � 0.975) with the proposed (black), major PCs (green), and Mahalanobis (red)
methods.
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levels of contamination, i.e., c � 2%, 5%, and 10% are used
to insert outliers in each of the ten variables. A total of c

(contamination or number of outliers) random numbers
between 1 and 1000 are produced to select the “c” rows to
insert outliers in the dataset. *e mean and standard de-
viation of the data are calculated. Each observation of the
certain row is multiplied by

Mean + 10(standard deviation). (13)

Hence, a total of twenty-seven datasets are generated in
this way. *e simulation experiments are replicated 1000
times to compute the percentage of true detection rate,
precision, and recall.

*e error series for all the simulated datasets are
computed, and their means are presented in Table 6. It can
be observed that the mean of all these error series are ap-
proximately zero.

Tables 7 and 8 present the percentage of true positive,
false negative, false positive, and true negative, precision,
recall, and F-measure for the simulated datasets. *e per-
centage of true detection is highest, and false detection is the
lowest for the proposed method as compared to the existing
methods. *e size of sample has a direct effect on any re-
search findings. It can undermine or strengthen the internal
and external validation of any study. *e same can be ob-
served from the results of our study. A substantial im-
provement in results can be seen with increasing sample
sizes. As the sample size has increased from 200 to 1000, the
percentage of true positives has increased from 75% to 85%
when the contamination level is 2%, from 90% to 94% when
the contamination level is 5%, and similarly from 90% to
96% when the contamination level is 2%. It can also be
observed that the correlation level has no effect on the
simulated results. Similarly, the change in contamination
levels also has not any effect on the results. *e same can be
confirmed from precision, recall, and F-measure. A set of
figures presented as Figures 4(a)–4(c) show the percentages
of true detection rates versus sample sizes for the three
methods. True detection rate is also higher for the proposed
method and is getting more improved with the increase in
sample size.

5. Discussion and Conclusion

*is paper suggests a novel approach based upon PCA and
three-sigma limits for outlier detection. *e predictive
model is developed using the major principal components
suggested by the scree plots. *e main advantage of the
proposed approach is that it does not require any distri-
butional assumptions. We performed the outlier detection
with our proposed method as well as with two existing
classical approaches to gauge the performance of the
proposed method. *e performance comparison is made
using two real life and several simulated datasets. *e
examples from real life data and simulation experiments
confirm the better performance of our proposed technique
as compared to the two existing approaches. First, the
three outlier detection methods were applied to silicon

wafer thickness data. *e computed values of precision,
recall, and F-Statistic were highest with the proposed
method, i.e., 0.6667, 0.6667, and 0.6667, respectively, while
using major PCs, the three measures were 0.2500, 0.5000,
and 0.3333. *e method based upon Mahalanobis distance
produced the three measures as 0.3333, 0.5000, and 0.4000,
respectively. Major PCs based method produced the worst
results. *e same scenario can be observed from the ap-
plication of these three outlier detection methods to sol-
vents data. Precision, recall, and F-Statistic were computed
as 0.8889, 0.7273, and 0.8000 with the proposed method,
0.6250, 0.4545, and 0.5263 by using major PCs, and 0.7500,
0.5454, and 0.6315 with Mahalanobis distance method.
Simulation experiments also confirmed the same situation.
For all the sample sizes, correlation, and contamination
levels, the proposed method performed best among the
three.

With three increasing levels of sample sizes, i.e., 200, 500,
and 1000, the percentages of true detections are increased, and
false detection rates are decreased. *e performance is getting
better with increasing sample sizes regardless the level of
correlation between variables and contamination level. *e
results showed that, with ρ � 0.9 when the contamination level
is 2%, the precision is increased from 0.6000 to 0.8095, recall is
increased from 0.7500 to 0.8500, and F-measure is increased
from 0.6667 to 0.8293 when the sample size is increased from
200 to 1000. When the contamination level is 5%, these three
measures are 0.8182, 0.9000, and 0.8572 for sample size 200 and
increased to 0.9038, 0.9400, and 0.9215 with the sample size
1000. *e same can be observed with ρ � 0.95. *e three
measures with sample size 200 and 2% contamination are
0.5000, 0.7500, and 0.6000 and increased to 0.8095, 0.8500, and
0.8293 with increasing sample size of 1000. A similar situation
persists with 5% and 10% contamination. *e results with
datasets havingmaximum correlation level, i.e., ρ � 0.975, gave
the same scenario. For 10% contamination level with sample
size� 200, the threemeasures were 0.9048, 0.9500, and 0.92685.
When sample size was increased to 500 and 1000, these
measures were increased to 0.9800, 0.9800, 0.9800, and 0.9804,
1.0000, and 0.99010, respectively.

Not only is the proposed method useful for datasets with
variables having interdependence relationship, but it can
also be applied to data having variable with dependence
relationship, i.e., variables categorized as response and ex-
planatory variables. *e outlying observations in the set of
explanatory variables can be detected by using the step by
step approach of the proposed method. After taking care of
outlying observations in explanatory variables, response
variable can be checked for outlying observations by using
studentized deleted residuals, or a formal test can be con-
ducted by means of the Bonferroni test procedure. In future
work, investigating the proposed method for variables
having such relationship might prove important.

Data Availability

Previously reported data were used to support this study and
are available at https://openmv.net/info/silicon-wafer-
thickness https://openmv.net/info/solvents.
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